Artigos de revistas sobre o tema "Immune checkpoint blocker"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Immune checkpoint blocker".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhang, Yuhan, Changming Fang, Rongsheng E. Wang, Ying Wang, Hui Guo, Chao Guo, Lijun Zhao et al. "A tumor-targeted immune checkpoint blocker". Proceedings of the National Academy of Sciences 116, n.º 32 (22 de julho de 2019): 15889–94. http://dx.doi.org/10.1073/pnas.1905646116.
Texto completo da fonteGalluzzi, Lorenzo, e Guido Kroemer. "Novel immune checkpoint blocker to treat Merkel cell carcinoma". OncoImmunology 6, n.º 6 (20 de abril de 2017): e1315496. http://dx.doi.org/10.1080/2162402x.2017.1315496.
Texto completo da fonteWang, Feihu, Dongqing Xu, Hao Su, Weijie Zhang, Xuanrong Sun, Maya K. Monroe, Rami W. Chakroun et al. "Supramolecular prodrug hydrogelator as an immune booster for checkpoint blocker–based immunotherapy". Science Advances 6, n.º 18 (29 de abril de 2020): eaaz8985. http://dx.doi.org/10.1126/sciadv.aaz8985.
Texto completo da fonteHassel, Jessica Cecile, Michael Flossdorf, Sonja Hänzelmann, Julia Winkler, Jasmin Roth, Claudia Lauenstein, Lena Appel et al. "Investigation of the immune infiltrate of melanoma metastases under immune checkpoint inhibition." Journal of Clinical Oncology 35, n.º 15_suppl (20 de maio de 2017): 9570. http://dx.doi.org/10.1200/jco.2017.35.15_suppl.9570.
Texto completo da fonteYuan, Bo, Linlin Miao, Disen Mei, Lingzhi Li, Qiongyan Zhou, Dong Dong, Songting Wang, Xiaoxia Zhu e Suling Xu. "Value of a Signature of Immune-Related Genes in Predicting the Prognosis of Melanoma and Its Responses to Immune Checkpoint Blocker Therapies". Computational and Mathematical Methods in Medicine 2022 (20 de junho de 2022): 1–13. http://dx.doi.org/10.1155/2022/9633416.
Texto completo da fonteGalluzzi, Lorenzo, Guido Kroemer e Alexander Eggermont. "Novel immune checkpoint blocker approved for the treatment of advanced melanoma". OncoImmunology 3, n.º 11 (2 de novembro de 2014): e967147. http://dx.doi.org/10.4161/21624011.2014.967147.
Texto completo da fonteShi, Connie R., Tracey S. Otto, Leah L. Thompson, Michael S. Chang, Kerry L. Reynolds e Steven T. Chen. "Methotrexate in the treatment of immune checkpoint blocker-induced bullous pemphigoid". European Journal of Cancer 159 (dezembro de 2021): 34–37. http://dx.doi.org/10.1016/j.ejca.2021.09.032.
Texto completo da fonteMakam, Raghavendra, Youssef Rahban, David Gerson e Glenn Stokken. "A CASE OF ACUTE CARDIOMYOPATHY DUE TO IMMUNE CHECKPOINT BLOCKER PEMBROLIZUMAB". Journal of the American College of Cardiology 75, n.º 11 (março de 2020): 3100. http://dx.doi.org/10.1016/s0735-1097(20)33727-x.
Texto completo da fonteSharma, Munish, Giselle A. Suero-Abreu e Bernard Kim. "A Case of Acute Heart Failure due to Immune Checkpoint Blocker Nivolumab". Cardiology Research 10, n.º 2 (2019): 120–23. http://dx.doi.org/10.14740/cr838.
Texto completo da fonteHassel, Jessica C. "Checkpoint blocker induced autoimmunity as an indicator for tumour efficacy in melanoma". British Journal of Cancer 126, n.º 2 (25 de outubro de 2021): 163–64. http://dx.doi.org/10.1038/s41416-021-01390-1.
Texto completo da fonteXie, Pingxing, Philippe Lefraçnois e Ivan V. Litvinov. "Cytotoxic T Cells Are Replaced by Novel Clones After Immune Checkpoint Blocker Therapy". Journal of Cutaneous Medicine and Surgery 24, n.º 3 (maio de 2020): 314–15. http://dx.doi.org/10.1177/1203475419890843.
Texto completo da fonteMei, Jie, Jiahui Chu, Kai Yang, Zhiwen Luo, Jiayue Yang, Junying Xu, Qing Li et al. "Angiotensin receptor blocker attacks armored and cold tumors and boosts immune checkpoint blockade". Journal for ImmunoTherapy of Cancer 12, n.º 9 (setembro de 2024): e009327. http://dx.doi.org/10.1136/jitc-2024-009327.
Texto completo da fonteQiao, Guanxi, Minhui Chen, Hemn Mohammadpour, Mark Bucsek, Cameron MacDonald, Bonnie Hylander e Elizabeth Repasky. "Adrenergic stress regulates the exhausted phenotype of T cells in the tumor microenvironment". Journal of Immunology 204, n.º 1_Supplement (1 de maio de 2020): 165.36. http://dx.doi.org/10.4049/jimmunol.204.supp.165.36.
Texto completo da fonteLorrey, Selena, Lucas Wachsmuth, Jessica Waibl Polania, Alexandra Hoyt-Miggelbrink, Corey Neff, Mackenzie Price, John Finlay et al. "IMMU-49. BETA-ADRENERGIC BLOCKADE LICENSES THE USE OF IMMUNOTHERAPY IN PRIMARY AND METASTATIC BRAIN TUMORS". Neuro-Oncology 25, Supplement_5 (1 de novembro de 2023): v153. http://dx.doi.org/10.1093/neuonc/noad179.0581.
Texto completo da fonteZeng, Zhimin, Yuxia Liang, Jia Shi, Lisha Xiao, Lu Tang, Yubiao Guo, Fengjia Chen e Gengpeng Lin. "Identification and Application of a Novel Immune-Related lncRNA Signature on the Prognosis and Immunotherapy for Lung Adenocarcinoma". Diagnostics 12, n.º 11 (21 de novembro de 2022): 2891. http://dx.doi.org/10.3390/diagnostics12112891.
Texto completo da fonteKoks, Marije S., Gurbey Ocak, Britt B. M. Suelmann, Cornelia A. R. Hulsbergen-Veelken, Saskia Haitjema, Marieke E. Vianen, Marianne C. Verhaar, Karin A. H. Kaasjager e Meriem Khairoun. "Immune checkpoint inhibitor-associated acute kidney injury and mortality: An observational study". PLOS ONE 16, n.º 6 (8 de junho de 2021): e0252978. http://dx.doi.org/10.1371/journal.pone.0252978.
Texto completo da fonteNelson, Michelle, Keisuke Shirai, Ridhi Gupta, Gary Gilkeson e Chrystal M. Paulos. "Understanding how immune checkpoint modulators alter pre-existing rheumatologic disorders in cancer patients". Journal of Immunology 198, n.º 1_Supplement (1 de maio de 2017): 120.7. http://dx.doi.org/10.4049/jimmunol.198.supp.120.7.
Texto completo da fonteKim, Aeyung, Eun-Ji Lee, Jung Ho Han e Hwan-Suck Chung. "Caryophylli Cortex Suppress PD-L1 Expression in Cancer Cells and Potentiates Anti-Tumor Immunity in a Humanized PD-1/PD-L1 Knock-In MC-38 Colon Cancer Mouse Model". Nutrients 16, n.º 24 (23 de dezembro de 2024): 4415. https://doi.org/10.3390/nu16244415.
Texto completo da fonteLorrey, Selena, Lucas P. Wachsmuth, Quinn T. Ostrom e Peter E. Fecci. "Combination beta-adrenergic blockade and immunotherapy for the treatment of primary and metastatic brain cancer." Journal of Clinical Oncology 41, n.º 16_suppl (1 de junho de 2023): e14017-e14017. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e14017.
Texto completo da fonteWang, Zhengyi, e Xiaoying Wu. "Study and analysis of antitumor resistance mechanism of PD1/PD‐L1 immune checkpoint blocker". Cancer Medicine 9, n.º 21 (2 de setembro de 2020): 8086–121. http://dx.doi.org/10.1002/cam4.3410.
Texto completo da fonteRasor, Brendan, Rachel Henderson e Kin Chan. "Characteristics of hospitalizations among patients receiving immune checkpoint inhibitors at a community teaching hospital". Journal of Oncology Pharmacy Practice 26, n.º 1 (29 de março de 2019): 60–66. http://dx.doi.org/10.1177/1078155219836155.
Texto completo da fonteYu, Xiaoqing, e Xuefeng Wang. "Tumor immunity landscape in non-small cell lung cancer". PeerJ 6 (23 de março de 2018): e4546. http://dx.doi.org/10.7717/peerj.4546.
Texto completo da fonteLee, J., J. S. Chang, M. R. Roh, B. H. Oh, K. Y. Chung, W. S. Koom e S. J. Shin. "PO-1224: Clinical outcomes of malignant melanoma treated with immune checkpoint blocker in Korean patients". Radiotherapy and Oncology 152 (novembro de 2020): S644—S645. http://dx.doi.org/10.1016/s0167-8140(21)01242-1.
Texto completo da fonteLorrey, Selena, Lucas Wachsmuth, Mackenzie Price, Corey Neff, Quinn Ostrom e Peter Fecci. "Abstract PR-001: Beta-adrenergic blockade licenses the use of immunotherapy in primary brain tumors and brain metastases". Cancer Research 84, n.º 5_Supplement_1 (4 de março de 2024): PR—001—PR—001. http://dx.doi.org/10.1158/1538-7445.brain23-pr-001.
Texto completo da fonteSue, Mayumi, Takuya Tsubaki, Yoko Ishimoto, Shinko Hayashi, Saori Ishida, Takafumi Otsuka, Yoshitaka Isumi et al. "Blockade of SIRPα-CD47 axis by anti-SIRPα antibody enhances anti-tumor activity of DXd antibody-drug conjugates". PLOS ONE 19, n.º 6 (6 de junho de 2024): e0304985. http://dx.doi.org/10.1371/journal.pone.0304985.
Texto completo da fonteYe, Weiyu, Anna Olsson-Brown, Robert A. Watson, Vincent T. F. Cheung, Robert D. Morgan, Isar Nassiri, Rosalin Cooper et al. "Checkpoint-blocker-induced autoimmunity is associated with favourable outcome in metastatic melanoma and distinct T-cell expression profiles". British Journal of Cancer 124, n.º 10 (15 de março de 2021): 1661–69. http://dx.doi.org/10.1038/s41416-021-01310-3.
Texto completo da fonteMatta, Jessica, Célia Matta, Emilie Thiebault Peter, David Moulaert, Robert Drillien, Benoit Petit-Demouliere, Tania Sorg, Ghina Bou about e Jean-Marc Limacher. "An innovative combined immunization platform for personalized cancer immunotherapy." Journal of Clinical Oncology 37, n.º 15_suppl (20 de maio de 2019): e14225-e14225. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e14225.
Texto completo da fonteBasingab, Fatemah S., Reem A. Alzahrani, Aisha A. Alrofaidi, Ahmed S. Barefah, Rawan M. Hammad, Hadil M. Alahdal, Jehan S. Alrahimi et al. "Herpesvirus Entry Mediator as an Immune Checkpoint Target and a Potential Prognostic Biomarker in Myeloid and Lymphoid Leukemia". Biomolecules 14, n.º 5 (27 de abril de 2024): 523. http://dx.doi.org/10.3390/biom14050523.
Texto completo da fontePatel, Vaibhav G., Qian Qin, Bo Wang, Mahalya Gogerly-Moragoda, George Mellgard, Xiaobo Zhong, Anish B. Parikh et al. "Effect of concurrent beta-blocker use in patients receiving immune checkpoint inhibitors for advanced solid tumors." Journal of Clinical Oncology 38, n.º 15_suppl (20 de maio de 2020): e15068-e15068. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e15068.
Texto completo da fonteHu, Y., X. Liu, M. Ran, T. Yang, T. Li, Y. Wu, Y. Lin, Z. Qian e X. Gao. "Simultaneous delivery of immune stimulatory gene and checkpoint blocker via targeted nanoparticles to strengthen antitumor immunity". Materials Today Nano 17 (março de 2022): 100151. http://dx.doi.org/10.1016/j.mtnano.2021.100151.
Texto completo da fonteLorrey, Selena, Lucas Wachsmuth, Quinn Ostrom e Peter Fecci. "SYST-05 BETA-ADRENERGIC BLOCKADE LICENSES THE USE OF IMMUNOTHERAPY IN PRIMARY AND METASTATIC BRAIN TUMORS". Neuro-Oncology Advances 5, Supplement_3 (1 de agosto de 2023): iii28—iii29. http://dx.doi.org/10.1093/noajnl/vdad070.112.
Texto completo da fonteVladimirova, L. Yu, A. Eh Storozhakova, I. L. Popova, S. N. Kabanov, N. A. Abramova, M. A. Teplyakova, N. M. Tikhanovskaya et al. "Some aspects of nivolumab administration in treatment for metastatic melanoma (clinical cases)". Meditsinskiy sovet = Medical Council, n.º 9 (7 de agosto de 2021): 64–74. http://dx.doi.org/10.21518/2079-701x-2021-9-64-74.
Texto completo da fonteKhalil, Roukiah, Ryan J. Green, Kavya Sivakumar, Payal Varandani, Srinivas Bharadwaj, Shyam S. Mohapatra e Subhra Mohapatra. "Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung Cancer". Cancers 15, n.º 12 (7 de junho de 2023): 3089. http://dx.doi.org/10.3390/cancers15123089.
Texto completo da fonteXie, Bin, Hongkui Chen, Xin Hou e Danyi Wen. "Abstract 1391: PBMC humanized mouse model for ImmunoOncology drug evaluation". Cancer Research 82, n.º 12_Supplement (15 de junho de 2022): 1391. http://dx.doi.org/10.1158/1538-7445.am2022-1391.
Texto completo da fonteKozhevnikov, Alexander, Ashot Mkrtumyan, Polina Serrgeevna Feoktistova, Daria Filonenko, Natalya Polshina, Ekaterina Volkova, Katerina Grechukhina, Irina Bykonya e Lyudmila Zhukova. "Predictors of endocrine immune-related adverse events (irAEs) in patients treated with immune checkpoint inhibitors (ICI) in routine clinical practice." Journal of Clinical Oncology 42, n.º 16_suppl (1 de junho de 2024): e14713-e14713. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.e14713.
Texto completo da fonteVergne-Santiago, Norma, Ernesto Jos E. Sola Sanchez e Michelle Marie Mangual Garcia. "Immune Check Point Inhibitors Triggering Non Autoimmune Polyendocrinopathy". Journal of the Endocrine Society 5, Supplement_1 (1 de maio de 2021): A136—A137. http://dx.doi.org/10.1210/jendso/bvab048.275.
Texto completo da fonteOren, Ohad, Eric H. Yang, Julian R. Molina, Kent Bailey e Stephen Kopecky. "BETA-BLOCKER USE IS ASSOCIATED WITH INCREASED ALL-CAUSE MORTALITY IN LUNG CANCER PATIENTS RECEIVING IMMUNE CHECKPOINT INHIBITORS". Journal of the American College of Cardiology 75, n.º 11 (março de 2020): 3519. http://dx.doi.org/10.1016/s0735-1097(20)34146-2.
Texto completo da fonteGrewal, Udhayvir Singh, Kruti Bhagirath Vora, Aparna Raj Parikh, Amit Mahipal e Sakti Chakrabarti. "Efficacy and safety of neoadjuvant immune checkpoint inhibitors in patients with localized mismatch repair deficient colorectal cancer: A systematic review." Journal of Clinical Oncology 41, n.º 4_suppl (1 de fevereiro de 2023): 149. http://dx.doi.org/10.1200/jco.2023.41.4_suppl.149.
Texto completo da fonteMethods in Medicine, Computational and Mathematical. "Retracted: Value of a Signature of Immune-Related Genes in Predicting the Prognosis of Melanoma and Its Responses to Immune Checkpoint Blocker Therapies". Computational and Mathematical Methods in Medicine 2023 (28 de junho de 2023): 1. http://dx.doi.org/10.1155/2023/9781954.
Texto completo da fonteZhang, Chi, Fei Wang e Rubayat Khan. "LMAP-07 POTENTIAL MECHANISM OF IMMUNE ESCAPE RELATED TO TUMOR-ASSOCIATED MACROPHAGE IN GLIOBLASTOMA AFTER COMBINED THERAPY WITH RADIOTHERAPY AND IMMUNE CHECKPOINT BLOCKER". Neuro-Oncology Advances 5, Supplement_3 (1 de agosto de 2023): iii10. http://dx.doi.org/10.1093/noajnl/vdad070.038.
Texto completo da fonteLee, Seok-Min, e Byungheon Lee. "Abstract 599: Identification of lymphocyte activation gene 3 binding peptides using phage displayed peptide libraries for cancer immunotherapy". Cancer Research 82, n.º 12_Supplement (15 de junho de 2022): 599. http://dx.doi.org/10.1158/1538-7445.am2022-599.
Texto completo da fonteFjæstad, Klaire Yixin, Anne Mette Askehøj Rømer, Victor Goitea, Astrid Zedlitz Johansen, Marie-Louise Thorseth, Marco Carretta, Lars Henning Engelholm, Lars Grøntved, Niels Junker e Daniel Hargbøl Madsen. "Blockade of beta-adrenergic receptors reduces cancer growth and enhances the response to anti-CTLA4 therapy by modulating the tumor microenvironment". Oncogene 41, n.º 9 (11 de janeiro de 2022): 1364–75. http://dx.doi.org/10.1038/s41388-021-02170-0.
Texto completo da fontePeng, Zeyu, Xiaodong F. Liu, Shukai Xia, Jinyu Liu, Hongyan Li, Yuxiang Liu, Hugh M. Davis, Mingjiu Chen e Mark Z. Ma. "Abstract 5522: BSI-060T, a high affinity, fully human anti-siglec-15 antibody as an alternative immune checkpoint blocker". Cancer Research 82, n.º 12_Supplement (15 de junho de 2022): 5522. http://dx.doi.org/10.1158/1538-7445.am2022-5522.
Texto completo da fontevon Vietinghoff, Sibylle. "Wie beeinflussen Nierenschäden unter Checkpointinhibitortherapie die Prognose?" Kompass Autoimmun 4, n.º 1 (2022): 10–11. http://dx.doi.org/10.1159/000521521.
Texto completo da fonteLiu, Demi X., Jun Zhou, Chenpan Nie, Annie X. An, Henry Q. X. Li e Jingjing Wang. "Abstract 617: MEK inhibitor rescued the efficacy of PD-1 blocker in STK11/LKB1 mutated colorectal cancer model". Cancer Research 82, n.º 12_Supplement (15 de junho de 2022): 617. http://dx.doi.org/10.1158/1538-7445.am2022-617.
Texto completo da fonteMori, Takuya, Hiroaki Tanaka, Sota Deguchi, Yoshihito Yamakoshi, Yuichiro Miki, Mami Yoshii, Tatsuro Tamura et al. "Clinical efficacy of nivolumab is associated with tertiary lymphoid structures in surgically resected primary tumors of recurrent gastric cancer". PLOS ONE 17, n.º 1 (7 de janeiro de 2022): e0262455. http://dx.doi.org/10.1371/journal.pone.0262455.
Texto completo da fonteAl-Khateeb, Wasef, John Jarad, Yuri Kim e Robert Battisti. "Long-term nivolumab treatment possibly associated with aseptic meningitis." BMJ Case Reports 17, n.º 2 (fevereiro de 2024): e258141. http://dx.doi.org/10.1136/bcr-2023-258141.
Texto completo da fonteMichot, Jean-Marie, Abhay Patki, Marina Maglakelidze, Regis Costello, Martin Donchev, Vincent Ribrag e Igori Vinogradov. "Open-Label Phase 2 Study Results of FS118, a LAG-3/PD-L1 Bispecific Antibody, in Patients with Relapsed/Refractory Diffuse Large B-Cell Lymphoma". Blood 144, Supplement 1 (5 de novembro de 2024): 1731. https://doi.org/10.1182/blood-2024-202538.
Texto completo da fonteChow, Laura Quan Man, Justin F. Gainor, Nehal J. Lakhani, Hyun Cheol Chung, Keun-Wook Lee, Jeeyun Lee, Patricia LoRusso et al. "A phase I study of ALX148, a CD47 blocker, in combination with established anticancer antibodies in patients with advanced malignancy." Journal of Clinical Oncology 37, n.º 15_suppl (20 de maio de 2019): 2514. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.2514.
Texto completo da fonteAli, Mohamed H. M., Salman M. Toor, Fazle Rakib, Raghvendra Mall, Ehsan Ullah, Kamal Mroue, Prasanna R. Kolatkar, Khalid Al-Saad e Eyad Elkord. "Investigation of the Effect of PD-L1 Blockade on Triple Negative Breast Cancer Cells Using Fourier Transform Infrared Spectroscopy". Vaccines 7, n.º 3 (9 de setembro de 2019): 109. http://dx.doi.org/10.3390/vaccines7030109.
Texto completo da fonte