Literatura científica selecionada sobre o tema "Implantable cardiac stimulation devices"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Implantable cardiac stimulation devices".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Implantable cardiac stimulation devices"

1

Yang, Ying chi, Thein Tun Aung e Abdul Wase. "Inappropriate Defibrillator Shocks due to Mechanical Inference from an Investigational Device". Case Reports in Cardiology 2019 (6 de janeiro de 2019): 1–3. http://dx.doi.org/10.1155/2019/2810396.

Texto completo da fonte
Resumo:
Cardiac contractility modulation (CCM) is an investigational device-based therapy to enhance ventricular contractility in systolic heart failure patients who are not candidates for cardiac resynchronization therapy (CRT) owing to the absence of wide QRS complexes or who have failed to respond on CRT. The principal mechanism is based on the stimulation of cardiac muscles by nonexcitatory electrical signals to augment the influx of calcium ions into the cardiomyocytes. The majority of patients receiving CCM therapy have concurrent implantable cardioverter defibrillators, and the manufacturer declares both devices can be used in parallel without any interactions. Nevertheless, proper lead positioning of both devices are crucial, and it is mandatory to check device-device interactions during each and every cardiac electronic implantable device-related procedure to prevent adverse outcomes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Eduardo Duarte, Carlos, e André Brambilla Sbaraini. "Rational Use of Leads in Artificial Cardiac Pacing". Journal of Cardiac Arrhythmias 32, n.º 4 (16 de abril de 2020): 262–74. http://dx.doi.org/10.24207/jca.v32n4.979_in.

Texto completo da fonte
Resumo:
Introduction: Cardiovascular implantable electronic device (CIEDs) are a proven therapy for the treatment of bradyarrhythmias, prevention of sudden death or heart failure. Since the first transvenous pacemaker implantation more than 60 years ago, technological advances in devices and improvements in surgical techniques have occurred. However, this type of therapy is still associated with significant complications, most of them related to the implantation of transvenous leads. Objective: To present a reflection on how to practice the rational use of lead implantation and propose strategies and alternatives to delay or avoid it, based on the current knowledge in the various fields of artificial cardiac stimulation. Methods: Review of literature that used articles from 1995 to 2019, from several platforms and periodicals. Conclusion: There is an expectation that in the coming years there will be technological and knowledge advances in the field of leadless stimulation, allowing these devices to be incorporated into clinical practice in a routine manner. Currently, if the implantation of ventricular electrodes in cases of sinus node disease with preserved atrioventricular conduction is rationalized, the implantation of atrial electrodes in implantable cardioverter-defibrillators (ICD) without the necessity of antibradicardia stimulation or ventricular electrodes in cases without the necessity of antitachycardia stimulation (ATP) considering the subcutaneous ICD implantation, this article will have fulfilled its role.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Rosenow, Joshua M., Howard Tarkin, Elias Zias, Carmine Sorbera e Alon Mogilner. "Simultaneous use of bilateral subthalamic nucleus stimulators and an implantable cardiac defibrillator". Journal of Neurosurgery 99, n.º 1 (julho de 2003): 167–69. http://dx.doi.org/10.3171/jns.2003.99.1.0167.

Texto completo da fonte
Resumo:
✓ Bilateral electrical stimulation of the subthalamic nucleus is being used with increasing frequency as a treatment for severe Parkinson disease (PD). Implantable cardiac defibrillators improve survival in certain high-risk patients with coronary artery disease and ventricular arrhythmias. Because of concern about possible interaction between these devices, deep brain stimulation (DBS) systems are routinely disconnected before defibrillators are implanted in patients with PD and arrhythmia. The authors report on a patient with bilateral subthalamic stimulators who underwent successful placement of an implantable defibrillator. Testing of the devices over a wide range of settings revealed no interaction. The patient subsequently underwent multiple episodes of cardioversion when the ventricular lead became dislodged. There was no evidence of adverse neurological effects, and interrogation of the DBS devices after cardioversion revealed no changes in stimulus parameters. The outcome in this case indicates that DBS systems may be safely retained in selected patients who require implantable cardiac defibrillators.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Świerżyńska, Ewa, e Maciej Sterliński. "Decreases in biventricular pacing percentage in remote monitoring of patients with cardiac implantable electronic devices". In a good rythm 1, n.º 62 (31 de maio de 2022): 17–20. http://dx.doi.org/10.5604/01.3001.0015.9157.

Texto completo da fonte
Resumo:
Heart failure is a serious disease and is one of the top causes of death in Poland. A proven method of treatment in some heart failure patients is resynchronization therapy using implantable devices such as cardioverter-defibrillators (CRT-D) or pacemakers (CRT-P). One of the conditions for the effectiveness of this therapy is achieving and maintaining a high biventricular pacing percentage. Remote monitoring of cardiac implantable electronic devices allows daily access to information about a device’s operating status. In patients with heart failure, access and treatment options based on remote monitoring data reduces hospitalization, mortality and treatment costs. This article discusses how information received via remote monitoring about the loss of resynchronization stimulation can be used to determine possible abnormalities and the need for treatment.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Mabo, P., e G. Carrault. "Are Electronic Cardiac Devices Still Evolving?" Yearbook of Medical Informatics 23, n.º 01 (agosto de 2014): 128–34. http://dx.doi.org/10.15265/iy-2014-0021.

Texto completo da fonte
Resumo:
Summary Objectives: The goal of this paper is to review some important issues occurring during the past year in Implantable devices. Methods: First cardiac implantable device was proposed to maintain an adequate heart rate, either because the heart’s natural pacemaker is not fast enough, or there is a block in the heart’s electrical conduction system. During the last forty years, pacemakers have evolved considerably and become programmable and allow to configure specific patient optimum pacing modes. Various technological aspects (electrodes, connectors, algorithms diagnosis, therapies, ...) have been progressed and cardiac implants address several clinical applications: management of arrhythmias, cardioversion / defibrillation and cardiac resynchronization therapy. Results: Observed progress was the miniaturization of device, increased longevity, coupled with efficient pacing functions, multisite pacing modes, leadless pacing and also a better recognition of supraventricular or ventricular tachycardia’s in order to deliver appropriate therapy. Subcutaneous implant, new modes of stimulation (leadless implant or ultrasound lead), quadripolar lead and new sensor or new algorithm for the hemodynamic management are introduced and briefly described. Each times, the main result occurring during the two past years are underlined and repositioned from the history, remaining limitations are also addressed. Conclusion: Some important technological improvements were described. Nevertheless, news trends for the future are also considered in a specific session such as the remote follow-up of the patient or the treatment of heart failure by neuromodulation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Keqi, Su. "Implantable Triboelectric Nanogenerators in the Biomedical Field". Journal of Material Sciences & Manufacturing Research 5, n.º 7 (31 de julho de 2024): 1–9. http://dx.doi.org/10.47363/jmsmr/2024(5)183.

Texto completo da fonte
Resumo:
Implantable Triboelectric Nanogenerators (TENGs) have revolutionized the biomedical field by providing innovative power solutions for medical devices and enhancing diagnostic and therapeutic applications. Internally implanted TENG transforms kinetic energy from the body into electrical power, providing a constant energy supply for Implantable Medical Devices (IMD). Their ability to generate high voltage and low current makes them particularly effective for applications in biosensing, patient monitoring, and therapeutic interventions. Therapeutically, TENGs power cardiac pacemakers, promote wound healing, enhance bone regeneration, and support muscle and nerve stimulation. They also enable controlled drug release, particularly in targeted cancer treatments.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Cronin, Edmond M., Jennifer Gray, Bernard Abi-Saleh, Bruce L. Wilkoff e Kerry H. Levin. "Safety of repetitive nerve stimulation in patients with cardiac implantable electronic devices". Muscle & Nerve 47, n.º 6 (21 de abril de 2013): 840–44. http://dx.doi.org/10.1002/mus.23707.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Grydz, Łukasz. "Infection risk factor for cardiac implantable devices". In a good rythm 3, n.º 56 (21 de outubro de 2020): 30–34. http://dx.doi.org/10.5604/01.3001.0014.4644.

Texto completo da fonte
Resumo:
Each year, 1.2-1.4 million devices such as pacemakers, cardioverter-defibrillators and devices with the resynchronization function are implanted, and for some time also electrodes for stimulating the His bundle or the left bundle branch. One of the most serious complications of electrotherapy is infections of implantable systems (CIED infection). Knowing the risk factors give the option to choose other therapies and reduce the risk of infection. Important patient-related factors include: diabetes, heart and/or kidney failure or dysfunction, COPD, the presence of neoplastic disease and use of anticoagulation in the short term before the procedure. According to the research, the number of treatments performed in the implanting centre and by the operator, as well as the number of electrodes, the method of preparing the operating field, or the method of inserting the electrodes, also seems to be important in the development of CIED infection. It is better to prevent the infection than to cure it, as possible complications can be deadly for the patient and costly for the health system.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Meyer zu Vilsendorf, Dorothee, Bert Hansky, Philipp Baumann e Christoph Stellbrink. "Troubleshooting bei Patienten mit Herzschrittmacher und ICD". DMW - Deutsche Medizinische Wochenschrift 143, n.º 22 (30 de outubro de 2018): 1608–16. http://dx.doi.org/10.1055/a-0560-3180.

Texto completo da fonte
Resumo:
AbstractBecause of the growing number of implanted cardiac pacemakers and defibrillators and the ever-increasing complexity of these devices a fundamental knowledge of device malfunctions is of utmost importance even for the non-cardiology physician. Apart from hardware problems such as device infection, lead fracture or dislocation, basic knowledge of the pacemaker sensing and pacing algorithms is also necessary in order to judge the stimulation behavior in different clinical settings. With this respect, there are specific problems for antibradycardia and resynchronizing pacemakers as well as implantable defibrillators. This article gives an overview of the most common problems with cardiac pacemakers and defibrillators as well as the differential diagnostic and therapeutic management for the physician without specific training in arrhythmology.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gutiérrez-Martínez, Josefina, Cinthya Toledo-Peral, Jorge Mercado-Gutiérrez, Arturo Vera-Hernández e Lorenzo Leija-Salas. "Neuroprosthesis Devices Based on Micro- and Nanosensors: A Systematic Review". Journal of Sensors 2020 (7 de outubro de 2020): 1–19. http://dx.doi.org/10.1155/2020/8865889.

Texto completo da fonte
Resumo:
Background. A neuroprosthesis (NP) is a medical device that compensates and restores functionality of neural dysfunctions affected by different pathologies and conditions. To this end, an implantable NP (INP) must monitor and electrically stimulate neuronal small structures in the peripheral and central nervous system. Therefore, one of the most important parts of INPs are the sensors and electrodes since their size, resolution, and material are key for their design and performance. Currently, most of the studies focus only on the INP application but do not show the technical considerations of the sensors. Objective. This paper is a systematic literature review that summarizes and synthesizes implantable micro- and nanosensors/electrodes used in INPs for sensing and stimulating tissues. Data Sources. Articles and patents published in English were searched from electronic databases. No restrictions were made in terms of country or journal. Study Selection. All reports related to sensors/electrodes applied in INPs were included, focusing on micro- and nanotechnologies. Main Outcome Measures. Performance and potential profit. Results. There was a total of 153 selected articles from the 2010 to June 2020 period, of which 16 were about cardiac pacemakers, 15 cochlear implants, 13 retinal prosthesis, 31 deep brain stimulation, 6 bladder implants, and 18 implantable motor NPs. All those INPs are used for support or recovery of neural functions for hearing, seeing, pacing, and motor control, as well as bladder and bowel control. Micro- and nanosensors for signal stimulation and recording have four special requirements to meet: biocompatibility, long-term reliability, high selectivity, and low-energy consumption. Current and future considerations in sensor/electrode design should focus on improving efficiency and safety. This review is a first approximation for those who work on INP design; it offers an idea of the complexity on the matter and can guide them to specific references on the subject.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Implantable cardiac stimulation devices"

1

Pannetier, Valentin. "Simulations numériques standardisées de dispositifs de stimulation électrique cardiaque". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0352.

Texto completo da fonte
Resumo:
Les maladies cardiovasculaires représentent la principale cause de mortalité dans le monde, responsables d’environ 32% des décès en 2019 selon l’Organisation mondiale de la santé (OMS). Face à ces pathologies, la recherche médicale progresse continuellement pour développer des traitements et des dispositifs toujours plus performants. Parmi ces innovations, les stimulateurs cardiaques implantables jouent un rôle crucial dans le traitement des troubles du rythme cardiaque, en intervenant directement sur le cœur en cas de dysfonctionnement. Cependant, malgré leur importance, le développement de ces technologies reste lent et coûteux. Il faut souvent près d’une décennie entre la conception d’un prototype et sa mise sur le marché, ce qui retarde leur impact sur les vies humaines. Cette thèse s’inscrit dans le cadre du projet européen collaboratif SimCardioTest (EU H2020), dont l’objectif est d’accélérer l’adoption d’outils numériques pour la certification de médicaments et de dispositifs médicaux, tels que les stimulateurs cardiaques implantables. L’un des objectifs principaux du projet est d’intégrer les simulations numériques sous la forme d’essais cliniques in silico dans le processus de certification, afin de rendre ce dernier plus rapide à l’aide d’une plateforme web standardisée. Au cours de cette thèse, plusieurs modèles mathématiques ont été développés et analysés, allant de modèles génériques tridimensionnels à des modèles simplifiés sans dimension spatiale. Tous ces modèles comprennent un circuit électrique inspiré d’un stimulateur cardiaque commercial, des modèles de contacts reproduisant les couches ioniques à la surface des électrodes sous forme de circuits électriques équivalents, ainsi que des modèles de tissu cardiaque avec ou sans propagation spatiale de potentiels d’action cardiaque. La crédibilité de ces modèles est évaluée par des comparaisons avec des expérimentations animales menées durant la thèse, dans le but de démontrer leur capacité à reproduire des stimulations cardiaques réalistes. Ces comparaisons reposent principalement sur les tensions mesurées par les stimulateurs cardiaques et sur l’étude des courbes de seuil, aussi appelées courbes de Lapicque. Ces courbes, largement utilisées en clinique pour ajuster les stimulateurs, établissent la relation entre la durée et l’amplitude de la stimulation nécessaires pour provoquer une contraction cardiaque efficace. Elles permettent en particulier d’optimiser, en personnalisant individuellement, les réglages des stimulateurs, et ainsi de minimiser la consommation d’énergie, maximiser la durée de vie du dispositif, et ainsi améliorer le confort de vie des patients. L’adoption de modèles simplifiés sans dimension constitue une étape stratégique importante de cette thèse. Contrairement aux modèles spatiaux, très coûteux à résoudre numériquement, ces modèles sont plus simples à résoudre et ils ont permis de réaliser plusieurs études paramétriques, notamment pour effectuer une calibration à partir des données expérimentales. Des études supplémentaires de sensibilité, locales et globales, ont également été menées afin d’analyser l’influence et la pertinence des paramètres dans les modèles développés
Cardiovascular diseases are the world’s leading cause of death, responsible for around 32% of all deaths in 2019, according to the World Health Organization (WHO). Faced with these pathologies, medical research is making constant progress to develop ever more effective treatments and devices. Among these innovations, implantable pacemakers play a crucial role in the treatment of cardiac rhythm disorders, intervening directly on the heart in the event of malfunction. Despite, despite their importance, the development of these technologies remains slow and costly. It often takes almost a decade from early prototyping to market launch, delaying their impact on human lives. This thesis is part of the European collaborative project SimCardioTest (EU H2020), which aims to accelerate the adoption of numerical tools for the certification of drugs and medical devices, such as implantable pacemakers. One of the main goals of the project is to integrate numerical simulations in the form of in silico clinical trials on a standardized web plateform in oirder to speed up thecertification process. During of this thesis, several mathematical models were developed and analyzed, ranging from generic three-dimensional models to simplified models with no spatial dimension. All these models include a electrical circuit inspired by a commercial pacemaker, contact models representing the ionic layers on electrode surfaces as equivalent electrical circuits, and cardiac tissue models with or without spatial propagation of cardiac action potentials. The credibility of these models is assessed through comparisons with animal experiments conducted during the thesis, with the aim of demonstrating their ability to reproduce realistic cardiac stimulations. These comparisons are based mainly on the voltages measured by pacemakers and on the study of threshold curves, also known as Lapicque curves. These curves, widely used clinically to adjust pacemakers, establish the relationship between stimulation duration and amplitude required to induce an effective cardiac contraction. In particular, they enable pacemaker settings to be optimized through individual customization, thereby minimizing energy consumption, maximizing device life, and therefore improving patient’s life quality. The adoption of simplified dimensionless models is an valuable strategic step in this thesis. Unlike spatial models, which are very costly to solve numerically, these models are simpler to solve and have enabled several parametric studies to be carried out, in particular to perform calibration using experimental data. Additional sensitivity studies, both local and global, were also carried out to analyze the influence and relevance of the parameters in the developed models
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Satya, Sarina. "ST Monitoring on the Programmer for Implantable Cardioverter Devices". DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/258.

Texto completo da fonte
Resumo:
Cardiovascular disease is one of the most prevalent causes of death which has a high mortality rate. If identified early and treated appropriately, the mortality in patients with cardiovascular disease can be hugely reduced. For several decades, 12-Lead ECG has been the standard technique used to identify ischemia, and recent studies have shown that intracardiac electrogram has many benefits over external monitoring such as holter. ST Monitoring feature has been added to St. Jude Medical intracardiac cardioverter defibrillators (ICD) to leverage the ECG technology for identifying cardiovascular disease. This algorithm monitors the intracardiac electrogram to detect and report patterns which could be related to ischemic events. This feature is expected to enhance the process of identifying ischemia and infarction, and provides long-term management of the disease. In order to support the new implantable devices with ST Monitoring capability, the programmer software was updated to support this new feature in the device. This thesis discusses the work on the programmer. Chapter 1 begins with a background of how monitoring technology in an implantable device can benefit the patients facing high risk of myocardial infarction. Chapter 2 states the objective for the work on the programmer. Chapter 3 describes the implementation and the application of this feature. Conclusion and future development are discussed in Chapter 5.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Maghsoudloo, Esmaeel, e Esmaeel Maghsoudloo. "Wireless power transfer for combined sensing and stimulation in implantable biomedical devices". Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/33348.

Texto completo da fonte
Resumo:
Actuellement, il existe une forte demande de Headstage et de microsystèmes intégrés implantables pour étudier l’activité cérébrale de souris de laboratoire en mouvement libre. De tels dispositifs peuvent s’interfacer avec le système nerveux central dans les paradigmes électriques et optiques pour stimuler et surveiller les circuits neuronaux, ce qui est essentiel pour découvrir de nouveaux médicaments et thérapies contre des troubles neurologiques comme l’épilepsie, la dépression et la maladie de Parkinson. Puisque les systèmes implantables ne peuvent pas utiliser une batterie ayant une grande capacité en tant que source d’énergie primaire dans des expériences à long terme, la consommation d’énergie du dispositif implantable est l’un des principaux défis de ces conceptions. La première partie de cette recherche comprend notre proposition de la solution pour diminuer la consommation d’énergie des microcircuits implantables. Nous proposons un nouveau circuit de décalage de niveau qui convertit les niveaux de signaux sub-seuils en niveaux ultra-bas à haute vitesse en utilisant une très faible puissance et une petite zone de silicium, ce qui le rend idéal pour les applications de faible puissance. Le circuit proposé introduit une nouvelle topologie de décaleur de niveau de tension utilisant un condensateur de décalage de niveau pour augmenter la plage de tensions de conversion, tout en réduisant considérablement le retard de conversion. Le circuit proposé atteint un délai de propagation plus court et une zone de silicium plus petite pour une fréquence de fonctionnement et une consommation d’énergie donnée par rapport à d’autres solutions de circuit. Les résultats de mesure sont présentés pour le circuit proposé fabriqué dans un processus CMOS TSMC de 0,18- mm. Le circuit présenté peut convertir une large gamme de tensions d’entrée de 330 mV à 1,8 V et fonctionner sur une plage de fréquence de 100 Hz à 100 MHz. Il a un délai de propagation de 29 ns et une consommation d’énergie de 61,5 nW pour les signaux d’entrée de 0,4 V, à une fréquence de 500 kHz, surpassant les conceptions précédentes. La deuxième partie de cette recherche comprend nos systèmes de transfert d’énergie sans fil proposé pour les applications optogénétiques. L’optogénétique est la combinaison de la méthode génétique et optique d’excitation, d’enregistrement et de contrôle des neurones biologiques. Ce système combine plusieurs technologies telles que les MEMS et la microélectronique pour collecter et transmettre les signaux neuronaux et activer un stimulateur optique via une liaison sans fil. Puisque les stimulateurs optiques consomment plus de puissance que les stimulateurs électriques, l’interface utilise la transmission de puissance par induction en utilisant des moyens innovants au lieu de la batterie avec la petite capacité comme source d’énergie.
Actuellement, il existe une forte demande de Headstage et de microsystèmes intégrés implantables pour étudier l’activité cérébrale de souris de laboratoire en mouvement libre. De tels dispositifs peuvent s’interfacer avec le système nerveux central dans les paradigmes électriques et optiques pour stimuler et surveiller les circuits neuronaux, ce qui est essentiel pour découvrir de nouveaux médicaments et thérapies contre des troubles neurologiques comme l’épilepsie, la dépression et la maladie de Parkinson. Puisque les systèmes implantables ne peuvent pas utiliser une batterie ayant une grande capacité en tant que source d’énergie primaire dans des expériences à long terme, la consommation d’énergie du dispositif implantable est l’un des principaux défis de ces conceptions. La première partie de cette recherche comprend notre proposition de la solution pour diminuer la consommation d’énergie des microcircuits implantables. Nous proposons un nouveau circuit de décalage de niveau qui convertit les niveaux de signaux sub-seuils en niveaux ultra-bas à haute vitesse en utilisant une très faible puissance et une petite zone de silicium, ce qui le rend idéal pour les applications de faible puissance. Le circuit proposé introduit une nouvelle topologie de décaleur de niveau de tension utilisant un condensateur de décalage de niveau pour augmenter la plage de tensions de conversion, tout en réduisant considérablement le retard de conversion. Le circuit proposé atteint un délai de propagation plus court et une zone de silicium plus petite pour une fréquence de fonctionnement et une consommation d’énergie donnée par rapport à d’autres solutions de circuit. Les résultats de mesure sont présentés pour le circuit proposé fabriqué dans un processus CMOS TSMC de 0,18- mm. Le circuit présenté peut convertir une large gamme de tensions d’entrée de 330 mV à 1,8 V et fonctionner sur une plage de fréquence de 100 Hz à 100 MHz. Il a un délai de propagation de 29 ns et une consommation d’énergie de 61,5 nW pour les signaux d’entrée de 0,4 V, à une fréquence de 500 kHz, surpassant les conceptions précédentes. La deuxième partie de cette recherche comprend nos systèmes de transfert d’énergie sans fil proposé pour les applications optogénétiques. L’optogénétique est la combinaison de la méthode génétique et optique d’excitation, d’enregistrement et de contrôle des neurones biologiques. Ce système combine plusieurs technologies telles que les MEMS et la microélectronique pour collecter et transmettre les signaux neuronaux et activer un stimulateur optique via une liaison sans fil. Puisque les stimulateurs optiques consomment plus de puissance que les stimulateurs électriques, l’interface utilise la transmission de puissance par induction en utilisant des moyens innovants au lieu de la batterie avec la petite capacité comme source d’énergie.
Notre première contribution dans la deuxième partie fournit un système de cage domestique intelligent basé sur des barrettes multi-bobines superposées à travers un récepteur multicellulaire implantable mince de taille 1×1 cm2, implanté sous le cuir chevelu d’une souris de laboratoire, et unité de gestion de l’alimentation intégrée. Ce système inductif est conçu pour fournir jusqu’à 35,5 mW de puissance délivrée à un émetteur-récepteur full duplex de faible puissance entièrement intégré pour prendre en charge des implants neuronaux à haute densité et bidirectionnels. L’émetteur (TX) utilise une bande ultra-large à impulsions radio basée sur des approches de combinaison, et le récepteur (RX) utilise une topologie à bande étroite à incrémentation de 2,4 GHz. L’émetteur-récepteur proposé fournit un débit de données de liaison montante TX à 500 Mbits/s double et un débit de données de liaison descendante RX à 100 Mbits/s, et est entièrement intégré dans un processus CMOS TSMC de 0,18-mm d’une taille totale de 0,8 mm2 . La puissance peut être délivrée à partir d’un signal de porteuse de 13,56-MHz avec une efficacité globale de transfert de puissance supérieure à 5% sur une distance de séparation allant de 3 cm à 5 cm. Notre deuxième contribution dans les systèmes de collecte d’énergie porte sur la conception et la mise en oeuvre d’une cage domestique de transmission de puissance sans fil (WPT) pour une plate-forme de neurosciences entièrement sans fil afin de permettre des expériences optogénétiques ininterrompues avec des rongeurs de laboratoire vivants. La cage domestique WPT utilise un nouveau réseau hybride de transmetteurs de puissance (TX) et des résonateurs multi-bobines segmentés pour atteindre une efficacité de transmission de puissance élevée (PTE) et délivrer une puissance élevée sur des distances aussi élevées que 20 cm. Le récepteur de puissance à bobines multiples (RX) utilise une bobine RX d’un diamètre de 1 cm et une bobine de résonateur d’un diamètre de 1,5 cm. L’efficacité moyenne du transfert de puissance WPT est de 29, 4%, à une distance nominale de 7 cm, pour une fréquence porteuse de 13,56 MHz. Il a des PTE maximum et minimum de 50% et 12% le long de l’axe Z et peut délivrer une puissance constante de 74 mW pour alimenter le headstage neuronal miniature. En outre, un dispositif implantable intégré dans un processus CMOS TSMC de 0,18-mm a été conçu et introduit qui comprend 64 canaux d’enregistrement, 16 canaux de stimulation optique, capteur de température, émetteur-récepteur et unité de gestion de l’alimentation (PMU). Ce circuit est alimenté à l’intérieur de la cage du WPT à l’aide d’une bobine réceptrice d’un diamètre de 1,5 cm pour montrer les performances du circuit PMU. Deux tensions régulées de 1,8 V et 1 V fournissent 79 mW de puissance pour tout le système sur une puce. Notre dernière contribution est un système WPT insensible aux désalignements angulaires pour alimenter un headstage pour des applications optogénétiques qui a été précédemment proposé par le Laboratoire de Microsystèmes Biomédicaux (BioML-UL) à ULAVAL. Ce système est la version étendue de notre deuxième contribution aux systèmes de collecte d’énergie.Dans la version mise à jour, un récepteur de puissance multi-bobines utilise une bobine RX d’un diamètre de 1,0 cm et une nouvelle bobine de résonateur fendu d’un diamètre de 1,5 cm, qui résiste aux défauts d’alignement angulaires. Dans cette version qui utilise une cage d’animal plus petite que la dernière version, 4 résonateurs sont utilisés côté TX. De plus, grâce à la forme et à la position de la bobine de répéteur L3 du côté du récepteur, la liaison résonnante hybride présentée peut correctement alimenter la tête sans interruption causée par le désalignement angulaire dans toute la cage de la maison. Chaque 3 tours du répéteur RX a été enveloppé avec un diamètre de 1,5 cm, sous différents angles par rapport à la bobine réceptrice. Les résultats de mesure montrent un PTE maximum et minimum de 53 % et 15 %. La méthode proposée peut fournir une puissance constante de 82 mW pour alimenter le petit headstage neural pour les applications optogénétiques. De plus, dans cette version, la performance du système est démontrée dans une expérience in-vivo avec une souris ChR2 en mouvement libre qui est la première expérience optogénétique sans fil et sans batterie rapportée avec enregistrement électrophysiologique simultané et stimulation optogénétique. L’activité électrophysiologique a été enregistrée après une stimulation optogénétique dans le Cortex Cingulaire Antérieur (CAC) de la souris.
Notre première contribution dans la deuxième partie fournit un système de cage domestique intelligent basé sur des barrettes multi-bobines superposées à travers un récepteur multicellulaire implantable mince de taille 1×1 cm2, implanté sous le cuir chevelu d’une souris de laboratoire, et unité de gestion de l’alimentation intégrée. Ce système inductif est conçu pour fournir jusqu’à 35,5 mW de puissance délivrée à un émetteur-récepteur full duplex de faible puissance entièrement intégré pour prendre en charge des implants neuronaux à haute densité et bidirectionnels. L’émetteur (TX) utilise une bande ultra-large à impulsions radio basée sur des approches de combinaison, et le récepteur (RX) utilise une topologie à bande étroite à incrémentation de 2,4 GHz. L’émetteur-récepteur proposé fournit un débit de données de liaison montante TX à 500 Mbits/s double et un débit de données de liaison descendante RX à 100 Mbits/s, et est entièrement intégré dans un processus CMOS TSMC de 0,18-mm d’une taille totale de 0,8 mm2 . La puissance peut être délivrée à partir d’un signal de porteuse de 13,56-MHz avec une efficacité globale de transfert de puissance supérieure à 5% sur une distance de séparation allant de 3 cm à 5 cm. Notre deuxième contribution dans les systèmes de collecte d’énergie porte sur la conception et la mise en oeuvre d’une cage domestique de transmission de puissance sans fil (WPT) pour une plate-forme de neurosciences entièrement sans fil afin de permettre des expériences optogénétiques ininterrompues avec des rongeurs de laboratoire vivants. La cage domestique WPT utilise un nouveau réseau hybride de transmetteurs de puissance (TX) et des résonateurs multi-bobines segmentés pour atteindre une efficacité de transmission de puissance élevée (PTE) et délivrer une puissance élevée sur des distances aussi élevées que 20 cm. Le récepteur de puissance à bobines multiples (RX) utilise une bobine RX d’un diamètre de 1 cm et une bobine de résonateur d’un diamètre de 1,5 cm. L’efficacité moyenne du transfert de puissance WPT est de 29, 4%, à une distance nominale de 7 cm, pour une fréquence porteuse de 13,56 MHz. Il a des PTE maximum et minimum de 50% et 12% le long de l’axe Z et peut délivrer une puissance constante de 74 mW pour alimenter le headstage neuronal miniature. En outre, un dispositif implantable intégré dans un processus CMOS TSMC de 0,18-mm a été conçu et introduit qui comprend 64 canaux d’enregistrement, 16 canaux de stimulation optique, capteur de température, émetteur-récepteur et unité de gestion de l’alimentation (PMU). Ce circuit est alimenté à l’intérieur de la cage du WPT à l’aide d’une bobine réceptrice d’un diamètre de 1,5 cm pour montrer les performances du circuit PMU. Deux tensions régulées de 1,8 V et 1 V fournissent 79 mW de puissance pour tout le système sur une puce. Notre dernière contribution est un système WPT insensible aux désalignements angulaires pour alimenter un headstage pour des applications optogénétiques qui a été précédemment proposé par le Laboratoire de Microsystèmes Biomédicaux (BioML-UL) à ULAVAL. Ce système est la version étendue de notre deuxième contribution aux systèmes de collecte d’énergie.Dans la version mise à jour, un récepteur de puissance multi-bobines utilise une bobine RX d’un diamètre de 1,0 cm et une nouvelle bobine de résonateur fendu d’un diamètre de 1,5 cm, qui résiste aux défauts d’alignement angulaires. Dans cette version qui utilise une cage d’animal plus petite que la dernière version, 4 résonateurs sont utilisés côté TX. De plus, grâce à la forme et à la position de la bobine de répéteur L3 du côté du récepteur, la liaison résonnante hybride présentée peut correctement alimenter la tête sans interruption causée par le désalignement angulaire dans toute la cage de la maison. Chaque 3 tours du répéteur RX a été enveloppé avec un diamètre de 1,5 cm, sous différents angles par rapport à la bobine réceptrice. Les résultats de mesure montrent un PTE maximum et minimum de 53 % et 15 %. La méthode proposée peut fournir une puissance constante de 82 mW pour alimenter le petit headstage neural pour les applications optogénétiques. De plus, dans cette version, la performance du système est démontrée dans une expérience in-vivo avec une souris ChR2 en mouvement libre qui est la première expérience optogénétique sans fil et sans batterie rapportée avec enregistrement électrophysiologique simultané et stimulation optogénétique. L’activité électrophysiologique a été enregistrée après une stimulation optogénétique dans le Cortex Cingulaire Antérieur (CAC) de la souris.
Our first contribution in the second part provides a smart home-cage system based on overlapped multi-coil arrays through a thin implantable multi-coil receiver of 1×1 cm2 of size, implantable bellow the scalp of a laboratory mouse, and integrated power management circuits. This inductive system is designed to deliver up to 35.5 mW of power delivered to a fully-integrated, low-power full-duplex transceiver to support high-density and bidirectional neural implants. The transmitter (TX) uses impulse radio ultra-wideband based on an edge combining approach, and the receiver (RX) uses a 2.4- GHz on-off keying narrow band topology. The proposed transceiver provides dual-band 500-Mbps TX uplink data rate and 100-Mbps RX downlink data rate, and it is fully integrated into 0.18-mm TSMC CMOS process within a total size of 0.8 mm2. The power can be delivered from a 13.56-MHz carrier signal with an overall power transfer efficiency above 5% across a separation distance ranging from 3 cm to 5 cm. Our second contribution in power-harvesting systems deals with designing and implementation of a WPT home-cage for a fully wireless neuroscience platform for enabling uninterrupted optogenetic experiments with live laboratory rodents. The WPT home-cage uses a new hybrid parallel power transmitter (TX) coil array and segmented multi-coil resonators to achieve high power transmission efficiency (PTE) and deliver high power across distances as high as 20 cm. The multi-coil power receiver (RX) uses an RX coil with a diameter of 1 cm and a resonator coil with a diameter of 1.5 cm. The WPT home-cage average power transfer efficiency is 29.4%, at a nominal distance of 7 cm, for a power carrier frequency of 13.56-MHz. It has maximum and minimum PTE of 50% and 12% along the Z axis and can deliver a constant power of 74 mW to supply the miniature neural headstage. Also, an implantable device integrated into a 0.18-mm TSMC CMOS process has been designed and introduced which includes 64 recording channels, 16 optical stimulation channels, temperature sensor, transceiver, and power management unit (PMU). This circuit powered up inside the WPT home-cage using receiver coil with a diameter of 1.5 cm to show the performance of the PMU circuit. Two regulated voltages of 1.8 V and 1 V provide 79 mW of power for all the system on a chip. Our last contribution is an angular misalignment insensitive WPT system to power up a headstage which has been previously proposed by the Biomedical Microsystems Laboratory (BioML-UL) at ULAVAL for optogenetic applications. This system is the extended version of our second contribution in power-harvesting systems. In the updated version a multi-coil power receiver uses an RX coil with a diameter of 1.0 cm and a new split resonator coil with a diameter of 1.5 cm, which is robust against angular misalignment. In this version which is using a smaller animal home-cage than the last version, 4 resonators are used on the TX side. Also, thanks to the shape and position of the repeater coil of L3 on the receiver side, the presented hybrid resonant link can properly power up the headstage without interruption caused by the angular misalignment all over the home-cage. Each 3 turns of the RX repeater has been wrapped up with a diameter of 1.5 cm, in different angles compared to the receiver coil. Measurement results show a maximum and minimum PTE of 53 % and 15 %. The proposed method can deliver a constant power of 82 mW to supply the small neural headstage for the optogenetic applications. Additionally, in this version, the performance of the system is demonstrated within an in-vivo experiment with a freely moving ChR2 mouse which is the first fully wireless and batteryless optogenetic experiment reported with simultaneous electrophysiological recording and optogenetic stimulation. Electrophysiological activity was recorded after delivering optogenetic stimulation in the Anterior Cingulate Cortex (ACC) of the mouse.
Our first contribution in the second part provides a smart home-cage system based on overlapped multi-coil arrays through a thin implantable multi-coil receiver of 1×1 cm2 of size, implantable bellow the scalp of a laboratory mouse, and integrated power management circuits. This inductive system is designed to deliver up to 35.5 mW of power delivered to a fully-integrated, low-power full-duplex transceiver to support high-density and bidirectional neural implants. The transmitter (TX) uses impulse radio ultra-wideband based on an edge combining approach, and the receiver (RX) uses a 2.4- GHz on-off keying narrow band topology. The proposed transceiver provides dual-band 500-Mbps TX uplink data rate and 100-Mbps RX downlink data rate, and it is fully integrated into 0.18-mm TSMC CMOS process within a total size of 0.8 mm2. The power can be delivered from a 13.56-MHz carrier signal with an overall power transfer efficiency above 5% across a separation distance ranging from 3 cm to 5 cm. Our second contribution in power-harvesting systems deals with designing and implementation of a WPT home-cage for a fully wireless neuroscience platform for enabling uninterrupted optogenetic experiments with live laboratory rodents. The WPT home-cage uses a new hybrid parallel power transmitter (TX) coil array and segmented multi-coil resonators to achieve high power transmission efficiency (PTE) and deliver high power across distances as high as 20 cm. The multi-coil power receiver (RX) uses an RX coil with a diameter of 1 cm and a resonator coil with a diameter of 1.5 cm. The WPT home-cage average power transfer efficiency is 29.4%, at a nominal distance of 7 cm, for a power carrier frequency of 13.56-MHz. It has maximum and minimum PTE of 50% and 12% along the Z axis and can deliver a constant power of 74 mW to supply the miniature neural headstage. Also, an implantable device integrated into a 0.18-mm TSMC CMOS process has been designed and introduced which includes 64 recording channels, 16 optical stimulation channels, temperature sensor, transceiver, and power management unit (PMU). This circuit powered up inside the WPT home-cage using receiver coil with a diameter of 1.5 cm to show the performance of the PMU circuit. Two regulated voltages of 1.8 V and 1 V provide 79 mW of power for all the system on a chip. Our last contribution is an angular misalignment insensitive WPT system to power up a headstage which has been previously proposed by the Biomedical Microsystems Laboratory (BioML-UL) at ULAVAL for optogenetic applications. This system is the extended version of our second contribution in power-harvesting systems. In the updated version a multi-coil power receiver uses an RX coil with a diameter of 1.0 cm and a new split resonator coil with a diameter of 1.5 cm, which is robust against angular misalignment. In this version which is using a smaller animal home-cage than the last version, 4 resonators are used on the TX side. Also, thanks to the shape and position of the repeater coil of L3 on the receiver side, the presented hybrid resonant link can properly power up the headstage without interruption caused by the angular misalignment all over the home-cage. Each 3 turns of the RX repeater has been wrapped up with a diameter of 1.5 cm, in different angles compared to the receiver coil. Measurement results show a maximum and minimum PTE of 53 % and 15 %. The proposed method can deliver a constant power of 82 mW to supply the small neural headstage for the optogenetic applications. Additionally, in this version, the performance of the system is demonstrated within an in-vivo experiment with a freely moving ChR2 mouse which is the first fully wireless and batteryless optogenetic experiment reported with simultaneous electrophysiological recording and optogenetic stimulation. Electrophysiological activity was recorded after delivering optogenetic stimulation in the Anterior Cingulate Cortex (ACC) of the mouse.
Currently, there is a high demand for Headstage and implantable integrated microsystems to study the brain activity of freely moving laboratory mice. Such devices can interface with the central nervous system in both electrical and optical paradigms for stimulating and monitoring neural circuits, which is critical to discover new drugs and therapies against neurological disorders like epilepsy, depression, and Parkinson’s disease. Since the implantable systems cannot use a battery with a large capacity as a primary source of energy in long-term experiments, the power consumption of the implantable device is one of the leading challenges of these designs. The first part of this research includes our proposed solution for decreasing the power consumption of the implantable microcircuits. We propose a novel level shifter circuit which converting subthreshold signal levels to super-threshold signal levels at high-speed using ultra low power and a small silicon area, making it well-suited for low-power applications such as wireless sensor networks and implantable medical devices. The proposed circuit introduces a new voltage level shifter topology employing a level-shifting capacitor to increase the range of conversion voltages, while significantly reducing the conversion delay. The proposed circuit achieves a shorter propagation delay and a smaller silicon area for a given operating frequency and power consumption compared to other circuit solutions. Measurement results are presented for the proposed circuit fabricated in a 0.18-mm TSMC CMOS process. The presented circuit can convert a wide range of the input voltages from 330 mV to 1.8 V, and operate over a frequency range of 100-Hz to 100-MHz. It has a propagation delay of 29 ns, and power consumption of 61.5 nW for input signals 0.4 V, at a frequency of 500-kHz, outperforming previous designs. The second part of this research includes our proposed wireless power transfer systems for optogenetic applications. Optogenetics is the combination of the genetic and optical method of excitation, recording, and control of the biological neurons. This system combines multiple technologies such as MEMS and microelectronics to collect and transmit the neuronal signals and to activate an optical stimulator through a wireless link. Since optical stimulators consume more power than electrical stimulators, the interface employs induction power transmission using innovative means instead of the battery with the small capacity as a power source.
Currently, there is a high demand for Headstage and implantable integrated microsystems to study the brain activity of freely moving laboratory mice. Such devices can interface with the central nervous system in both electrical and optical paradigms for stimulating and monitoring neural circuits, which is critical to discover new drugs and therapies against neurological disorders like epilepsy, depression, and Parkinson’s disease. Since the implantable systems cannot use a battery with a large capacity as a primary source of energy in long-term experiments, the power consumption of the implantable device is one of the leading challenges of these designs. The first part of this research includes our proposed solution for decreasing the power consumption of the implantable microcircuits. We propose a novel level shifter circuit which converting subthreshold signal levels to super-threshold signal levels at high-speed using ultra low power and a small silicon area, making it well-suited for low-power applications such as wireless sensor networks and implantable medical devices. The proposed circuit introduces a new voltage level shifter topology employing a level-shifting capacitor to increase the range of conversion voltages, while significantly reducing the conversion delay. The proposed circuit achieves a shorter propagation delay and a smaller silicon area for a given operating frequency and power consumption compared to other circuit solutions. Measurement results are presented for the proposed circuit fabricated in a 0.18-mm TSMC CMOS process. The presented circuit can convert a wide range of the input voltages from 330 mV to 1.8 V, and operate over a frequency range of 100-Hz to 100-MHz. It has a propagation delay of 29 ns, and power consumption of 61.5 nW for input signals 0.4 V, at a frequency of 500-kHz, outperforming previous designs. The second part of this research includes our proposed wireless power transfer systems for optogenetic applications. Optogenetics is the combination of the genetic and optical method of excitation, recording, and control of the biological neurons. This system combines multiple technologies such as MEMS and microelectronics to collect and transmit the neuronal signals and to activate an optical stimulator through a wireless link. Since optical stimulators consume more power than electrical stimulators, the interface employs induction power transmission using innovative means instead of the battery with the small capacity as a power source.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Cordero, Álvarez Rafael. "Subcutaneous Monitoring of Cardiac Activity for Chronically Implanted Medical Devices". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS020.

Texto completo da fonte
Resumo:
L'objectif de cette thèse de doctorat est le développement de capteurs et d'algorithmes pour une meilleure surveillance de l'activité cardiaque dans un défibrillateur cardioverteur implantable sous-cutané (S-ICD), et plus précisément pour améliorer la spécificité de détection des tachyarythmies dangereuses telles que la tachycardie ventriculaire (TV) et la fibrillation ventriculaire (FV) dans le S-ICD. Deux schémas de détection TV/FV indépendants ont été développés dans ce but : l'un de nature électrophysiologique et l'autre hémodynamique. Le schéma de détection électrophysiologique repose sur un ECG spécial qui a été enregistré le long d'un dipôle «court» situé au-dessus du grand pectoral inférieur gauche. Ce dipôle court maximise le rapport R/T et le rapport signal/bruit chez 9 volontaires sains. En théorie, cela devrait réduire le risque de détections faussement positives de TV/ FV simplement en raison de la taille, de l'emplacement et de l'orientation du dipôle, indépendamment de toute autre méthode de traitement du signal. Le schéma de détection hémodynamique repose quant à lui sur les vibrations cardiaques enregistrées par deux prototypes de capteurs accéléromètres triaxiaux. Les vibrations cardiaques sous-cutanées mesurées ont été caractérisées, validées physiologiquement et optimisées via leur filtrage le long de bandes passantes spécifiques et leur projection le long d'un référentiel spécifique patient. Le premier algorithme au monde indépendant de détection de FV par vibration cardiaque a été développé en opérant sur ces signaux optimisés. Les mêmes prototypes d'accéléromètre se sont également avérés capables d'enregistrer des accélérations respiratoires et de détecter l'apnée. Enfin, un dernier prototype de sonde sous-cutanée composite, composé de trois électrodes, d'un accéléromètre bi-axial et de connecteurs d'appareil standard. Ce prototype est capable d'enregistrer l'ECG dipolaire court, les vibrations cardiaques et les accélérations respiratoires. Cette sonde prototype a été implantée dans un quatrième et dernier animal
The aim of this doctoral thesis was the development of sensors and algorithms for the improved monitoring of cardiac activity in the subcutaneous implantable cardioverter-defibrillator (SICD). More precisely, to improve the detection specificity of dangerous tachyarrhythmia such as ventricular tachycardia (VT) and ventricular fibrillation (VF). Two independent VT/VF detection schemes were developed for this: one electrophysiological in nature, and the other hemodynamic. The electrophysiological sensing scheme relied on a special ECG that was recorded along a short dipole located above the lower left pectoralis major. This short dipole maximised R/T ratio and signal-to-noise ratio in a total of 9 healthy volunteers. In theory, it will reduce the risk of false positive VT/VF detections simply by consequence of the dipole size, location, and orientation and independently of any further signal processing methods. The hemodynamic sensing scheme relied on cardiac vibrations recorded from two tri-axial accelerometer prototype sensors. These subcutaneous cardiac vibrations were characterised, physiologically validated, and optimised via their filtering along specific bandwidths and projection along a patient specific reference frame. The world’s first independent cardiac vibration VF detection algorithm was developed operating on these optimised signals. The same accelerometer prototypes were also shown to be able to record respiratory accelerations and detect apnoea. A final subcutaneous lead prototype was developed capable of recording the short dipole ECG, cardiac vibrations, and respiratory accelerations. It consisted of three electrodes, a bi-axial accelerometer, and industry-standard device connectors. The prototype lead was implanted in a fourth and final animal
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Salih, Anmar Mahdi. "Characterization of In-Vivo Damage in Implantable Cardiac Devices and the Lead Residual Properties". Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1557851495921852.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Hudson, Felicity Jane. "Monitoring the effect of Radiation Therapy on cardiac implantable electronic devices to assess patient risk". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/13901.

Texto completo da fonte
Resumo:
Given the overlap in risk factors between cardiac disease and cancer, it is likely that the number of patients presenting to radiation therapy departments with cardiac implantable electronic devices (CIEDs) will continue to increase. CIED malfunction during radiation therapy is poorly understood, and there is a need for further investigation into the efficacy of current departmental protocols. This research aimed to assess the risks associated with radiation therapy when treating CIED patients, and whether these may be managed by the use of a treatment protocol. The research concluded that severe soft errors may be associated with up to a 22.2% failure rate of implantable cardioverter defibrillators (ICDs) treated at 18MV when not exposed to the direct beam; when exposed to the direct radiation beam the risk is increased with the severity of errors increased at 18MV when compared to 6MV in both ICDs and Pacemakers (PM). Removal of the CIED from the treatment field decreased, but did not eliminate, the risk associated with both low and high photon energy treatment. ICDs continued to prove more sensitive to radiation than PMs, with failure not considered a dose driven effect. Maximum heart doses during radiation therapy greater than 20Gy were associated with changes in PMs that may indicate early failure. Previous treatment, treatment technique and treatment intent did not affect the risk of failure. The implementation of management protocols during radiation therapy proved to be effective in managing these patients. CIED patients may be safely treated using radiation therapy when there is a departmental protocol followed with adequate cardiac monitoring during and after treatment. This research suggests limiting the treatment energy used in CIED irradiation to less than 10MV, and reducing the maximum accumulated heart dose to 40Gy. A number of radiation therapy treatment recommendations are included as a vital update to current protocols.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

ASLIAN, HOSSEIN. "EFFECT OF MODERN RADIOTHERAPY ON PATIENTS WITH CARDIAC IMPLANTABLE ELECTRONIC DEVICES (CIEDs): A COMPREHENSIVE STUDY". Doctoral thesis, Università degli Studi di Trieste, 2020. http://hdl.handle.net/11368/2960311.

Texto completo da fonte
Resumo:
During the last decades, cardiac implantable electronic device (CIED) therapy has become first line therapy for those who are at risk for life-threatening ventricular arrhythmias and those survived cardiac arrest. Therefore, there has be a continuous increase in the number of patients with CIEDs, especially in Europe and Italy. Also, the number of new cancer patients is expected to experience an increase of 53% for 2030. Because radiotherapy (RT) is considered as one of the main component of cancer treatment, approximately 50% of cancer patients will receive at least one course of RT during their treatment. Accordingly, over the last decades, there has been an ever-increasing growth in the number of cancer patients and comorbid cardiovascular disease using CIEDs. Since the publication of the American Association of Physicists in Medicine (AAPM)-TG34 report, as the earliest guideline published for the management of patients with CIEDs receiving general radiotherapy (RT) in 1994, technologies pertaining to all elements of the chain of RT have progressed. These developments, coupled with advancements in CIED technology, have led to a need for more research on this topic. Due to this fact, many studies have focused on the effect of radiotherapy on patients with CIEDs, and many aspects of this field have been investigated in the literature. However, with the widespread implementation of advanced RT technologies and techniques, the need to consider the different challenges of modern RT techniques when managing patients with CIEDs has arisen. The main goal of this comprehensive study is to investigate effects of modern radiotherapy on CIED patients. The thesis is divided in five chapters with an introductory chapter providing a very short explanation of CIED therapy and number of cancer patients with CIEDs. In the first part of the study, chapter2, a deep review of the literature and analysis study have been conducted. This review and analysis highlighted the available sparse information in the literature and ended up by posing questions for future research. In the second part of the research, chapter 3, the use of image-guided radiotherapy (IGRT) in patients with CIEDs was investigated. Accordingly, a multicenter dosimetry study to evaluate the imaging dose from Elekta XVI and Varian OBI kV-CBCT systems to cardiovascular implantable electronic devices (CIEDs) was carried out at four centers in the north of Italy, including university hospital of Trieste, Trento, Brescia, and Udine. The results of this study were applied to add new data in the literature and Associazione Italiana di Fisica Medica (aifm) working group. In the third part, chapter 4, the effect of a stereotactic body radiotherapy (SBRT) using flattening filter-free beams on implantable cardioverter-defibrillators (ICDs), as widespread modern modality for the treatment of cancer, was done. First, a retrospective analysis of patients with CIEDs who underwent radiosurgery SBRT and radiosurgery (SRS) at Peter MacCallum Cancer Centre (the largest cancer research group in Australia) between 2014 and 2018 was performed. This was complemented through a phantom study through a multidisciplinary study between medical physicists, radiation oncologists and electrophysiologists at the university of Trieste, Peter Mac and Royal Melbourne Hospital. The results of this study were used to update some of the policies applied to manage CIED patients undergoing SBRT/SRS at PeterMac. In the last part of this comprehensive study, chapter 5, a Monte Carlo (MC) study of out-of-field doses from an ELEKTA 6 and 15 MV photon beam in a homogeneous water phantom at depth of CIED and clinical depth was conducted. Correspondingly, a comparison between the MC results with MONACO treatment planning system (TPS), as a Monte Carlo-based TPS, and radiation dosimetry measurements was carried out to evaluate the accuracy of dose calculation outside the field, where a CIED is usually located.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Braunschweig, Frieder. "Implantable devices in heart failure : studies on biventricular pacing and continuous hemodynamic monitoring /". Stockholm, 2002. http://diss.kib.ki.se/2002/91-7349-345-7/.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Boilevin-Kayl, Ludovic. "Modeling and numerical simulation of implantable cardiovascular devices". Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS039.

Texto completo da fonte
Resumo:
Cette thèse, réalisée dans le cadre du projet Mivana, est consacrée à la modélisation et à la simulation numérique de dispositifs cardiaques implantables. Ce projet est mené par les start-up Kephalios et Epygon, concepteurs de solutions chirurgicales non invasives pour le traitement de la régurgitation mitrale. La conception et la simulation de tels dispositifs nécessitent des méthodes numériques efficaces et précises capables de calculer correctement l’hémodynamique cardiaque. C’est le but principal de cette thèse. Dans la première partie, nous décrivons le système cardiovasculaire et les valves cardiaques avant de présenter quelques éléments de théorie concernant la modélisation mathématique de l’hémodynamique cardiaque. En fonction du degré de complexité adopté pour la modélisation des feuillets de la valve, deux approches sont identifiées : le modèle de surfaces résistives immergées et le modèle complet d’interaction fluide-structure. Dans la deuxième partie, nous étudions la première approche qui consiste à combiner une modélisation réduite de la dynamique des valves avec un découplage cinématique de l’hémodynamique cardiaque et de l’électromécanique. Nous l’enrichissons de données physiologiques externes pour la simulation correcte des phases isovolumétriques, pierres angulaires du battement cardiaque, permettant d’obtenir un modèle relativement précis qui évite la complexité des problèmes entièrement couplés. Ensuite, une série d’essais numériques sur des géométries 3D physiologiques, impliquant la régurgitation mitrale et plusieurs configurations de valves immergées, illustre la performance du modèle proposé. Dans la troisième et dernière partie, des modèles complets d’interaction fluide-structure sont considérés. Ce type de modélisation est nécessaire pour étudier des problèmes plus complexes où la précédente approche n’est plus satisfaisante, comme par exemple le prolapsus de la valve mitrale ou la fermeture d’une valve mécanique. D’un point de vue numérique, le développement de méthodes précises et efficaces est indispensable pour pouvoir simuler de tels cas physiologiques. Nous considérons alors une étude numérique complète dans laquelle plusieurs méthodes de maillages non compatibles sont comparées. Puis, nous présentons un nouveau schéma de couplage explicite dans le cadre d’une méthode de type domaine fictif pour lequel la stabilité inconditionnelle au sens de la norme en énergie est démontrée. Plusieurs exemples numériques en 2D sont proposés afin d’illustrer les propriétés et les performances de ce schéma. Enfin, cette méthode est finalement utilisée pour la simulation numérique 2D et 3D de dispositifs cardiovasculaires implantables dans un modèle complet d’interaction fluide-structure
This thesis, taking place in the context of the Mivana project, is devoted to the modeling and to the numerical simulation of implantable cardiovascular devices. This project is led by the start-up companies Kephalios and Epygon, conceptors of minimally invasive surgical solutions for the treatment of mitral regurgitation. The design and the simulation of such devices call for efficient and accurate numerical methods able to correctly compute cardiac hemodynamics. This is the main purpose of this thesis. In the first part, we describe the cardiovascular system and the cardiac valves before presenting some standard material for the mathematical modeling of cardiac hemodynamics. Based on the degree of complexity adopted for the modeling of the valve leaflets, two approaches are identified: the resistive immersed surfaces model and the complete fluidstructure interaction model. In the second part, we investigate the first approach which consists in combining a reduced modeling of the valves dynamics with a kinematic uncoupling of cardiac hemodynamics and electromechanics. We enhance it with external physiological data for the correct simulation of isovolumetric phases, cornerstones of the heartbeat, resulting in a relatively accurate model which avoids the complexity of fully coupled problems. Then, a series of numerical tests on 3D physiological geometries, involving mitral regurgitation and several configurations of immersed valves, illustrates the performance of the proposed model. In the third and final part, complete fluid-structure interaction models are considered. This type of modeling is necessary when investigating more complex problems where the previous approach is no longer satisfactory, such as mitral valve prolapse or the closing of a mechanical valve. From the numerical point of view, the development of accurate and efficient methods is mandatory to be able to compute such physiological cases. We then consider a complete numerical study in which several unfitted meshes methods are compared. Next, we present a new explicit coupling scheme in the context of the fictitious domain method for which the unconditional stability in the energy norm is proved. Several 2D numerical examples are provided to illustrate the properties and the performance of this scheme. Last, this method is finally used for 2D and 3D numerical simulation of implantable cardiovascular devices in a complete fluid-structure interaction framework
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

MIGNANO, Antonino. "IMPACT OF REMOTE MONITORING AND ATRIAL HIGH RATE EPISODES ON OUTCOME OF PATIENTS WITH CARDIAC IMPLANTABLE ELECTRONIC DEVICES". Doctoral thesis, Università degli Studi di Palermo, 2021. http://hdl.handle.net/10447/515509.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Implantable cardiac stimulation devices"

1

Korpas, David. Implantable Cardiac Devices Technology. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-6907-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Korpas, David. Implantable Cardiac Devices Technology. Boston, MA: Springer US, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Diemberger, Igor, e Giuseppe Boriani, eds. Infections of Cardiac Implantable Devices. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46255-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Proietti, Riccardo, Gian Mauro Manzoni, Giada Pietrabissa e Gianluca Castelnuovo, eds. Psychological, Emotional, Social and Cognitive Aspects of Implantable Cardiac Devices. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55721-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Sanjeev, Saksena, e Goldschlager Nora, eds. Electrical therapy for cardiac arrhythmias: Pacing, antitachycardia devices, catheter ablation. Philadelphia: Saunders, 1990.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Korpas, David. Implantable Cardiac Devices Technology. Springer, 2015.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Korpas, David. Implantable Cardiac Devices Technology. Springer, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Radiographic Atlas of Cardiac Implantable Electronic Devices. Elsevier, 2022. http://dx.doi.org/10.1016/c2020-0-03768-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ryan, James D., David L. Hayes, Siva K. Mulpuru, Nora E. Olson e Tracy L. Webster. Workbook of Diagnostics for Cardiac Implantable Devices. Cardiotext Publishing, 2020.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ryan, James D., David L. Hayes, Siva K. Mulpuru, Nora E. Olson e Tracy L. Webster. Workbook of Diagnostics for Cardiac Implantable Devices. Cardiotext Publishing, 2020.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Implantable cardiac stimulation devices"

1

Hiestand, Brian, e William Abraham. "Implantable Cardiac Devices". In Contemporary Cardiology, 253–65. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-627-2_21.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Morrison, Laura J. "Implantable Cardiac Devices". In Textbook of Palliative Medicine and Supportive Care, 841–60. 3a ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429275524-90.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Rooke, G. Alec. "Implantable Cardiac Devices". In The Perioperative Medicine Consult Handbook, 79–86. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3220-3_12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Patel, Parag, Erin Armenia e Pina Spampanato. "Implantable Cardiac Devices". In In Clinical Practice, 47–80. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-41479-4_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Korpas, David. "Implantable Cardioverter-Defibrillators". In Implantable Cardiac Devices Technology, 77–86. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-6907-0_10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Rooke, G. Alec. "Implantable Cardiac Electronic Devices". In The Perioperative Medicine Consult Handbook, 75–81. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09366-6_12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

McVenes, Rick, e Ken Stokes. "Implantable Cardiac Electrostimulation Devices". In Biological and Medical Physics, Biomedical Engineering, 221–51. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77261-5_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hiestand, Brian. "Cardiac Implantable Electronic Devices". In Contemporary Cardiology, 285–94. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44006-4_22.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Hall, Michael L., e G. Alec Rooke. "Implantable Cardiac Electronic Devices". In The Perioperative Medicine Consult Handbook, 89–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19704-9_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Dillane, Derek. "Cardiac Implantable Electronic Devices". In Preoperative Assessment, 57–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58842-7_9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Implantable cardiac stimulation devices"

1

Garg, Aksh, Tejas Amritkar, Saravanan Vijayakumaran e Laxmeesha Somappa. "A Cryptographic Security Engine With Sequence Tracker for Implantable Neural Stimulation Devices". In 2024 IEEE Biomedical Circuits and Systems Conference (BioCAS), 1–5. IEEE, 2024. https://doi.org/10.1109/biocas61083.2024.10798193.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Vu, Jasmine, Bhumi Bhusal, Fuchang Jiang e Laleh Golestanirad. "Comparative Analysis of RF Heating of Cardiac Implantable Electronic Devices (CIEDs) in Conventional Closed-bore vs. Vertical Open-bore MRI Systems". In 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1–5. IEEE, 2024. https://doi.org/10.1109/embc53108.2024.10781567.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Jiang, Fuchang, Pia Panravi Sanpitak, Bhumi Bhusal, Jasmine Vu, Boris Keil e Laleh Golestanirad. "A Simulation Study of a Novel Patient-Adjustable MRI Coil for Safe Pediatric Imaging in Children with Cardiac Implantable Electronic Devices (CIEDs)". In 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1–5. IEEE, 2024. https://doi.org/10.1109/embc53108.2024.10781950.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Libbus, Imad, Scott T. Mazar, Scott R. Stubbs e Bruce H. KenKnight. "Electrical Interaction between Implantable Vagus Nerve Stimulation Device and Implantable Cardiac Rhythm Management Device". In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018. http://dx.doi.org/10.1109/embc.2018.8513067.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Schaffer, Jeremy E., Adam J. Griebel e Art J. Foster. "On Lead Durability: Materials with Performance for Extreme Service Implantable Leads". In 2024 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/dmd2024-1018.

Texto completo da fonte
Resumo:
Abstract In this work, lead subcomponent performance is examined with a drop-in nitinol-silver composite wire system expected to deliver 50% improved flexibility, shape memory capability, and 50% improved strain-fatigue durability for next generation, extreme mechanical service, implantable leads. Leads produced from this advanced conductor could be useful in a variety of applications including service life extension of cardiac pacing, defibrillation, and nerve stimulation and sensing.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Aranda-Michel, Edgar, Jooli Han e Dennis R. Trumble. "Design of a Muscle-Powered Extra-Aortic Counterpulsation Device for Long-Term Circulatory Support". In 2017 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dmd2017-3325.

Texto completo da fonte
Resumo:
While great strides continue to be made in the treatment of congestive heart failure using mechanical ventricular assist devices (VADs), several longstanding difficulties associated with pumping blood continue to limit their long-term use. Among the most troublesome has been the persistent risk of clot formation at the blood-device interface, which generally requires VAD recipients to undergo costly — and potentially dangerous — anticoagulation therapy for the duration of the implant. Another serious and persistent problem with long-term use of these pumps is the increased risk of infection associated with the use of percutaneous drivelines. To address these issues we are currently exploring a new approach to blood pump design that aims to solve both these problems by avoiding them altogether. Toward that end, we propose to harness the body’s own endogenous energy stores in order to eliminate the need to transmit energy across the skin. Further, we intend to transfer the energy from this internal power source to the circulation without contacting the blood to obviate the thrombogenic risks imposed by devices placed directly into the bloodstream. To power the implant we will employ a device developed previously by our group called a muscle energy converter (MEC), shown in Figure 1. The MEC is, in essence, an implantable hydraulic actuator powered by the latissimus dorsi (LD) muscle with the capacity to transmit up to 1.37 joules of contractile work per stroke [1]. By training the muscle to express fatigue-resistant oxidative fibers and stimulating the LD to contract in coordination with the cardiac cycle, the MEC captures and transmits this contractile energy as a high-pressure low-volume (5 cc) hydraulic pulse that can be used, in principle, to actuate an implanted pulsatile blood pump. The goal of this research is to use the low-volume output of the MEC to drive a polymer-based aortic compression device for long-term circulatory support. In this context it is important to note that the idea of applying a counterpulsation device around the ascending aorta is not new. Indeed, this approach has been validated by clinical trials recently completed by Sunshine Heart Inc. showing that displacing 20 cc of blood at the aortic root has significant therapeutic benefits [2]. Unfortunately, while the pneumatic ‘C-Pulse’ device solves the blood-contacting problem, it suffers from the same limitations as traditional VADs — i.e., driveline infections. The device described here achieves the same volumetric displacement as the SSH device via geometric amplification of MEC outputs. Thus, through this mechanism we believe the low-volume power output of the MEC can be used to support heart failure patients while addressing the major limitations associated with long-term VAD use.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Ellouze, Nourhene, Mohamed Allouche, Habib Ben Ahmed, Sliim Rekhis e Noureddine Boudriga. "Securing implantable cardiac medical devices". In the 3rd international workshop. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2517300.2517307.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kim, Jiyoon, Sangmin Lee, Daniel Gerbi Duguma, Bonam Kim e Ilsun You. "Comments on "Securing implantable cardiac medical devices"". In ACM ICEA '20: 2020 ACM International Conference on Intelligent Computing and its Emerging Applications. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3440943.3444733.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

O'Connor, S. A. "Ventricular fibrillation and implantable defibrillators". In IEE Colloquium on Cardiac Pacing and Electrical Stimulation of the Heart. IEE, 1996. http://dx.doi.org/10.1049/ic:19960976.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Sarode, Shilpa, Sriram Radhakrishnan, Varun Sampath, Zhihao Jiang, Miroslav Pajic e Rahul Mangharam. "Demo Abstract: Model-Based Testing of Implantable Cardiac Devices". In 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems (ICCPS). IEEE, 2012. http://dx.doi.org/10.1109/iccps.2012.42.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia