Artigos de revistas sobre o tema "Immersed object"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Immersed object".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Jarlan, G. E. "MODEL STUDY OF AN ISOLATED LIGHTHOUSE PLATFORM AT SEA (PRINCE SHOAL, QUEBEC)". Coastal Engineering Proceedings 1, n.º 7 (29 de janeiro de 2011): 43. http://dx.doi.org/10.9753/icce.v7.43.
Texto completo da fonteLiu, Cheng, e Changhong Hu. "An efficient immersed boundary treatment for complex moving object". Journal of Computational Physics 274 (outubro de 2014): 654–80. http://dx.doi.org/10.1016/j.jcp.2014.06.042.
Texto completo da fonteJahangiri, Ali, e Mojtaba Biglari. "The stability of vapor film immersed in superfluid helium on the surface of the hot ball". Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 230, n.º 6 (3 de agosto de 2016): 433–39. http://dx.doi.org/10.1177/0954408914559571.
Texto completo da fonteChern, Ming-Jyh, Dedy Zulhidayat Noor, Ching-Biao Liao e Tzyy-Leng Horng. "Direct-Forcing Immersed Boundary Method for Mixed Heat Transfer". Communications in Computational Physics 18, n.º 4 (outubro de 2015): 1072–94. http://dx.doi.org/10.4208/cicp.151214.250515s.
Texto completo da fonteBušík, Martin, e Ivan Cimrák. "The calibration of fluid-object interaction in immersed boundary method". EPJ Web of Conferences 143 (2017): 02013. http://dx.doi.org/10.1051/epjconf/201714302013.
Texto completo da fonteSoria-Verdugo, A., L. M. Garcia-Gutierrez, S. Sanchez-Delgado e U. Ruiz-Rivas. "Circulation of an object immersed in a bubbling fluidized bed". Chemical Engineering Science 66, n.º 1 (janeiro de 2011): 78–87. http://dx.doi.org/10.1016/j.ces.2010.10.006.
Texto completo da fonteOrishchenko, Svetlana S. "Things in cinema as a phenomenon of cultural reality". Aspirantskiy Vestnik Povolzhiya 21, n.º 3-4 (10 de dezembro de 2021): 73–77. http://dx.doi.org/10.17816/2072-2354.2021.21.2.73-77.
Texto completo da fonteZhao, Xiang, Liming Yang, Chang Xu e Chang Shu. "An overset boundary condition-enforced immersed boundary method for incompressible flows with large moving boundary domains". Physics of Fluids 34, n.º 10 (outubro de 2022): 103613. http://dx.doi.org/10.1063/5.0122257.
Texto completo da fonteSzabo, Thomas L. "Imaging three dimensional objects with ultrasound". Journal of the Acoustical Society of America 152, n.º 4 (outubro de 2022): A167. http://dx.doi.org/10.1121/10.0015907.
Texto completo da fonteMagiliotou, Maria, Ye-Mon Chen e Liang-Shih Fan. "Bed-immersed object heat transfer in a three-phase fluidized bed". AIChE Journal 34, n.º 6 (junho de 1988): 1043–47. http://dx.doi.org/10.1002/aic.690340620.
Texto completo da fonteChen, Sung-Hua, Yen Ku e Chao-An Lin. "Simulations of settling object using moving domain and immersed-boundary method". Computers & Fluids 179 (janeiro de 2019): 735–43. http://dx.doi.org/10.1016/j.compfluid.2018.09.007.
Texto completo da fonteGoh, Ker Liang. "Force on Fluid by Immersed Body — And Archimedes’ Principle". Physics Educator 02, n.º 03 (setembro de 2020): 2020004. http://dx.doi.org/10.1142/s2661339520200048.
Texto completo da fonteYou, Cheng-Shu, Ming-Jyh Chern, Dedy Zulhidayat Noor e Tzyy-Leng Horng. "Numerical Investigation of Freely Falling Objects Using Direct-Forcing Immersed Boundary Method". Mathematics 8, n.º 9 (18 de setembro de 2020): 1619. http://dx.doi.org/10.3390/math8091619.
Texto completo da fonteDi Angelo, Luca Di, Francesco Duronio, Angelo De De Vita e Andrea Di Di Mascio. "Cartesian Mesh Generation with Local Refinement for Immersed Boundary Approaches". Journal of Marine Science and Engineering 9, n.º 6 (25 de maio de 2021): 572. http://dx.doi.org/10.3390/jmse9060572.
Texto completo da fonteWu, Y. L., C. Shu e H. Ding. "Simulation of Incompressible Viscous Flows by Local DFD-Immersed Boundary Method". Advances in Applied Mathematics and Mechanics 4, n.º 03 (junho de 2012): 311–24. http://dx.doi.org/10.4208/aamm.10-m1171.
Texto completo da fonteBoskovic-Vragolovic, Nevenka, Danica Brzic e Zeljko Grbavcic. "Mass transfer between a fluid and an immersed object in liquid-solid packed and fluidized beds". Journal of the Serbian Chemical Society 70, n.º 11 (2005): 1373–79. http://dx.doi.org/10.2298/jsc0511373b.
Texto completo da fonteGhasemi, Amirmahdi, R. Nikbakhti, Amirreza Ghasemi, Faraz Hedayati e Amir Malvandi. "Parallelized numerical modeling of the interaction of a solid object with immiscible incompressible two-phase fluid flow". Engineering Computations 34, n.º 3 (2 de maio de 2017): 709–24. http://dx.doi.org/10.1108/ec-01-2016-0016.
Texto completo da fonteAhmedov, Bobomurat, Bobur Turimov, Zdeněk Stuchlík e Arman Tursunov. "Optical properties of magnetized black hole in plasma". International Journal of Modern Physics: Conference Series 49 (janeiro de 2019): 1960018. http://dx.doi.org/10.1142/s2010194519600188.
Texto completo da fonteDuan, Xian Bao, Xin Qiang Qin e Ya Qin Guo. "Shape Optimization of a Body Immersed in the Navier-Stokes Flow". Applied Mechanics and Materials 80-81 (julho de 2011): 774–78. http://dx.doi.org/10.4028/www.scientific.net/amm.80-81.774.
Texto completo da fonteKallel, Imen. "Topological Sensitivity Analysis for the Anisotropic Laplace Problem". International Journal of Analysis and Applications 19, n.º 6 (16 de novembro de 2021): 949–69. http://dx.doi.org/10.28924/2291-8639-19-2021-949.
Texto completo da fonteNakatani, Masahiro, e Toshio Tagawa. "Computation of heat transfer around arbitrary object shape using an immersed boundary method". Proceedings of the Thermal Engineering Conference 2018 (2018): 0067. http://dx.doi.org/10.1299/jsmeted.2018.0067.
Texto completo da fonteICHIGE, Yuya, Wataru YAMAZAKI e Shun TAKAHASHI. "Numerical Flow Analysis around a Flapping Wing Object Using an Immersed Boundary Method". Proceedings of Conference of Hokuriku-Shinetsu Branch 2019.56 (2019): H042. http://dx.doi.org/10.1299/jsmehs.2019.56.h042.
Texto completo da fonteTsai, Yuan-Shiang, e Der-Chang Lo. "A Ghost-Cell Immersed Boundary Method for Wave–Structure Interaction Using a Two-Phase Flow Model". Water 12, n.º 12 (29 de novembro de 2020): 3346. http://dx.doi.org/10.3390/w12123346.
Texto completo da fonteLashina, Elena. "FACTOR OF THE REAL ENVIRONMENT OF THE OBJECT IN THE USE OF TERMS IN THE ARTISTIC TEXT". Chronos: social sciences 6, n.º 1(21) (3 de março de 2021): 24–27. http://dx.doi.org/10.52013/2712-9705-21-1-5.
Texto completo da fonteTEO, L. P. "MODE SUMMATION APPROACH TO CASIMIR EFFECT BETWEEN TWO OBJECTS". International Journal of Modern Physics A 27, n.º 25 (10 de outubro de 2012): 1230021. http://dx.doi.org/10.1142/s0217751x12300219.
Texto completo da fontePushpakath, Madan, e Marcelo H. Ang Jr. "Design of a Liquid Jamming Gripper". Designs 7, n.º 2 (10 de março de 2023): 44. http://dx.doi.org/10.3390/designs7020044.
Texto completo da fonteYue, Xiabing, Yuan Xie e Yongli Xie. "The Deformation Characteristics of Weak Foundation with High Back Siltation in the Immersed Tunnel". Advances in Materials Science and Engineering 2018 (11 de novembro de 2018): 1–14. http://dx.doi.org/10.1155/2018/6538764.
Texto completo da fonteGu, LingYun, FaTing Yuan, NaiYue Zhang, XueFeng Bai, Xin Zhang, WenPeng Gao, Yan Wu e ZhiXin Bai. "Research on temperature rise characteristics and hot spot temperature inversion method of oil-immersed transformer based on coupling of magnetic-fluid-thermal field". Thermal Science, n.º 00 (2024): 172. http://dx.doi.org/10.2298/tsci240330172g.
Texto completo da fonteStevens, Brett, Jennifer Jerrams-Smith, David Heathcote e David Callear. "Putting the Virtual into Reality: Assessing Object-Presence with Projection-Augmented Models". Presence: Teleoperators and Virtual Environments 11, n.º 1 (fevereiro de 2002): 79–92. http://dx.doi.org/10.1162/105474602317343677.
Texto completo da fonteChen, Wen Wu, Yan Rong Xu e Zhi Qian Guo. "Influence of Chloride Contamination on the Specific Surface Area of Loess". Advanced Materials Research 838-841 (novembro de 2013): 894–900. http://dx.doi.org/10.4028/www.scientific.net/amr.838-841.894.
Texto completo da fonteBušík, Martin, Martin Slavík e Ivan Cimrák. "Dissipative Coupling of Fluid and Immersed Objects for Modelling of Cells in Flow". Computational and Mathematical Methods in Medicine 2018 (27 de setembro de 2018): 1–11. http://dx.doi.org/10.1155/2018/7842857.
Texto completo da fonteALLEN, J. E. "On the drag on an object immersed in a flowing plasma: the control surface approach". Journal of Plasma Physics 73, n.º 5 (outubro de 2007): 773–83. http://dx.doi.org/10.1017/s0022377806006246.
Texto completo da fonteQiu, Ju. "Fast Acoustic Imaging for a 3D Penetrable Object Immersed in a Shallow Water Waveguide". Journal of Computational Mathematics 31, n.º 5 (junho de 2013): 449–69. http://dx.doi.org/10.4208/jcm.1304-m3983.
Texto completo da fonteShen, Linwei, Eng-Soon Chan e Pengzhi Lin. "Calculation of hydrodynamic forces acting on a submerged moving object using immersed boundary method". Computers & Fluids 38, n.º 3 (março de 2009): 691–702. http://dx.doi.org/10.1016/j.compfluid.2008.07.002.
Texto completo da fonteChang, Li, e Ali S. Rangwala. "Burning of fuel layers on a turbulent water surface with an immersed conductive object". Combustion and Flame 252 (junho de 2023): 112745. http://dx.doi.org/10.1016/j.combustflame.2023.112745.
Texto completo da fonteKorneev, N. V. "Intensified cleaning of parts immersed in a detergent solution". Agricultural Engineering, n.º 5 (2024): 47–52. http://dx.doi.org/10.26897/2687-1149-2024-5-47-52.
Texto completo da fonteBeliak, Gavriil Nikolaevich, e Mariia Naumovna Virolainen. "A WORK OF LITERATURE AS A HYPER-OBJECT (FROM AN ACADEMIC TO A DIGITAL PUBLICATION)". Russkaya Literatura 4 (2024): 226–30. https://doi.org/10.31860/0131-6095-2024-4-226-230.
Texto completo da fonteLu, C., J. Lin, W. Chew e G. Otto. "Image Reconstruction with Acoustic Measurement Using Distorted Born Iteration Method". Ultrasonic Imaging 18, n.º 2 (abril de 1996): 140–56. http://dx.doi.org/10.1177/016173469601800204.
Texto completo da fonteYonezawa, Asahi, e Akira Yamada. "Deterioration of the Mechanical Properties of FFF 3D-Printed PLA Structures". Inventions 6, n.º 1 (22 de dezembro de 2020): 1. http://dx.doi.org/10.3390/inventions6010001.
Texto completo da fontePuig Montella, Eduard, Cyrille Bonamy, Julien Chauchat e Tian-Jian Hsu. "Implementing moving object capability in a two-phase Eulerian model for sediment transport applications". OpenFOAM® Journal 4 (22 de abril de 2024): 79–104. http://dx.doi.org/10.51560/ofj.v4.119.
Texto completo da fonteDiyana, Tsania Nur, Sutopo Sutopo e Dwi Haryoto. "THE STUDY OF STUDENTS’ DIFFICULTIES IN MASTERING THE CONCEPT OF ARCHIMEDES’ PRINCIPLE". JURNAL PENDIDIKAN SAINS (JPS) 8, n.º 1 (20 de abril de 2020): 59. http://dx.doi.org/10.26714/jps.8.1.2020.59-64.
Texto completo da fonteWinter, Bodo, e Benjamin Bergen. "Language comprehenders represent object distance both visually and auditorily". Language and Cognition 4, n.º 1 (março de 2012): 1–16. http://dx.doi.org/10.1515/langcog-2012-0001.
Texto completo da fonteTurimov, Bobur, Bobomurat Ahmedov, Ahmadjon Abdujabbarov e Cosimo Bambi. "Gravitational lensing by a magnetized compact object in the presence of plasma". International Journal of Modern Physics D 28, n.º 16 (24 de outubro de 2019): 2040013. http://dx.doi.org/10.1142/s0218271820400131.
Texto completo da fonteGao, W. M., L. X. Kong e P. D. Hodgson. "Computational simulation of gas flow and heat transfer near an immersed object in fluidized beds". Advances in Engineering Software 38, n.º 11-12 (novembro de 2007): 826–34. http://dx.doi.org/10.1016/j.advengsoft.2006.08.046.
Texto completo da fonteLiao, Chuan-Chieh, e Chao-An Lin. "Simulations of natural and forced convection flows with moving embedded object using immersed boundary method". Computer Methods in Applied Mechanics and Engineering 213-216 (março de 2012): 58–70. http://dx.doi.org/10.1016/j.cma.2011.11.009.
Texto completo da fonteChakrabarti, Surajit, Sanjoy Kumar Pal e Soumen Sarkar. "An accurate determination of the refractive indices of water and glass by smartphone photography". Physics Education 58, n.º 3 (22 de fevereiro de 2023): 035010. http://dx.doi.org/10.1088/1361-6552/acb8f9.
Texto completo da fonteAbdujabbarov, Ahmadjon, Javlon Rayimbaev, Farruh Atamurotov e Bobomurat Ahmedov. "Magnetized Particle Motion in γ-Spacetime in a Magnetic Field". Galaxies 8, n.º 4 (29 de outubro de 2020): 76. http://dx.doi.org/10.3390/galaxies8040076.
Texto completo da fonteIwata, Hiroo, e Yoko Yoshida. "Path Reproduction Tests Using a Torus Treadmill". Presence: Teleoperators and Virtual Environments 8, n.º 6 (dezembro de 1999): 587–97. http://dx.doi.org/10.1162/105474699566503.
Texto completo da fonteFattoyev, F. J., P. S. Tadjimuratov e N. B. Juraeva. "On time evolution of force-free magnetospheres around a slowly rotating compact object". «Узбекский физический журнал» 23, n.º 1 (30 de janeiro de 2021): 1–7. http://dx.doi.org/10.52304/.v23i1.215.
Texto completo da fonteBADRA, MEHDI, FABIEN CAUBET e MARC DAMBRINE. "DETECTING AN OBSTACLE IMMERSED IN A FLUID BY SHAPE OPTIMIZATION METHODS". Mathematical Models and Methods in Applied Sciences 21, n.º 10 (outubro de 2011): 2069–101. http://dx.doi.org/10.1142/s0218202511005660.
Texto completo da fonte