Siga este link para ver outros tipos de publicações sobre o tema: Hyperbolic dynamical systems.

Livros sobre o tema "Hyperbolic dynamical systems"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores livros para estudos sobre o assunto "Hyperbolic dynamical systems".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os livros das mais diversas áreas científicas e compile uma bibliografia correta.

1

Anosov, D. V. Dynamical Systems IX: Dynamical Systems with Hyperbolic Behaviour. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

V, Anosov D., ed. Dynamical systems with hyperbolic behavior. Berlin: Springer-Verlag, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Wiggins, Stephen. Normally Hyperbolic Invariant Manifolds in Dynamical Systems. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-4312-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Barreira, Luis. Ergodic Theory, Hyperbolic Dynamics and Dimension Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Avila, Artur. Cocycles over partially hyperbolic maps. Paris: Société mathématique de France, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Barreira, Luis. Dynamical Systems: An Introduction. London: Springer London, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

A, Rand D., e Ferreira Flávio, eds. Fine structures of hyperbolic diffeomorphisms. Berlin: Springer, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Gaito, Stephen Thomas. Shadowing of weakly pseudo-hyperbolic pseudo-orbits in discrete dynamical systems. [s.l.]: typescript, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

W, Bates Peter. Existence and persistence of invariant manifolds for semiflows in Banach space. Providence, R.I: American Mathematical Society, 1998.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Waddington, Simon. Prime orbit theorems for closed orbits and knots in hyperbolic dynamical systems. [s.l.]: typescript, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Júnior, Jacob Palis. Hyperbolicity and sensitive chaotic dynamicas at homoclinic bifurcaitons. Cambridge: Cambridge University Press, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Lani-Wayda, Bernhard. Hyperbolic sets, shadowing and persistence for noninvertible mappings in Banach spaces. Harlow: Longman, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Kloeden, Peter E. Nonautonomous dynamical systems. Providence, R.I: American Mathematical Society, 2011.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Lani-Wayda, Bernhard. Hyperbolic sets, shadowing, and persistence for noninvertible mappings in Banach spaces. Harlow, Essex, England: Longman, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Lani-Wayda, Bernhard. Hyperbolic sets, shadowing, and persistence for noninvertible mappings in Banach spaces. Harlow, Essex, England: Longman, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Coornaert, M. Symbolic dynamcis [i.e. dynamics] and hyperbolic groups. Berlin: Springer-Verlag, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Margulis, Grigoriy A. On Some Aspects of the Theory of Anosov Systems: With a Survey by Richard Sharp: Periodic Orbits of Hyperbolic Flows. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Li, Daqian. Boundary value problems for quasilinear hyperbolic systems. Durham, NC, U.S.A: Mathematics Dept., Duke University, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Godlewski, Edwige. Numerical approximation of hyperbolic systems of conservation laws. New York: Springer, 1996.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Center, Ames Research, ed. On the implementation of a class of upwind schemes for system of hyperbolic conservation laws. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

F, Thompson Joe, e United States. National Aeronautics and Space Administration., eds. Semi-annual status report for the period November 15, 1985 through May 14, 1986 ... entitled Transformation of two and three-dimensional regions by elliptic systems. Mississippi State, MS: Mississippi State University, Dept. of Aerospace Engineering, 1986.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

F, Thompson Joe, e United States. National Aeronautics and Space Administration, eds. Semi-annual status report for the period November 15, 1985 through May 14, 1986 ... entitled Transformation of two and three-dimensional regions by elliptic systems. Mississippi State, MS: Mississippi State University, Dept. of Aerospace Engineering, 1986.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

D.V. Anosov (Contributor, Editor), S. K. Aranson (Contributor), V. Z. Grines (Contributor), R. V. Plykin (Contributor), A. V. Safonov (Contributor), E. A. Sataev (Contributor), S. V. Shlyachkov (Contributor) et al., eds. Dynamical Systems IX: Dynamical Systems with Hyperbolic Behaviour (Encyclopaedia of Mathematical Sciences). Springer, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Wiggins, Stephen, G. Haller e I. Mezic. Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Springer London, Limited, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Wiggins, Stephen, G. Haller e I. Mezic. Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Springer, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Wiggins, Stephen. Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Springer, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Normally hyperbolic invariant manifolds in dynamical systems. New York: Springer-Verlag, 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Anosov, D. V. Dynamical Systems IX: Dynamical Systems With Hyperbolic Behaviour (Encyclopaedia of Mathematical Sciences). Springer, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Barreira, Luis, e Claudia Valls. Dynamical Systems: An Introduction. Springer, 2012.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Hyperbolic dynamics, fluctuations, and large deviations. Providence, Rhode Island: American Mathematical Society, 2015.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Eldering, Jaap. Atlantis Series in Dynamical Systems: Normally Hyperbolic Invariant Manifolds. We Publish Books, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Barreira, Luis. Dimension and Recurrence in Hyperbolic Dynamics (Progress in Mathematics Book 272). Birkhäuser, 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

(Editor), Giovanni Forni, Mikhail Lyubich (Editor), Charles Pugh (Editor) e Michael Shub (Editor), eds. Partially Hyperbolic Dynamics, Laminations, and Teichmuller Flow (Fields Institute Communications). American Mathematical Society, 2007.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Hyperbolicity Lectures Given At The Centro Internazionale Matematico Estivo Cime Held In Cortona Arezzo Italy June 24july 2 1976. Springer, 2012.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Ergodic Theory Hyperbolic Dynamics And Dimension Theory. Springer, 2012.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Differentiable dynamical systems : an introduction to structural stability and hyperbolicity. AMS, 2016.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

An Introduction to Dynamical Systems: Continuous and Discrete (Pure and Applied Undergraduate Texts). American Mathematical Society, 2012.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Tartar, Luc. From Hyperbolic Systems to Kinetic Theory: A Personalized Quest (Lecture Notes of the Unione Matematica Italiana Book 6). Springer, 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Kaloshin, Vadim, e Ke Zhang. Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691202525.001.0001.

Texto completo da fonte
Resumo:
Arnold diffusion, which concerns the appearance of chaos in classical mechanics, is one of the most important problems in the fields of dynamical systems and mathematical physics. Since it was discovered by Vladimir Arnold in 1963, it has attracted the efforts of some of the most prominent researchers in mathematics. The question is whether a typical perturbation of a particular system will result in chaotic or unstable dynamical phenomena. This book provides the first complete proof of Arnold diffusion, demonstrating that that there is topological instability for typical perturbations of five-dimensional integrable systems (two and a half degrees of freedom). This proof realizes a plan John Mather announced in 2003 but was unable to complete before his death. The book follows Mather's strategy but emphasizes a more Hamiltonian approach, tying together normal forms theory, hyperbolic theory, Mather theory, and weak KAM theory. Offering a complete, clean, and modern explanation of the steps involved in the proof, and a clear account of background material, the book is designed to be accessible to students as well as researchers. The result is a critical contribution to mathematical physics and dynamical systems, especially Hamiltonian systems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Analytic and Probabilistic Approaches to Dynamics in Negative Curvature. Springer, 2014.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Dal'Bo, Françoise, Marc Peigné e Andrea Sambusetti. Analytic and Probabilistic Approaches to Dynamics in Negative Curvature. Springer, 2016.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Geometry and Dynamics in Gromov Hyperbolic Metric Spaces: With an Emphasis on Non-Proper Settings. American Mathematical Society, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Nekrashevych, Volodymyr. Groups and Topological Dynamics. American Mathematical Society, 2022.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Groups and Topological Dynamics. American Mathematical Society, 2022.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Tartar, Luc. From Hyperbolic Systems to Kinetic Theory. Springer, 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Raviart, Pierre-Arnaud, e Edwige Godlewski. Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, 2014.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Raviart, Pierre-Arnaud, e Edwige Godlewski. Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer New York, 2021.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Raviart, Pierre-Arnaud, e Edwige Godlewski. Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer London, Limited, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Nonlinear conservation laws, fluid systems and related topics. Beijing, China: Higher Education Press, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Liu, Tai-Ping. Shock Waves. American Mathematical Society, 2021.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia