Artigos de revistas sobre o tema "Hygromorphic"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hygromorphic".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Birch, Emily, Ben Bridgens, Meng Zhang e Martyn Dade-Robertson. "Bacterial Spore-Based Hygromorphs: A Novel Active Material with Potential for Architectural Applications". Sustainability 13, n.º 7 (5 de abril de 2021): 4030. http://dx.doi.org/10.3390/su13074030.
Texto completo da fonteTamaru, Juntaro, Toshiya Yui e Tomoko Hashida. "Autonomously Moving Pine-Cone Robots: Using Pine Cones as Natural Hygromorphic Actuators and as Components of Mechanisms". Artificial Life 26, n.º 1 (abril de 2020): 80–89. http://dx.doi.org/10.1162/artl_a_00310.
Texto completo da fonteHolstov, Artem, Ben Bridgens e Graham Farmer. "Hygromorphic materials for sustainable responsive architecture". Construction and Building Materials 98 (novembro de 2015): 570–82. http://dx.doi.org/10.1016/j.conbuildmat.2015.08.136.
Texto completo da fonteLee, Sang-Wook, Jacob H. Prosser, Prashant K. Purohit e Daeyeon Lee. "Bioinspired Hygromorphic Actuator Exhibiting Controlled Locomotion". ACS Macro Letters 2, n.º 11 (11 de outubro de 2013): 960–65. http://dx.doi.org/10.1021/mz400439a.
Texto completo da fonteAlexander, S. L. M., S. Ahmadmehrabi e L. T. J. Korley. "Programming shape and tailoring transport: advancing hygromorphic bilayers with aligned nanofibers". Soft Matter 13, n.º 33 (2017): 5589–96. http://dx.doi.org/10.1039/c7sm00962c.
Texto completo da fonteShrestha, Milan, Zhenbo Lu e Gih-Keong Lau. "High humidity sensing by ‘hygromorphic’ dielectric elastomer actuator". Sensors and Actuators B: Chemical 329 (fevereiro de 2021): 129268. http://dx.doi.org/10.1016/j.snb.2020.129268.
Texto completo da fonteGrönquist, Philippe, Prijanthy Panchadcharam, Dylan Wood, Achim Menges, Markus Rüggeberg e Falk K. Wittel. "Computational analysis of hygromorphic self-shaping wood gridshell structures". Royal Society Open Science 7, n.º 7 (julho de 2020): 192210. http://dx.doi.org/10.1098/rsos.192210.
Texto completo da fontePelliccia, Giulia, Giorgio Baldinelli, Fabio Bianconi, Marco Filippucci, Marco Fioravanti, Giacomo Goli, Antonella Rotili e Marco Togni. "Characterisation of wood hygromorphic panels for relative humidity passive control". Journal of Building Engineering 32 (novembro de 2020): 101829. http://dx.doi.org/10.1016/j.jobe.2020.101829.
Texto completo da fonteTaccola, Silvia, Francesco Greco, Edoardo Sinibaldi, Alessio Mondini, Barbara Mazzolai e Virgilio Mattoli. "Toward a New Generation of Electrically Controllable Hygromorphic Soft Actuators". Advanced Materials 27, n.º 10 (2 de janeiro de 2015): 1668–75. http://dx.doi.org/10.1002/adma.201404772.
Texto completo da fonteJesús, Inés Sastre-De. "Estudios preliminares sobre comunidades de briofitas en troncos en descomposición en el bosque subtropical lluvioso de Puerto Rico". Bryophyte Diversity and Evolution 6, n.º 1 (31 de dezembro de 1992): 181–91. http://dx.doi.org/10.11646/bde.6.1.21.
Texto completo da fonteKrapež Tomec, Daša, Aleš Straže, Andreas Haider e Mirko Kariž. "Hygromorphic Response Dynamics of 3D-Printed Wood-PLA Composite Bilayer Actuators". Polymers 13, n.º 19 (22 de setembro de 2021): 3209. http://dx.doi.org/10.3390/polym13193209.
Texto completo da fonteMathesan, Santhosh, Amrita Rath e Pijush Ghosh. "Insights on Water Dynamics in the Hygromorphic Phenomenon of Biopolymer Films". Journal of Physical Chemistry B 121, n.º 16 (12 de abril de 2017): 4273–82. http://dx.doi.org/10.1021/acs.jpcb.7b00980.
Texto completo da fonteAL NAHARI, Bassam, Khalid ZARBANE e Zitouni BEIDOURI. "Moisture-Responsive Cellulose For 4D Printing". Incertitudes et fiabilité des systèmes multiphysiques 8, n.º 2 (2024): 17–21. http://dx.doi.org/10.21494/iste.op.2024.1227.
Texto completo da fonteEl Hachem, Chady, Kamilia Abahri, Jérôme Vicente, Rachid Bennacer e Rafik Belarbi. "Hygromorphic characterization of softwood under high resolution X-ray tomography for hygrothermal simulation". Heat and Mass Transfer 54, n.º 9 (7 de março de 2018): 2761–69. http://dx.doi.org/10.1007/s00231-018-2311-9.
Texto completo da fonteLisnichuk, А. M., R. S. Panasenko, L. A. Verykivskyi e R. L. Yavorivskyi. "АВТОХТОННА ТА ІНТРОДУКОВАНА ДЕНДРОФЛОРА КРЕМЕНЕЦЬКОГО БОТАНІЧНОГО САДУ". Scientific Issue Ternopil Volodymyr Hnatiuk National Pedagogical University. Series: Biology 83, n.º 3-4 (20 de abril de 2024): 8–15. http://dx.doi.org/10.25128/2078-2357.23.3-4.1.
Texto completo da fonteKang, Hosung, Minki Lee, Hyuneui Lim, Howard A. Stone e Jinkee Lee. "Hygromorphic actuator from a metal oxide film driven by a nano-capillary forest structure". NPG Asia Materials 9, n.º 8 (agosto de 2017): e417-e417. http://dx.doi.org/10.1038/am.2017.139.
Texto completo da fonteEl Hachem, Chady, Pan Ye, Kamilia Abahri e Rachid Bennacer. "Fiber’s hygromorphic effect on thermal conductivity of wooden fibrous insulation characterized by X-ray tomography". Construction and Building Materials 150 (setembro de 2017): 758–65. http://dx.doi.org/10.1016/j.conbuildmat.2017.06.013.
Texto completo da fonteLi, Peng, Ling Pan, Dexi Liu, Yubo Tao e Sheldon Q. Shi. "A Bio-Hygromorph Fabricated with Fish Swim Bladder Hydrogel and Wood Flour-Filled Polylactic Acid Scaffold by 3D Printing". Materials 12, n.º 18 (7 de setembro de 2019): 2896. http://dx.doi.org/10.3390/ma12182896.
Texto completo da fonteTaccola, Silvia, Francesco Greco, Edoardo Sinibaldi, Alessio Mondini, Barbara Mazzolai e Virgilio Mattoli. "Soft Actuators: Toward a New Generation of Electrically Controllable Hygromorphic Soft Actuators (Adv. Mater. 10/2015)". Advanced Materials 27, n.º 10 (março de 2015): 1637. http://dx.doi.org/10.1002/adma.201570065.
Texto completo da fonteIvanova, A. V. "Comparative Characteristics of the Hygromorphic Composition of the Leading Families of Florae of Different Regions of Russia". Chemistry. Biology. Ecology 17, n.º 4 (2017): 475–80. http://dx.doi.org/10.18500/1816-9775-2017-17-4-475-480.
Texto completo da fonteMalmir, Maryam, Rita Serrano, Ahmad Reza Gohari e Olga Silva. "Characterization of Satureja khuzestanica Leaf as a Herbal Medicine". Microscopy and Microanalysis 20, n.º 5 (26 de agosto de 2014): 1425–35. http://dx.doi.org/10.1017/s1431927614013026.
Texto completo da fonteDerome, Dominique, Ahmad Rafsanjani, Alessandra Patera, Robert Guyer e Jan Carmeliet. "Hygromorphic behaviour of cellular material: hysteretic swelling and shrinkage of wood probed by phase contrast X-ray tomography". Philosophical Magazine 92, n.º 28-30 (18 de setembro de 2012): 3680–98. http://dx.doi.org/10.1080/14786435.2012.715248.
Texto completo da fonteWang, David H., Ruel N. McKenzie, Philip R. Buskohl, Richard A. Vaia e Loon-Seng Tan. "Hygromorphic Polymers: Synthesis, Retro-Michael Reaction, and Humidity-Driven Actuation of Ester–Sulfonyl Polyimides and Thermally Derived Copolyimides". Macromolecules 49, n.º 9 (19 de abril de 2016): 3286–99. http://dx.doi.org/10.1021/acs.macromol.6b00250.
Texto completo da fonteKrüger, Friederike, Rebecca Thierer, Yasaman Tahouni, Renate Sachse, Dylan Wood, Achim Menges, Manfred Bischoff e Jürgen Rühe. "Development of a Material Design Space for 4D-Printed Bio-Inspired Hygroscopically Actuated Bilayer Structures with Unequal Effective Layer Widths". Biomimetics 6, n.º 4 (6 de outubro de 2021): 58. http://dx.doi.org/10.3390/biomimetics6040058.
Texto completo da fonteMazur, I. "Identification conformity of wetlands biotopes of the Northwest of the Black Sea region". Agroecological journal, n.º 3 (30 de setembro de 2016): 153–59. http://dx.doi.org/10.33730/2077-4893.3.2016.249071.
Texto completo da fonteSeelinger, David, Hussam Georges, Jan-Lukas Schäfer, Jasmin Huong, Rena Tajima, Christan Mittelstedt e Markus Biesalski. "Pinecone-Inspired Humidity-Responsive Paper Actuators with Bilayer Structure". Polymers 16, n.º 10 (15 de maio de 2024): 1402. http://dx.doi.org/10.3390/polym16101402.
Texto completo da fonteKoll, Rebecca A., e William A. DiMichele. "Dominance-diversity architecture of a mixed hygromorphic-to-xeromorphic flora from a botanically rich locality in western equatorial Pangea (lower Permian Emily Irish site, Texas, USA". Palaeogeography, Palaeoclimatology, Palaeoecology 563 (fevereiro de 2021): 110132. http://dx.doi.org/10.1016/j.palaeo.2020.110132.
Texto completo da fonteShitikova, Aleksandra V., Aurel A. Abiala e Anastasia V. Povarnitsyna. "The role of morphological adaptation and variability of potato varieties in plants photosynthetic apparatus formation". IOP Conference Series: Earth and Environmental Science 981, n.º 2 (1 de fevereiro de 2022): 022055. http://dx.doi.org/10.1088/1755-1315/981/2/022055.
Texto completo da fonteSuissa, Jacob S. "Fern fronds that move like pine cones: humidity-driven motion of fertile leaflets governs the timing of spore dispersal in a widespread fern species". Annals of Botany 129, n.º 5 (19 de novembro de 2021): 519–28. http://dx.doi.org/10.1093/aob/mcab137.
Texto completo da fonteMalenko, Ya, O. Kobriushko e D. Verba. "SPECTRA OF TAXA ECOMORPHIC CAPACITY OF PLANT COMMUNITIES IN TECHNOGENIC ECOTOPES OF KRYVBAS DUMPS". BIOLOGY & ECOLOGY 10, n.º 1 (17 de junho de 2024): 84–94. http://dx.doi.org/10.33989/2024.10.1.306020.
Texto completo da fonteReyssat, E., e L. Mahadevan. "Hygromorphs: from pine cones to biomimetic bilayers". Journal of The Royal Society Interface 6, n.º 39 (julho de 2009): 951–57. http://dx.doi.org/10.1098/rsif.2009.0184.
Texto completo da fonteSavosko, V. M. "The dynamics of the dendroflora ecomorphic and biomorphic spectra at the former Botanic garden of the Kryvyi Rih state educational institute". Ecology and Noospherology 25, n.º 1-2 (27 de agosto de 2012): 37–45. http://dx.doi.org/10.15421/031404.
Texto completo da fonteTomic, Zagorka, e Nikola Jovic. "Recent succession of the pedunculate oak and narrow-leaved ash forest in the unflooded part of Gornji Srem". Bulletin of the Faculty of Forestry, n.º 85 (2002): 101–12. http://dx.doi.org/10.2298/gsf0285101t.
Texto completo da fonteLe Duigou, Antoine, Samuel Requile, Johnny Beaugrand, Fabrizio Scarpa e Mickael Castro. "Natural fibres actuators for smart bio-inspired hygromorph biocomposites". Smart Materials and Structures 26, n.º 12 (1 de novembro de 2017): 125009. http://dx.doi.org/10.1088/1361-665x/aa9410.
Texto completo da fonteLe Duigou, Antoine, Vincent Keryvin, Johnny Beaugrand, Miguel Pernes, Fabrizio Scarpa e Mickael Castro. "Humidity responsive actuation of bioinspired hygromorph biocomposites (HBC) for adaptive structures". Composites Part A: Applied Science and Manufacturing 116 (janeiro de 2019): 36–45. http://dx.doi.org/10.1016/j.compositesa.2018.10.018.
Texto completo da fonteKalashnikova, L. V., e J. V. Doroshenko. "Ecological characteristic of dendrosozophytеs of the dendrological park «Oleksandria» of NAS of Ukraine". Journal of Native and Alien Plant Studies, n.º 1 (28 de dezembro de 2021): 119–24. http://dx.doi.org/10.37555/2707-3114.1.2021.247561.
Texto completo da fonteLe Duigou, Antoine, e Mickael Castro. "Hygromorph BioComposites: Effect of fibre content and interfacial strength on the actuation performances". Industrial Crops and Products 99 (maio de 2017): 142–49. http://dx.doi.org/10.1016/j.indcrop.2017.02.004.
Texto completo da fonteAlexander, Symone L. M., e LaShanda T. J. Korley. "Tunable hygromorphism: structural implications of low molecular weight gels and electrospun nanofibers in bilayer composites". Soft Matter 13, n.º 1 (2017): 283–91. http://dx.doi.org/10.1039/c6sm00749j.
Texto completo da fonteLe Duigou, A., T. Fruleux, R. Matsuzaki, G. Chabaud, M. Ueda e M. Castro. "4D printing of continuous flax-fibre based shape-changing hygromorph biocomposites: Towards sustainable metamaterials". Materials & Design 211 (dezembro de 2021): 110158. http://dx.doi.org/10.1016/j.matdes.2021.110158.
Texto completo da fonteSadat, Tarik. "Machine Learning-Assisted Tensile Modulus Prediction for Flax Fiber/Shape Memory Epoxy Hygromorph Composites". Applied Mechanics 4, n.º 2 (9 de junho de 2023): 752–62. http://dx.doi.org/10.3390/applmech4020038.
Texto completo da fonteKunakh, O. N., S. S. Kramarenko, A. V. Zhukov, G. A. Zadorozhnaya e A. S. Kramarenko. "Intra-population spatial structure of the land snail Vallonia pulchella (Müller, 1774) (Gastropoda; Pulmonata; Valloniidae)". Ruthenica, Russian Malacological Journal 28, n.º 3 (16 de agosto de 2018): 91–99. http://dx.doi.org/10.35885/ruthenica.2018.28(3).1.
Texto completo da fonteTahouni, Yasaman, Friederike Krüger, Simon Poppinga, Dylan Wood, Matthias Pfaff, Jürgen Rühe, Thomas Speck e Achim Menges. "Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness". Bioinspiration & Biomimetics 16, n.º 5 (21 de julho de 2021): 055002. http://dx.doi.org/10.1088/1748-3190/ac0c8e.
Texto completo da fontede Kergariou, Charles, Antoine Le Duigou, Adam Perriman e Fabrizio Scarpa. "Design space and manufacturing of programmable 4D printed continuous flax fibre polylactic acid composite hygromorphs". Materials & Design 225 (janeiro de 2023): 111472. http://dx.doi.org/10.1016/j.matdes.2022.111472.
Texto completo da fonteCorrea, David, Simon Poppinga, Max D. Mylo, Anna S. Westermeier, Bernd Bruchmann, Achim Menges e Thomas Speck. "4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, n.º 2167 (3 de fevereiro de 2020): 20190445. http://dx.doi.org/10.1098/rsta.2019.0445.
Texto completo da fonteHapon, S., e Y. Hapon. "BRYOPHYTE COMPONENT OF MEADOW PHYTOCOENOSES IN THE ROMENSKO-POLTAVA GEOBOTANICAL DISTRICT". BIOLOGY & ECOLOGY 8, n.º 2 (12 de dezembro de 2022): 10–17. http://dx.doi.org/10.33989/2022.8.2.285299.
Texto completo da fonteGolovlyov, Aleksey Alekseevich, Yulia Vladimirovna Makarova e Nataliya Vladimirovna Prokhorova. "Bioecological analysis of Mountain Kuznetsov vascular plants". Samara Journal of Science 7, n.º 1 (1 de março de 2018): 28–31. http://dx.doi.org/10.17816/snv201871104.
Texto completo da fonteMatveeva, Tatyana Borisovna, Ivan Victorovich Kazantsev e Sergey Lvovich Molchatsky. "Ecomorfs analysis of the Samara flora". Samara Journal of Science 8, n.º 2 (1 de abril de 2019): 28–32. http://dx.doi.org/10.17816/snv201982105.
Texto completo da fonteZhukov, A. V., e D. B. Shatalin. "ГИГРОТОП И ТРОФОТОП БИОГЕОЦЕНОЗОВ СТЕПНОГО ПРИДНЕПРОВЬЯ КАК ДЕТЕРМИНАНТЫ β-РАЗНООБРАЗИЯ СООБЩЕСТВ ДОЖДЕВЫХ ЧЕРВЕЙ (LUMBRICIDAE)". Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 6, n.º 2 (31 de agosto de 2016): 188–222. http://dx.doi.org/10.15421/201651.
Texto completo da fonteSamokhvalov, Konstantin Vitalyevich, Aleksandr Petrovich Arsentiev e Evgeny Arkadievich Sinichkin. "A geographical analysis of the dendroflora of Cheboksary in the greening system of the city". Samara Journal of Science 11, n.º 4 (1 de dezembro de 2022): 115–20. http://dx.doi.org/10.55355/snv2022114117.
Texto completo da fonteKeropyan, A. A., M. V. Nagalevsky, O. V. Bukareva e T. G. Yanenko. "Rare and endangered plant species of the Kuban State University Botanical Garden". Проблемы ботаники Южной Сибири и Монголии 22, n.º 2 (4 de dezembro de 2023): 122–26. http://dx.doi.org/10.14258/pbssm.2023111.
Texto completo da fonte