Literatura científica selecionada sobre o tema "Implantable cardiac stimulation devices"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Implantable cardiac stimulation devices".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Implantable cardiac stimulation devices"
Yang, Ying chi, Thein Tun Aung e Abdul Wase. "Inappropriate Defibrillator Shocks due to Mechanical Inference from an Investigational Device". Case Reports in Cardiology 2019 (6 de janeiro de 2019): 1–3. http://dx.doi.org/10.1155/2019/2810396.
Texto completo da fonteEduardo Duarte, Carlos, e André Brambilla Sbaraini. "Rational Use of Leads in Artificial Cardiac Pacing". Journal of Cardiac Arrhythmias 32, n.º 4 (16 de abril de 2020): 262–74. http://dx.doi.org/10.24207/jca.v32n4.979_in.
Texto completo da fonteRosenow, Joshua M., Howard Tarkin, Elias Zias, Carmine Sorbera e Alon Mogilner. "Simultaneous use of bilateral subthalamic nucleus stimulators and an implantable cardiac defibrillator". Journal of Neurosurgery 99, n.º 1 (julho de 2003): 167–69. http://dx.doi.org/10.3171/jns.2003.99.1.0167.
Texto completo da fonteŚwierżyńska, Ewa, e Maciej Sterliński. "Decreases in biventricular pacing percentage in remote monitoring of patients with cardiac implantable electronic devices". In a good rythm 1, n.º 62 (31 de maio de 2022): 17–20. http://dx.doi.org/10.5604/01.3001.0015.9157.
Texto completo da fonteMabo, P., e G. Carrault. "Are Electronic Cardiac Devices Still Evolving?" Yearbook of Medical Informatics 23, n.º 01 (agosto de 2014): 128–34. http://dx.doi.org/10.15265/iy-2014-0021.
Texto completo da fonteKeqi, Su. "Implantable Triboelectric Nanogenerators in the Biomedical Field". Journal of Material Sciences & Manufacturing Research 5, n.º 7 (31 de julho de 2024): 1–9. http://dx.doi.org/10.47363/jmsmr/2024(5)183.
Texto completo da fonteCronin, Edmond M., Jennifer Gray, Bernard Abi-Saleh, Bruce L. Wilkoff e Kerry H. Levin. "Safety of repetitive nerve stimulation in patients with cardiac implantable electronic devices". Muscle & Nerve 47, n.º 6 (21 de abril de 2013): 840–44. http://dx.doi.org/10.1002/mus.23707.
Texto completo da fonteGrydz, Łukasz. "Infection risk factor for cardiac implantable devices". In a good rythm 3, n.º 56 (21 de outubro de 2020): 30–34. http://dx.doi.org/10.5604/01.3001.0014.4644.
Texto completo da fonteMeyer zu Vilsendorf, Dorothee, Bert Hansky, Philipp Baumann e Christoph Stellbrink. "Troubleshooting bei Patienten mit Herzschrittmacher und ICD". DMW - Deutsche Medizinische Wochenschrift 143, n.º 22 (30 de outubro de 2018): 1608–16. http://dx.doi.org/10.1055/a-0560-3180.
Texto completo da fonteGutiérrez-Martínez, Josefina, Cinthya Toledo-Peral, Jorge Mercado-Gutiérrez, Arturo Vera-Hernández e Lorenzo Leija-Salas. "Neuroprosthesis Devices Based on Micro- and Nanosensors: A Systematic Review". Journal of Sensors 2020 (7 de outubro de 2020): 1–19. http://dx.doi.org/10.1155/2020/8865889.
Texto completo da fonteTeses / dissertações sobre o assunto "Implantable cardiac stimulation devices"
Pannetier, Valentin. "Simulations numériques standardisées de dispositifs de stimulation électrique cardiaque". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0352.
Texto completo da fonteCardiovascular diseases are the world’s leading cause of death, responsible for around 32% of all deaths in 2019, according to the World Health Organization (WHO). Faced with these pathologies, medical research is making constant progress to develop ever more effective treatments and devices. Among these innovations, implantable pacemakers play a crucial role in the treatment of cardiac rhythm disorders, intervening directly on the heart in the event of malfunction. Despite, despite their importance, the development of these technologies remains slow and costly. It often takes almost a decade from early prototyping to market launch, delaying their impact on human lives. This thesis is part of the European collaborative project SimCardioTest (EU H2020), which aims to accelerate the adoption of numerical tools for the certification of drugs and medical devices, such as implantable pacemakers. One of the main goals of the project is to integrate numerical simulations in the form of in silico clinical trials on a standardized web plateform in oirder to speed up thecertification process. During of this thesis, several mathematical models were developed and analyzed, ranging from generic three-dimensional models to simplified models with no spatial dimension. All these models include a electrical circuit inspired by a commercial pacemaker, contact models representing the ionic layers on electrode surfaces as equivalent electrical circuits, and cardiac tissue models with or without spatial propagation of cardiac action potentials. The credibility of these models is assessed through comparisons with animal experiments conducted during the thesis, with the aim of demonstrating their ability to reproduce realistic cardiac stimulations. These comparisons are based mainly on the voltages measured by pacemakers and on the study of threshold curves, also known as Lapicque curves. These curves, widely used clinically to adjust pacemakers, establish the relationship between stimulation duration and amplitude required to induce an effective cardiac contraction. In particular, they enable pacemaker settings to be optimized through individual customization, thereby minimizing energy consumption, maximizing device life, and therefore improving patient’s life quality. The adoption of simplified dimensionless models is an valuable strategic step in this thesis. Unlike spatial models, which are very costly to solve numerically, these models are simpler to solve and have enabled several parametric studies to be carried out, in particular to perform calibration using experimental data. Additional sensitivity studies, both local and global, were also carried out to analyze the influence and relevance of the parameters in the developed models
Satya, Sarina. "ST Monitoring on the Programmer for Implantable Cardioverter Devices". DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/258.
Texto completo da fonteMaghsoudloo, Esmaeel, e Esmaeel Maghsoudloo. "Wireless power transfer for combined sensing and stimulation in implantable biomedical devices". Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/33348.
Texto completo da fonteActuellement, il existe une forte demande de Headstage et de microsystèmes intégrés implantables pour étudier l’activité cérébrale de souris de laboratoire en mouvement libre. De tels dispositifs peuvent s’interfacer avec le système nerveux central dans les paradigmes électriques et optiques pour stimuler et surveiller les circuits neuronaux, ce qui est essentiel pour découvrir de nouveaux médicaments et thérapies contre des troubles neurologiques comme l’épilepsie, la dépression et la maladie de Parkinson. Puisque les systèmes implantables ne peuvent pas utiliser une batterie ayant une grande capacité en tant que source d’énergie primaire dans des expériences à long terme, la consommation d’énergie du dispositif implantable est l’un des principaux défis de ces conceptions. La première partie de cette recherche comprend notre proposition de la solution pour diminuer la consommation d’énergie des microcircuits implantables. Nous proposons un nouveau circuit de décalage de niveau qui convertit les niveaux de signaux sub-seuils en niveaux ultra-bas à haute vitesse en utilisant une très faible puissance et une petite zone de silicium, ce qui le rend idéal pour les applications de faible puissance. Le circuit proposé introduit une nouvelle topologie de décaleur de niveau de tension utilisant un condensateur de décalage de niveau pour augmenter la plage de tensions de conversion, tout en réduisant considérablement le retard de conversion. Le circuit proposé atteint un délai de propagation plus court et une zone de silicium plus petite pour une fréquence de fonctionnement et une consommation d’énergie donnée par rapport à d’autres solutions de circuit. Les résultats de mesure sont présentés pour le circuit proposé fabriqué dans un processus CMOS TSMC de 0,18- mm. Le circuit présenté peut convertir une large gamme de tensions d’entrée de 330 mV à 1,8 V et fonctionner sur une plage de fréquence de 100 Hz à 100 MHz. Il a un délai de propagation de 29 ns et une consommation d’énergie de 61,5 nW pour les signaux d’entrée de 0,4 V, à une fréquence de 500 kHz, surpassant les conceptions précédentes. La deuxième partie de cette recherche comprend nos systèmes de transfert d’énergie sans fil proposé pour les applications optogénétiques. L’optogénétique est la combinaison de la méthode génétique et optique d’excitation, d’enregistrement et de contrôle des neurones biologiques. Ce système combine plusieurs technologies telles que les MEMS et la microélectronique pour collecter et transmettre les signaux neuronaux et activer un stimulateur optique via une liaison sans fil. Puisque les stimulateurs optiques consomment plus de puissance que les stimulateurs électriques, l’interface utilise la transmission de puissance par induction en utilisant des moyens innovants au lieu de la batterie avec la petite capacité comme source d’énergie.
Notre première contribution dans la deuxième partie fournit un système de cage domestique intelligent basé sur des barrettes multi-bobines superposées à travers un récepteur multicellulaire implantable mince de taille 1×1 cm2, implanté sous le cuir chevelu d’une souris de laboratoire, et unité de gestion de l’alimentation intégrée. Ce système inductif est conçu pour fournir jusqu’à 35,5 mW de puissance délivrée à un émetteur-récepteur full duplex de faible puissance entièrement intégré pour prendre en charge des implants neuronaux à haute densité et bidirectionnels. L’émetteur (TX) utilise une bande ultra-large à impulsions radio basée sur des approches de combinaison, et le récepteur (RX) utilise une topologie à bande étroite à incrémentation de 2,4 GHz. L’émetteur-récepteur proposé fournit un débit de données de liaison montante TX à 500 Mbits/s double et un débit de données de liaison descendante RX à 100 Mbits/s, et est entièrement intégré dans un processus CMOS TSMC de 0,18-mm d’une taille totale de 0,8 mm2 . La puissance peut être délivrée à partir d’un signal de porteuse de 13,56-MHz avec une efficacité globale de transfert de puissance supérieure à 5% sur une distance de séparation allant de 3 cm à 5 cm. Notre deuxième contribution dans les systèmes de collecte d’énergie porte sur la conception et la mise en oeuvre d’une cage domestique de transmission de puissance sans fil (WPT) pour une plate-forme de neurosciences entièrement sans fil afin de permettre des expériences optogénétiques ininterrompues avec des rongeurs de laboratoire vivants. La cage domestique WPT utilise un nouveau réseau hybride de transmetteurs de puissance (TX) et des résonateurs multi-bobines segmentés pour atteindre une efficacité de transmission de puissance élevée (PTE) et délivrer une puissance élevée sur des distances aussi élevées que 20 cm. Le récepteur de puissance à bobines multiples (RX) utilise une bobine RX d’un diamètre de 1 cm et une bobine de résonateur d’un diamètre de 1,5 cm. L’efficacité moyenne du transfert de puissance WPT est de 29, 4%, à une distance nominale de 7 cm, pour une fréquence porteuse de 13,56 MHz. Il a des PTE maximum et minimum de 50% et 12% le long de l’axe Z et peut délivrer une puissance constante de 74 mW pour alimenter le headstage neuronal miniature. En outre, un dispositif implantable intégré dans un processus CMOS TSMC de 0,18-mm a été conçu et introduit qui comprend 64 canaux d’enregistrement, 16 canaux de stimulation optique, capteur de température, émetteur-récepteur et unité de gestion de l’alimentation (PMU). Ce circuit est alimenté à l’intérieur de la cage du WPT à l’aide d’une bobine réceptrice d’un diamètre de 1,5 cm pour montrer les performances du circuit PMU. Deux tensions régulées de 1,8 V et 1 V fournissent 79 mW de puissance pour tout le système sur une puce. Notre dernière contribution est un système WPT insensible aux désalignements angulaires pour alimenter un headstage pour des applications optogénétiques qui a été précédemment proposé par le Laboratoire de Microsystèmes Biomédicaux (BioML-UL) à ULAVAL. Ce système est la version étendue de notre deuxième contribution aux systèmes de collecte d’énergie.Dans la version mise à jour, un récepteur de puissance multi-bobines utilise une bobine RX d’un diamètre de 1,0 cm et une nouvelle bobine de résonateur fendu d’un diamètre de 1,5 cm, qui résiste aux défauts d’alignement angulaires. Dans cette version qui utilise une cage d’animal plus petite que la dernière version, 4 résonateurs sont utilisés côté TX. De plus, grâce à la forme et à la position de la bobine de répéteur L3 du côté du récepteur, la liaison résonnante hybride présentée peut correctement alimenter la tête sans interruption causée par le désalignement angulaire dans toute la cage de la maison. Chaque 3 tours du répéteur RX a été enveloppé avec un diamètre de 1,5 cm, sous différents angles par rapport à la bobine réceptrice. Les résultats de mesure montrent un PTE maximum et minimum de 53 % et 15 %. La méthode proposée peut fournir une puissance constante de 82 mW pour alimenter le petit headstage neural pour les applications optogénétiques. De plus, dans cette version, la performance du système est démontrée dans une expérience in-vivo avec une souris ChR2 en mouvement libre qui est la première expérience optogénétique sans fil et sans batterie rapportée avec enregistrement électrophysiologique simultané et stimulation optogénétique. L’activité électrophysiologique a été enregistrée après une stimulation optogénétique dans le Cortex Cingulaire Antérieur (CAC) de la souris.
Notre première contribution dans la deuxième partie fournit un système de cage domestique intelligent basé sur des barrettes multi-bobines superposées à travers un récepteur multicellulaire implantable mince de taille 1×1 cm2, implanté sous le cuir chevelu d’une souris de laboratoire, et unité de gestion de l’alimentation intégrée. Ce système inductif est conçu pour fournir jusqu’à 35,5 mW de puissance délivrée à un émetteur-récepteur full duplex de faible puissance entièrement intégré pour prendre en charge des implants neuronaux à haute densité et bidirectionnels. L’émetteur (TX) utilise une bande ultra-large à impulsions radio basée sur des approches de combinaison, et le récepteur (RX) utilise une topologie à bande étroite à incrémentation de 2,4 GHz. L’émetteur-récepteur proposé fournit un débit de données de liaison montante TX à 500 Mbits/s double et un débit de données de liaison descendante RX à 100 Mbits/s, et est entièrement intégré dans un processus CMOS TSMC de 0,18-mm d’une taille totale de 0,8 mm2 . La puissance peut être délivrée à partir d’un signal de porteuse de 13,56-MHz avec une efficacité globale de transfert de puissance supérieure à 5% sur une distance de séparation allant de 3 cm à 5 cm. Notre deuxième contribution dans les systèmes de collecte d’énergie porte sur la conception et la mise en oeuvre d’une cage domestique de transmission de puissance sans fil (WPT) pour une plate-forme de neurosciences entièrement sans fil afin de permettre des expériences optogénétiques ininterrompues avec des rongeurs de laboratoire vivants. La cage domestique WPT utilise un nouveau réseau hybride de transmetteurs de puissance (TX) et des résonateurs multi-bobines segmentés pour atteindre une efficacité de transmission de puissance élevée (PTE) et délivrer une puissance élevée sur des distances aussi élevées que 20 cm. Le récepteur de puissance à bobines multiples (RX) utilise une bobine RX d’un diamètre de 1 cm et une bobine de résonateur d’un diamètre de 1,5 cm. L’efficacité moyenne du transfert de puissance WPT est de 29, 4%, à une distance nominale de 7 cm, pour une fréquence porteuse de 13,56 MHz. Il a des PTE maximum et minimum de 50% et 12% le long de l’axe Z et peut délivrer une puissance constante de 74 mW pour alimenter le headstage neuronal miniature. En outre, un dispositif implantable intégré dans un processus CMOS TSMC de 0,18-mm a été conçu et introduit qui comprend 64 canaux d’enregistrement, 16 canaux de stimulation optique, capteur de température, émetteur-récepteur et unité de gestion de l’alimentation (PMU). Ce circuit est alimenté à l’intérieur de la cage du WPT à l’aide d’une bobine réceptrice d’un diamètre de 1,5 cm pour montrer les performances du circuit PMU. Deux tensions régulées de 1,8 V et 1 V fournissent 79 mW de puissance pour tout le système sur une puce. Notre dernière contribution est un système WPT insensible aux désalignements angulaires pour alimenter un headstage pour des applications optogénétiques qui a été précédemment proposé par le Laboratoire de Microsystèmes Biomédicaux (BioML-UL) à ULAVAL. Ce système est la version étendue de notre deuxième contribution aux systèmes de collecte d’énergie.Dans la version mise à jour, un récepteur de puissance multi-bobines utilise une bobine RX d’un diamètre de 1,0 cm et une nouvelle bobine de résonateur fendu d’un diamètre de 1,5 cm, qui résiste aux défauts d’alignement angulaires. Dans cette version qui utilise une cage d’animal plus petite que la dernière version, 4 résonateurs sont utilisés côté TX. De plus, grâce à la forme et à la position de la bobine de répéteur L3 du côté du récepteur, la liaison résonnante hybride présentée peut correctement alimenter la tête sans interruption causée par le désalignement angulaire dans toute la cage de la maison. Chaque 3 tours du répéteur RX a été enveloppé avec un diamètre de 1,5 cm, sous différents angles par rapport à la bobine réceptrice. Les résultats de mesure montrent un PTE maximum et minimum de 53 % et 15 %. La méthode proposée peut fournir une puissance constante de 82 mW pour alimenter le petit headstage neural pour les applications optogénétiques. De plus, dans cette version, la performance du système est démontrée dans une expérience in-vivo avec une souris ChR2 en mouvement libre qui est la première expérience optogénétique sans fil et sans batterie rapportée avec enregistrement électrophysiologique simultané et stimulation optogénétique. L’activité électrophysiologique a été enregistrée après une stimulation optogénétique dans le Cortex Cingulaire Antérieur (CAC) de la souris.
Our first contribution in the second part provides a smart home-cage system based on overlapped multi-coil arrays through a thin implantable multi-coil receiver of 1×1 cm2 of size, implantable bellow the scalp of a laboratory mouse, and integrated power management circuits. This inductive system is designed to deliver up to 35.5 mW of power delivered to a fully-integrated, low-power full-duplex transceiver to support high-density and bidirectional neural implants. The transmitter (TX) uses impulse radio ultra-wideband based on an edge combining approach, and the receiver (RX) uses a 2.4- GHz on-off keying narrow band topology. The proposed transceiver provides dual-band 500-Mbps TX uplink data rate and 100-Mbps RX downlink data rate, and it is fully integrated into 0.18-mm TSMC CMOS process within a total size of 0.8 mm2. The power can be delivered from a 13.56-MHz carrier signal with an overall power transfer efficiency above 5% across a separation distance ranging from 3 cm to 5 cm. Our second contribution in power-harvesting systems deals with designing and implementation of a WPT home-cage for a fully wireless neuroscience platform for enabling uninterrupted optogenetic experiments with live laboratory rodents. The WPT home-cage uses a new hybrid parallel power transmitter (TX) coil array and segmented multi-coil resonators to achieve high power transmission efficiency (PTE) and deliver high power across distances as high as 20 cm. The multi-coil power receiver (RX) uses an RX coil with a diameter of 1 cm and a resonator coil with a diameter of 1.5 cm. The WPT home-cage average power transfer efficiency is 29.4%, at a nominal distance of 7 cm, for a power carrier frequency of 13.56-MHz. It has maximum and minimum PTE of 50% and 12% along the Z axis and can deliver a constant power of 74 mW to supply the miniature neural headstage. Also, an implantable device integrated into a 0.18-mm TSMC CMOS process has been designed and introduced which includes 64 recording channels, 16 optical stimulation channels, temperature sensor, transceiver, and power management unit (PMU). This circuit powered up inside the WPT home-cage using receiver coil with a diameter of 1.5 cm to show the performance of the PMU circuit. Two regulated voltages of 1.8 V and 1 V provide 79 mW of power for all the system on a chip. Our last contribution is an angular misalignment insensitive WPT system to power up a headstage which has been previously proposed by the Biomedical Microsystems Laboratory (BioML-UL) at ULAVAL for optogenetic applications. This system is the extended version of our second contribution in power-harvesting systems. In the updated version a multi-coil power receiver uses an RX coil with a diameter of 1.0 cm and a new split resonator coil with a diameter of 1.5 cm, which is robust against angular misalignment. In this version which is using a smaller animal home-cage than the last version, 4 resonators are used on the TX side. Also, thanks to the shape and position of the repeater coil of L3 on the receiver side, the presented hybrid resonant link can properly power up the headstage without interruption caused by the angular misalignment all over the home-cage. Each 3 turns of the RX repeater has been wrapped up with a diameter of 1.5 cm, in different angles compared to the receiver coil. Measurement results show a maximum and minimum PTE of 53 % and 15 %. The proposed method can deliver a constant power of 82 mW to supply the small neural headstage for the optogenetic applications. Additionally, in this version, the performance of the system is demonstrated within an in-vivo experiment with a freely moving ChR2 mouse which is the first fully wireless and batteryless optogenetic experiment reported with simultaneous electrophysiological recording and optogenetic stimulation. Electrophysiological activity was recorded after delivering optogenetic stimulation in the Anterior Cingulate Cortex (ACC) of the mouse.
Our first contribution in the second part provides a smart home-cage system based on overlapped multi-coil arrays through a thin implantable multi-coil receiver of 1×1 cm2 of size, implantable bellow the scalp of a laboratory mouse, and integrated power management circuits. This inductive system is designed to deliver up to 35.5 mW of power delivered to a fully-integrated, low-power full-duplex transceiver to support high-density and bidirectional neural implants. The transmitter (TX) uses impulse radio ultra-wideband based on an edge combining approach, and the receiver (RX) uses a 2.4- GHz on-off keying narrow band topology. The proposed transceiver provides dual-band 500-Mbps TX uplink data rate and 100-Mbps RX downlink data rate, and it is fully integrated into 0.18-mm TSMC CMOS process within a total size of 0.8 mm2. The power can be delivered from a 13.56-MHz carrier signal with an overall power transfer efficiency above 5% across a separation distance ranging from 3 cm to 5 cm. Our second contribution in power-harvesting systems deals with designing and implementation of a WPT home-cage for a fully wireless neuroscience platform for enabling uninterrupted optogenetic experiments with live laboratory rodents. The WPT home-cage uses a new hybrid parallel power transmitter (TX) coil array and segmented multi-coil resonators to achieve high power transmission efficiency (PTE) and deliver high power across distances as high as 20 cm. The multi-coil power receiver (RX) uses an RX coil with a diameter of 1 cm and a resonator coil with a diameter of 1.5 cm. The WPT home-cage average power transfer efficiency is 29.4%, at a nominal distance of 7 cm, for a power carrier frequency of 13.56-MHz. It has maximum and minimum PTE of 50% and 12% along the Z axis and can deliver a constant power of 74 mW to supply the miniature neural headstage. Also, an implantable device integrated into a 0.18-mm TSMC CMOS process has been designed and introduced which includes 64 recording channels, 16 optical stimulation channels, temperature sensor, transceiver, and power management unit (PMU). This circuit powered up inside the WPT home-cage using receiver coil with a diameter of 1.5 cm to show the performance of the PMU circuit. Two regulated voltages of 1.8 V and 1 V provide 79 mW of power for all the system on a chip. Our last contribution is an angular misalignment insensitive WPT system to power up a headstage which has been previously proposed by the Biomedical Microsystems Laboratory (BioML-UL) at ULAVAL for optogenetic applications. This system is the extended version of our second contribution in power-harvesting systems. In the updated version a multi-coil power receiver uses an RX coil with a diameter of 1.0 cm and a new split resonator coil with a diameter of 1.5 cm, which is robust against angular misalignment. In this version which is using a smaller animal home-cage than the last version, 4 resonators are used on the TX side. Also, thanks to the shape and position of the repeater coil of L3 on the receiver side, the presented hybrid resonant link can properly power up the headstage without interruption caused by the angular misalignment all over the home-cage. Each 3 turns of the RX repeater has been wrapped up with a diameter of 1.5 cm, in different angles compared to the receiver coil. Measurement results show a maximum and minimum PTE of 53 % and 15 %. The proposed method can deliver a constant power of 82 mW to supply the small neural headstage for the optogenetic applications. Additionally, in this version, the performance of the system is demonstrated within an in-vivo experiment with a freely moving ChR2 mouse which is the first fully wireless and batteryless optogenetic experiment reported with simultaneous electrophysiological recording and optogenetic stimulation. Electrophysiological activity was recorded after delivering optogenetic stimulation in the Anterior Cingulate Cortex (ACC) of the mouse.
Currently, there is a high demand for Headstage and implantable integrated microsystems to study the brain activity of freely moving laboratory mice. Such devices can interface with the central nervous system in both electrical and optical paradigms for stimulating and monitoring neural circuits, which is critical to discover new drugs and therapies against neurological disorders like epilepsy, depression, and Parkinson’s disease. Since the implantable systems cannot use a battery with a large capacity as a primary source of energy in long-term experiments, the power consumption of the implantable device is one of the leading challenges of these designs. The first part of this research includes our proposed solution for decreasing the power consumption of the implantable microcircuits. We propose a novel level shifter circuit which converting subthreshold signal levels to super-threshold signal levels at high-speed using ultra low power and a small silicon area, making it well-suited for low-power applications such as wireless sensor networks and implantable medical devices. The proposed circuit introduces a new voltage level shifter topology employing a level-shifting capacitor to increase the range of conversion voltages, while significantly reducing the conversion delay. The proposed circuit achieves a shorter propagation delay and a smaller silicon area for a given operating frequency and power consumption compared to other circuit solutions. Measurement results are presented for the proposed circuit fabricated in a 0.18-mm TSMC CMOS process. The presented circuit can convert a wide range of the input voltages from 330 mV to 1.8 V, and operate over a frequency range of 100-Hz to 100-MHz. It has a propagation delay of 29 ns, and power consumption of 61.5 nW for input signals 0.4 V, at a frequency of 500-kHz, outperforming previous designs. The second part of this research includes our proposed wireless power transfer systems for optogenetic applications. Optogenetics is the combination of the genetic and optical method of excitation, recording, and control of the biological neurons. This system combines multiple technologies such as MEMS and microelectronics to collect and transmit the neuronal signals and to activate an optical stimulator through a wireless link. Since optical stimulators consume more power than electrical stimulators, the interface employs induction power transmission using innovative means instead of the battery with the small capacity as a power source.
Currently, there is a high demand for Headstage and implantable integrated microsystems to study the brain activity of freely moving laboratory mice. Such devices can interface with the central nervous system in both electrical and optical paradigms for stimulating and monitoring neural circuits, which is critical to discover new drugs and therapies against neurological disorders like epilepsy, depression, and Parkinson’s disease. Since the implantable systems cannot use a battery with a large capacity as a primary source of energy in long-term experiments, the power consumption of the implantable device is one of the leading challenges of these designs. The first part of this research includes our proposed solution for decreasing the power consumption of the implantable microcircuits. We propose a novel level shifter circuit which converting subthreshold signal levels to super-threshold signal levels at high-speed using ultra low power and a small silicon area, making it well-suited for low-power applications such as wireless sensor networks and implantable medical devices. The proposed circuit introduces a new voltage level shifter topology employing a level-shifting capacitor to increase the range of conversion voltages, while significantly reducing the conversion delay. The proposed circuit achieves a shorter propagation delay and a smaller silicon area for a given operating frequency and power consumption compared to other circuit solutions. Measurement results are presented for the proposed circuit fabricated in a 0.18-mm TSMC CMOS process. The presented circuit can convert a wide range of the input voltages from 330 mV to 1.8 V, and operate over a frequency range of 100-Hz to 100-MHz. It has a propagation delay of 29 ns, and power consumption of 61.5 nW for input signals 0.4 V, at a frequency of 500-kHz, outperforming previous designs. The second part of this research includes our proposed wireless power transfer systems for optogenetic applications. Optogenetics is the combination of the genetic and optical method of excitation, recording, and control of the biological neurons. This system combines multiple technologies such as MEMS and microelectronics to collect and transmit the neuronal signals and to activate an optical stimulator through a wireless link. Since optical stimulators consume more power than electrical stimulators, the interface employs induction power transmission using innovative means instead of the battery with the small capacity as a power source.
Cordero, Álvarez Rafael. "Subcutaneous Monitoring of Cardiac Activity for Chronically Implanted Medical Devices". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS020.
Texto completo da fonteThe aim of this doctoral thesis was the development of sensors and algorithms for the improved monitoring of cardiac activity in the subcutaneous implantable cardioverter-defibrillator (SICD). More precisely, to improve the detection specificity of dangerous tachyarrhythmia such as ventricular tachycardia (VT) and ventricular fibrillation (VF). Two independent VT/VF detection schemes were developed for this: one electrophysiological in nature, and the other hemodynamic. The electrophysiological sensing scheme relied on a special ECG that was recorded along a short dipole located above the lower left pectoralis major. This short dipole maximised R/T ratio and signal-to-noise ratio in a total of 9 healthy volunteers. In theory, it will reduce the risk of false positive VT/VF detections simply by consequence of the dipole size, location, and orientation and independently of any further signal processing methods. The hemodynamic sensing scheme relied on cardiac vibrations recorded from two tri-axial accelerometer prototype sensors. These subcutaneous cardiac vibrations were characterised, physiologically validated, and optimised via their filtering along specific bandwidths and projection along a patient specific reference frame. The world’s first independent cardiac vibration VF detection algorithm was developed operating on these optimised signals. The same accelerometer prototypes were also shown to be able to record respiratory accelerations and detect apnoea. A final subcutaneous lead prototype was developed capable of recording the short dipole ECG, cardiac vibrations, and respiratory accelerations. It consisted of three electrodes, a bi-axial accelerometer, and industry-standard device connectors. The prototype lead was implanted in a fourth and final animal
Salih, Anmar Mahdi. "Characterization of In-Vivo Damage in Implantable Cardiac Devices and the Lead Residual Properties". Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1557851495921852.
Texto completo da fonteHudson, Felicity Jane. "Monitoring the effect of Radiation Therapy on cardiac implantable electronic devices to assess patient risk". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/13901.
Texto completo da fonteASLIAN, HOSSEIN. "EFFECT OF MODERN RADIOTHERAPY ON PATIENTS WITH CARDIAC IMPLANTABLE ELECTRONIC DEVICES (CIEDs): A COMPREHENSIVE STUDY". Doctoral thesis, Università degli Studi di Trieste, 2020. http://hdl.handle.net/11368/2960311.
Texto completo da fonteBraunschweig, Frieder. "Implantable devices in heart failure : studies on biventricular pacing and continuous hemodynamic monitoring /". Stockholm, 2002. http://diss.kib.ki.se/2002/91-7349-345-7/.
Texto completo da fonteBoilevin-Kayl, Ludovic. "Modeling and numerical simulation of implantable cardiovascular devices". Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS039.
Texto completo da fonteThis thesis, taking place in the context of the Mivana project, is devoted to the modeling and to the numerical simulation of implantable cardiovascular devices. This project is led by the start-up companies Kephalios and Epygon, conceptors of minimally invasive surgical solutions for the treatment of mitral regurgitation. The design and the simulation of such devices call for efficient and accurate numerical methods able to correctly compute cardiac hemodynamics. This is the main purpose of this thesis. In the first part, we describe the cardiovascular system and the cardiac valves before presenting some standard material for the mathematical modeling of cardiac hemodynamics. Based on the degree of complexity adopted for the modeling of the valve leaflets, two approaches are identified: the resistive immersed surfaces model and the complete fluidstructure interaction model. In the second part, we investigate the first approach which consists in combining a reduced modeling of the valves dynamics with a kinematic uncoupling of cardiac hemodynamics and electromechanics. We enhance it with external physiological data for the correct simulation of isovolumetric phases, cornerstones of the heartbeat, resulting in a relatively accurate model which avoids the complexity of fully coupled problems. Then, a series of numerical tests on 3D physiological geometries, involving mitral regurgitation and several configurations of immersed valves, illustrates the performance of the proposed model. In the third and final part, complete fluid-structure interaction models are considered. This type of modeling is necessary when investigating more complex problems where the previous approach is no longer satisfactory, such as mitral valve prolapse or the closing of a mechanical valve. From the numerical point of view, the development of accurate and efficient methods is mandatory to be able to compute such physiological cases. We then consider a complete numerical study in which several unfitted meshes methods are compared. Next, we present a new explicit coupling scheme in the context of the fictitious domain method for which the unconditional stability in the energy norm is proved. Several 2D numerical examples are provided to illustrate the properties and the performance of this scheme. Last, this method is finally used for 2D and 3D numerical simulation of implantable cardiovascular devices in a complete fluid-structure interaction framework
MIGNANO, Antonino. "IMPACT OF REMOTE MONITORING AND ATRIAL HIGH RATE EPISODES ON OUTCOME OF PATIENTS WITH CARDIAC IMPLANTABLE ELECTRONIC DEVICES". Doctoral thesis, Università degli Studi di Palermo, 2021. http://hdl.handle.net/10447/515509.
Texto completo da fonteLivros sobre o assunto "Implantable cardiac stimulation devices"
Korpas, David. Implantable Cardiac Devices Technology. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-6907-0.
Texto completo da fonteKorpas, David. Implantable Cardiac Devices Technology. Boston, MA: Springer US, 2013.
Encontre o texto completo da fonteDiemberger, Igor, e Giuseppe Boriani, eds. Infections of Cardiac Implantable Devices. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46255-0.
Texto completo da fonteProietti, Riccardo, Gian Mauro Manzoni, Giada Pietrabissa e Gianluca Castelnuovo, eds. Psychological, Emotional, Social and Cognitive Aspects of Implantable Cardiac Devices. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55721-2.
Texto completo da fonteSanjeev, Saksena, e Goldschlager Nora, eds. Electrical therapy for cardiac arrhythmias: Pacing, antitachycardia devices, catheter ablation. Philadelphia: Saunders, 1990.
Encontre o texto completo da fonteKorpas, David. Implantable Cardiac Devices Technology. Springer, 2015.
Encontre o texto completo da fonteKorpas, David. Implantable Cardiac Devices Technology. Springer, 2013.
Encontre o texto completo da fonteRadiographic Atlas of Cardiac Implantable Electronic Devices. Elsevier, 2022. http://dx.doi.org/10.1016/c2020-0-03768-0.
Texto completo da fonteRyan, James D., David L. Hayes, Siva K. Mulpuru, Nora E. Olson e Tracy L. Webster. Workbook of Diagnostics for Cardiac Implantable Devices. Cardiotext Publishing, 2020.
Encontre o texto completo da fonteRyan, James D., David L. Hayes, Siva K. Mulpuru, Nora E. Olson e Tracy L. Webster. Workbook of Diagnostics for Cardiac Implantable Devices. Cardiotext Publishing, 2020.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Implantable cardiac stimulation devices"
Hiestand, Brian, e William Abraham. "Implantable Cardiac Devices". In Contemporary Cardiology, 253–65. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-627-2_21.
Texto completo da fonteMorrison, Laura J. "Implantable Cardiac Devices". In Textbook of Palliative Medicine and Supportive Care, 841–60. 3a ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429275524-90.
Texto completo da fonteRooke, G. Alec. "Implantable Cardiac Devices". In The Perioperative Medicine Consult Handbook, 79–86. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3220-3_12.
Texto completo da fontePatel, Parag, Erin Armenia e Pina Spampanato. "Implantable Cardiac Devices". In In Clinical Practice, 47–80. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-41479-4_4.
Texto completo da fonteKorpas, David. "Implantable Cardioverter-Defibrillators". In Implantable Cardiac Devices Technology, 77–86. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-6907-0_10.
Texto completo da fonteRooke, G. Alec. "Implantable Cardiac Electronic Devices". In The Perioperative Medicine Consult Handbook, 75–81. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09366-6_12.
Texto completo da fonteMcVenes, Rick, e Ken Stokes. "Implantable Cardiac Electrostimulation Devices". In Biological and Medical Physics, Biomedical Engineering, 221–51. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77261-5_7.
Texto completo da fonteHiestand, Brian. "Cardiac Implantable Electronic Devices". In Contemporary Cardiology, 285–94. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44006-4_22.
Texto completo da fonteHall, Michael L., e G. Alec Rooke. "Implantable Cardiac Electronic Devices". In The Perioperative Medicine Consult Handbook, 89–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19704-9_11.
Texto completo da fonteDillane, Derek. "Cardiac Implantable Electronic Devices". In Preoperative Assessment, 57–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58842-7_9.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Implantable cardiac stimulation devices"
Garg, Aksh, Tejas Amritkar, Saravanan Vijayakumaran e Laxmeesha Somappa. "A Cryptographic Security Engine With Sequence Tracker for Implantable Neural Stimulation Devices". In 2024 IEEE Biomedical Circuits and Systems Conference (BioCAS), 1–5. IEEE, 2024. https://doi.org/10.1109/biocas61083.2024.10798193.
Texto completo da fonteVu, Jasmine, Bhumi Bhusal, Fuchang Jiang e Laleh Golestanirad. "Comparative Analysis of RF Heating of Cardiac Implantable Electronic Devices (CIEDs) in Conventional Closed-bore vs. Vertical Open-bore MRI Systems". In 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1–5. IEEE, 2024. https://doi.org/10.1109/embc53108.2024.10781567.
Texto completo da fonteJiang, Fuchang, Pia Panravi Sanpitak, Bhumi Bhusal, Jasmine Vu, Boris Keil e Laleh Golestanirad. "A Simulation Study of a Novel Patient-Adjustable MRI Coil for Safe Pediatric Imaging in Children with Cardiac Implantable Electronic Devices (CIEDs)". In 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1–5. IEEE, 2024. https://doi.org/10.1109/embc53108.2024.10781950.
Texto completo da fonteLibbus, Imad, Scott T. Mazar, Scott R. Stubbs e Bruce H. KenKnight. "Electrical Interaction between Implantable Vagus Nerve Stimulation Device and Implantable Cardiac Rhythm Management Device". In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018. http://dx.doi.org/10.1109/embc.2018.8513067.
Texto completo da fonteSchaffer, Jeremy E., Adam J. Griebel e Art J. Foster. "On Lead Durability: Materials with Performance for Extreme Service Implantable Leads". In 2024 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/dmd2024-1018.
Texto completo da fonteAranda-Michel, Edgar, Jooli Han e Dennis R. Trumble. "Design of a Muscle-Powered Extra-Aortic Counterpulsation Device for Long-Term Circulatory Support". In 2017 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dmd2017-3325.
Texto completo da fonteEllouze, Nourhene, Mohamed Allouche, Habib Ben Ahmed, Sliim Rekhis e Noureddine Boudriga. "Securing implantable cardiac medical devices". In the 3rd international workshop. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2517300.2517307.
Texto completo da fonteKim, Jiyoon, Sangmin Lee, Daniel Gerbi Duguma, Bonam Kim e Ilsun You. "Comments on "Securing implantable cardiac medical devices"". In ACM ICEA '20: 2020 ACM International Conference on Intelligent Computing and its Emerging Applications. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3440943.3444733.
Texto completo da fonteO'Connor, S. A. "Ventricular fibrillation and implantable defibrillators". In IEE Colloquium on Cardiac Pacing and Electrical Stimulation of the Heart. IEE, 1996. http://dx.doi.org/10.1049/ic:19960976.
Texto completo da fonteSarode, Shilpa, Sriram Radhakrishnan, Varun Sampath, Zhihao Jiang, Miroslav Pajic e Rahul Mangharam. "Demo Abstract: Model-Based Testing of Implantable Cardiac Devices". In 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems (ICCPS). IEEE, 2012. http://dx.doi.org/10.1109/iccps.2012.42.
Texto completo da fonte