Artigos de revistas sobre o tema "Immersed structures"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Immersed structures".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Iguchi, T., T. Sugaya e Y. Kawano. "Silicon-immersed terahertz plasmonic structures". Applied Physics Letters 110, n.º 15 (10 de abril de 2017): 151105. http://dx.doi.org/10.1063/1.4980018.
Texto completo da fonteGriffith, Boyce E., e Neelesh A. Patankar. "Immersed Methods for Fluid–Structure Interaction". Annual Review of Fluid Mechanics 52, n.º 1 (5 de janeiro de 2020): 421–48. http://dx.doi.org/10.1146/annurev-fluid-010719-060228.
Texto completo da fonteStrychalski, Wanda, e Robert D. Guy. "Viscoelastic Immersed Boundary Methods for Zero Reynolds Number Flow". Communications in Computational Physics 12, n.º 2 (agosto de 2012): 462–78. http://dx.doi.org/10.4208/cicp.050211.090811s.
Texto completo da fonteJu, Liehong, Peng Li e Ji hau Yang. "EXPERIMENTAL RESEARCH ON COEFFICIENT OF WAVE TRANSMISSION THROUGH IMMERSED VERTICAL BARRIER OF OPEN-TYPE BREAKWATER". Coastal Engineering Proceedings 1, n.º 32 (29 de janeiro de 2011): 55. http://dx.doi.org/10.9753/icce.v32.structures.55.
Texto completo da fonteCao, Shuai, Chun Hua Xu, Ya Bo Huang, Min Liu, Zi Hao Guo, Bo Wen Cheng, Hai Yang Duan, Lin Ge Han, Ya Nan Fan e Yu Fei You. "Wetting Property of Cu-Doped ZnO with Micro-/Nano-Structures". Advanced Materials Research 960-961 (junho de 2014): 61–64. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.61.
Texto completo da fonteClark, Joseph A., Paul M. Honke e J. Michael Ellis. "Holographic measurement of power flow in large immersed structures". Journal of the Acoustical Society of America 89, n.º 4B (abril de 1991): 1977. http://dx.doi.org/10.1121/1.2029748.
Texto completo da fonteBoilevin-Kayl, Ludovic, Miguel A. Fernández e Jean-Frédéric Gerbeau. "Numerical methods for immersed FSI with thin-walled structures". Computers & Fluids 179 (janeiro de 2019): 744–63. http://dx.doi.org/10.1016/j.compfluid.2018.05.024.
Texto completo da fonteBinder, G. "Research on protective coating systems for immersed steel structures". Materials and Corrosion 52, n.º 4 (abril de 2001): 261–67. http://dx.doi.org/10.1002/1521-4176(200104)52:4<261::aid-maco261>3.0.co;2-3.
Texto completo da fonteMEGE, Romain. "ICONE19-43307 Analytical solutions for the study of immersed unanchored structures under seismic loading". Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1943. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1943_137.
Texto completo da fonteUhlig, Manuel R., Simone Benaglia, Ravindra Thakkar, Jeffrey Comer e Ricardo Garcia. "Atomically resolved interfacial water structures on crystalline hydrophilic and hydrophobic surfaces". Nanoscale 13, n.º 10 (2021): 5275–83. http://dx.doi.org/10.1039/d1nr00351h.
Texto completo da fonteSantos, Maria Angela Vaz dos, e Armando Miguel Awruch. "Numerical Analysis of Compressible Fluids and Elastic Structures Interaction". Applied Mechanics Reviews 48, n.º 11S (1 de novembro de 1995): S195—S202. http://dx.doi.org/10.1115/1.3005071.
Texto completo da fonteHao, Jian, Zhilin Li e Sharon R. Lubkin. "An augmented immersed interface method for moving structures with mass". Discrete & Continuous Dynamical Systems - B 17, n.º 4 (2012): 1175–84. http://dx.doi.org/10.3934/dcdsb.2012.17.1175.
Texto completo da fonteBatista, Elismar, Levi Adriano e Willian Tokura. "Gradient Einstein-type structures immersed into a Riemannian warped product". Journal of Geometry and Physics 176 (junho de 2022): 104510. http://dx.doi.org/10.1016/j.geomphys.2022.104510.
Texto completo da fonteGoza, Andres, e Tim Colonius. "A strongly-coupled immersed-boundary formulation for thin elastic structures". Journal of Computational Physics 336 (maio de 2017): 401–11. http://dx.doi.org/10.1016/j.jcp.2017.02.027.
Texto completo da fonteViré, A., J. Xiang e C. C. Pain. "An immersed-shell method for modelling fluid–structure interactions". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, n.º 2035 (28 de fevereiro de 2015): 20140085. http://dx.doi.org/10.1098/rsta.2014.0085.
Texto completo da fonteHuang, Hongyuan, Yao Rong, Xiao Xiao e Bin Xu. "Vibration Characteristics Analysis of Immersed Tunnel Structures Based on a Viscoelastic Beam Model Embedded in a Fluid-Saturated Soil System Due to a Moving Load". Applied Sciences 13, n.º 18 (14 de setembro de 2023): 10319. http://dx.doi.org/10.3390/app131810319.
Texto completo da fonteSidibe, Y., F. Druaux, D. Lefebvre, F. Leon e G. Maze. "A Noncontact Method for the Detection and Diagnosis of Surface Damage in Immersed Structures". Advances in Acoustics and Vibration 2015 (19 de maio de 2015): 1–10. http://dx.doi.org/10.1155/2015/429749.
Texto completo da fonteLee, Kwang-Ho, e Do-Sam Kim. "Development of Simplified Immersed Boundary Method for Analysis of Movable Structures". Journal of Korean Society of Coastal and Ocean Engineers 33, n.º 3 (30 de junho de 2021): 93–100. http://dx.doi.org/10.9765/kscoe.2021.33.3.93.
Texto completo da fonteCao, Yong, Yuchuan Chu, Xiaoshi Zhang e Xu Zhang. "Immersed finite element methods for unbounded interface problems with periodic structures". Journal of Computational and Applied Mathematics 307 (dezembro de 2016): 72–81. http://dx.doi.org/10.1016/j.cam.2016.04.020.
Texto completo da fonteYAJIMA, Shoji, Jiro FUNAKI e Katsuya HIRATA. "1659 Basic Flow Structures around a Washer Immersed in Uniform Flow". Proceedings of the JSME annual meeting 2007.2 (2007): 305–6. http://dx.doi.org/10.1299/jsmemecjo.2007.2.0_305.
Texto completo da fonteFauci, Lisa J., e Aaron L. Fogelson. "Truncated newton methods and the modeling of complex immersed elastic structures". Communications on Pure and Applied Mathematics 46, n.º 6 (julho de 1993): 787–818. http://dx.doi.org/10.1002/cpa.3160460602.
Texto completo da fonteSitnikova, N. L., O. E. Philippova e E. S. Obolonkova. "Kinetically frozen structures in polymer gels immersed in a poor solvent". Macromolecular Symposia 160, n.º 1 (outubro de 2000): 175–82. http://dx.doi.org/10.1002/1521-3900(200010)160:1<175::aid-masy175>3.0.co;2-u.
Texto completo da fonteTimalsina, Asim, Gene Hou e Jin Wang. "Computing Fluid-Structure Interaction by the Partitioned Approach with Direct Forcing". Communications in Computational Physics 21, n.º 1 (5 de dezembro de 2016): 182–210. http://dx.doi.org/10.4208/cicp.080815.090516a.
Texto completo da fonteLu, Hongduo, Samuel Stenberg, Clifford E. Woodward e Jan Forsman. "Structural transitions at electrodes, immersed in simple ionic liquid models". Soft Matter 17, n.º 14 (2021): 3876–85. http://dx.doi.org/10.1039/d0sm02167a.
Texto completo da fonteZHANG, ZHI-QIAN, JIANYAO YAO e G. R. LIU. "AN IMMERSED SMOOTHED FINITE ELEMENT METHOD FOR FLUID–STRUCTURE INTERACTION PROBLEMS". International Journal of Computational Methods 08, n.º 04 (20 de novembro de 2011): 747–57. http://dx.doi.org/10.1142/s0219876211002794.
Texto completo da fonteSyed Nuzul Fadzli, S. A., S. Roslinda e Firuz Zainuddin. "Sol Gel Synthesis and In Vitro Evaluation of Apatite Forming Ability of Silica-Based Composite Glass in SBF". Key Engineering Materials 660 (agosto de 2015): 125–31. http://dx.doi.org/10.4028/www.scientific.net/kem.660.125.
Texto completo da fonteRizzo, Piervincenzo, Jian-Gang Han e Xiang-Lei Ni. "Structural Health Monitoring of Immersed Structures by Means of Guided Ultrasonic Waves". Journal of Intelligent Material Systems and Structures 21, n.º 14 (setembro de 2010): 1397–407. http://dx.doi.org/10.1177/1045389x10384170.
Texto completo da fonteNorouzi, Hamid R., Maryam Tahmasebpoor, Reza Zarghami e Navid Mostoufi. "Multi-scale analysis of flow structures in fluidized beds with immersed tubes". Particuology 21 (agosto de 2015): 99–106. http://dx.doi.org/10.1016/j.partic.2015.01.005.
Texto completo da fonteMege, Romain. "Pseudo-analytical model for sliding immersed structures under time-history earthquake loadings". Bulletin of Earthquake Engineering 15, n.º 3 (23 de agosto de 2016): 1297–318. http://dx.doi.org/10.1007/s10518-016-9990-8.
Texto completo da fonteZhu, Yao-Yu, Shen-You Song, Wei Liu, Ya-Wei Guo, Li Zhu e Jia-Xin Li. "Experimental and Numerical Investigation of the Cross-Sectional Mechanical Behavior of a Steel–Concrete Immersed Tube Tunnel". Buildings 12, n.º 10 (28 de setembro de 2022): 1553. http://dx.doi.org/10.3390/buildings12101553.
Texto completo da fonteZhou, Xiaojie, Qinghua Liang, Yueyu Zhang, Zhongxian Liu e Ying He. "Three-Dimensional Nonlinear Seismic Response of Immersed Tunnel in Horizontally Layered Site under Obliquely Incident SV Waves". Shock and Vibration 2019 (24 de julho de 2019): 1–17. http://dx.doi.org/10.1155/2019/3131502.
Texto completo da fonteWang, Sheldon. "A Revisit of Implicit Monolithic Algorithms for Compressible Solids Immersed Inside a Compressible Liquid". Fluids 6, n.º 8 (3 de agosto de 2021): 273. http://dx.doi.org/10.3390/fluids6080273.
Texto completo da fonteYuchao, Ma, Mo Juan, Yu Jinshan, Li Xiang e Zheng Zhongyuan. "Study on Sound Field Distribution Rule for Tank Structures of Large Oil-immersed Transformers". E3S Web of Conferences 233 (2021): 01021. http://dx.doi.org/10.1051/e3sconf/202123301021.
Texto completo da fonteChern, Ming-Jyh, Wei-Cheng Hsu e Tzyy-Leng Horng. "Numerical Prediction of Hydrodynamic Loading on Circular Cylinder Array in Oscillatory Flow Using Direct-Forcing Immersed Boundary Method". Journal of Applied Mathematics 2012 (2012): 1–16. http://dx.doi.org/10.1155/2012/505916.
Texto completo da fonteValenti, Robert, Alex Brudno, Michael Bertoulin e Ian Davis. "Fort Point Channel: Concrete Immersed-Tube and Ventilation Building Design". Transportation Research Record: Journal of the Transportation Research Board 1541, n.º 1 (janeiro de 1996): 147–52. http://dx.doi.org/10.1177/0361198196154100119.
Texto completo da fonteAlamoudi, Ruaa A., e Sawsan T. Abu Zeid. "Effect of Irrigants on the Push-Out Bond Strength of Two Bioceramic Root Repair Materials". Materials 12, n.º 12 (14 de junho de 2019): 1921. http://dx.doi.org/10.3390/ma12121921.
Texto completo da fonteCOPOS, CALINA A., e ROBERT D. GUY. "A POROUS VISCOELASTIC MODEL FOR THE CELL CYTOSKELETON". ANZIAM Journal 59, n.º 4 (abril de 2018): 472–98. http://dx.doi.org/10.1017/s1446181118000081.
Texto completo da fonteJaiswal, J. P., e R. H. Ojha. "Some properties of K-contact Riemannian manifolds admitting a semi-symmetric non-metric connection". Filomat 24, n.º 4 (2010): 9–16. http://dx.doi.org/10.2298/fil1004009j.
Texto completo da fonteLiao, Xin, Wenda Zhang, Jiannan Chen, Qingfeng Wang, Xiyong Wu, Sixiang Ling e Deping Guo. "Deterioration and Oxidation Characteristics of Black Shale under Immersion and Its Impact on the Strength of Concrete". Materials 13, n.º 11 (31 de maio de 2020): 2515. http://dx.doi.org/10.3390/ma13112515.
Texto completo da fonteJunge, Michael, Dominik Brunner e Lothar Gaul. "Solution of the FE-BE Coupled Eigenvalue Problem for Immersed Ship-like Structures". Journal of The Japan Institute of Marine Engineering 46, n.º 1 (2011): 15–27. http://dx.doi.org/10.5988/jime.46.15.
Texto completo da fonteBoustani, Jonathan, Michael F. Barad, Cetin C. Kiris e Christoph Brehm. "An immersed boundary fluid–structure interaction method for thin, highly compliant shell structures". Journal of Computational Physics 438 (agosto de 2021): 110369. http://dx.doi.org/10.1016/j.jcp.2021.110369.
Texto completo da fonteSartori, Michael A., e Joseph A. Clark. "Animated visualization of structural dynamics and acoustic radiation associated with immersed hull structures". Journal of the Acoustical Society of America 95, n.º 5 (maio de 1994): 2903. http://dx.doi.org/10.1121/1.409278.
Texto completo da fonteVashishth, Anil K., e Vishakha Gupta. "Scattering of ultrasonic waves from porous piezoelectric multilayered structures immersed in a fluid". Smart Materials and Structures 21, n.º 12 (25 de outubro de 2012): 125002. http://dx.doi.org/10.1088/0964-1726/21/12/125002.
Texto completo da fonteGrétarsson, Jón Tómas, e Ron Fedkiw. "Fully conservative leak-proof treatment of thin solid structures immersed in compressible fluids". Journal of Computational Physics 245 (julho de 2013): 160–204. http://dx.doi.org/10.1016/j.jcp.2013.02.017.
Texto completo da fonteKondo, Ryota, Yoshihiro Myokai, Yasushi Obora e Hiroyuki T. Takeshita. "Surface Structures and Hydrogenation Properties of Ti–Pd Alloys Immersed in Hydrogen Peroxide". MATERIALS TRANSACTIONS 64, n.º 11 (1 de novembro de 2023): 2615–21. http://dx.doi.org/10.2320/matertrans.mt-m2023089.
Texto completo da fonteIovane, Giacomo, Hayeon Kim, Domenico Tizzano, Federico M. Mazzolani, Raffaele Landolfo, Solmoi Park, Beatrice Faggiano e H. K. Lee. "Cementitious materials with biological additive for enhanced durability in marine environment". ce/papers 6, n.º 5 (setembro de 2023): 251–57. http://dx.doi.org/10.1002/cepa.1992.
Texto completo da fontede Alcantara, Naasson P., Danilo C. Costa, Diego S. Guedes, Ricardo V. Sartori e Paulo S. S. Bastos. "A Non-Destructive Testing Based on Electromagnetic Measurements and Neural Networks for the Inspection of Concrete Structures". Advanced Materials Research 301-303 (julho de 2011): 597–602. http://dx.doi.org/10.4028/www.scientific.net/amr.301-303.597.
Texto completo da fonteQuintero, Ernesto J., Kathryn Busch e Ronald M. Weiner. "Spatial and Temporal Deposition of Adhesive Extracellular Polysaccharide Capsule and Fimbriae byHyphomonas Strain MHS-3". Applied and Environmental Microbiology 64, n.º 4 (1 de abril de 1998): 1246–55. http://dx.doi.org/10.1128/aem.64.4.1246-1255.1998.
Texto completo da fonteManes, Costantino, e Maurizio Brocchini. "Local scour around structures and the phenomenology of turbulence". Journal of Fluid Mechanics 779 (14 de agosto de 2015): 309–24. http://dx.doi.org/10.1017/jfm.2015.389.
Texto completo da fonteBilbao, Stefan. "Modeling impedance boundary conditions and acoustic barriers using the immersed boundary method: The three-dimensional case". Journal of the Acoustical Society of America 154, n.º 2 (1 de agosto de 2023): 874–85. http://dx.doi.org/10.1121/10.0020635.
Texto completo da fonte