Literatura científica selecionada sobre o tema "Hydroxyle radical"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Hydroxyle radical".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Hydroxyle radical"
Zylber, Jean, Nicole Zylber, Daniel Lefort, Christiane Ferradini e Bernard Hickel. "Régiosélectivité de la réaction des radicaux hydroxyle et hydroxy-2 propyle-2 avec l'hypoxanthine". Canadian Journal of Chemistry 66, n.º 2 (1 de fevereiro de 1988): 283–87. http://dx.doi.org/10.1139/v88-048.
Texto completo da fonteGallard, H., J. De Laat e B. Legube. "Étude comparative de la vitesse de décomposition de H2O2 et de l'atrazine par les systèmes Fe(III)/H2O2, Cu(II)/H2O2 et Fe(III)/Cu(II)/H2O2". Revue des sciences de l'eau 12, n.º 4 (12 de abril de 2005): 713–28. http://dx.doi.org/10.7202/705374ar.
Texto completo da fonteZheng, Cheng-Dong, Gang Li, Hu-Qiang Li, Xiao-Jing Xu, Jin-Ming Gao e An-Ling Zhang. "DPPH-Scavenging Activities and Structure-Activity Relationships of Phenolic Compounds". Natural Product Communications 5, n.º 11 (novembro de 2010): 1934578X1000501. http://dx.doi.org/10.1177/1934578x1000501112.
Texto completo da fonteRhim, Tae-Jin, Hee-Sun Jeong, Young-Jin Kim, Doo-Young Kim, Young-Ju Han, Hae-Yon Kwon e Ki-Rok Kwon. "A study on the comparison of antioxidant effects among cultivated ginseng, and cultivated wild ginseng extracts -Using the measurement of superoxide and hydroxy radical scavenging activities-". Journal of Korean Institute of Herbal Acupuncture 12, n.º 2 (30 de junho de 2009): 7–12. http://dx.doi.org/10.3831/kpi.2009.12.2.007.
Texto completo da fonteChoi, Jeong-Hwan, Dong-Hun Shin, Hye-Bin Kim, Jong-Gook Kim e Kitae Baek. "One-step Oxidation of Total Organic Carbon, Total Nitrogen, and Total Phosphorous using Wet Chemical Oxidation". Journal of Korean Society of Environmental Engineers 42, n.º 12 (31 de dezembro de 2020): 603–9. http://dx.doi.org/10.4491/ksee.2020.42.12.603.
Texto completo da fonteVrecko, Karoline, e Gilbert Reibnegger. "Influence of 7,8 Dihydroneopterin and Hyperoxia on Neurite Growth and Tyrosine Hydroxylase Activity of PC 12 Cells". Pteridines 13, n.º 3 (agosto de 2002): 94–99. http://dx.doi.org/10.1515/pteridines.2002.13.3.94.
Texto completo da fonteDuwe, A. K., J. Werkmeister, J. C. Roder, R. Lauzon e U. Payne. "Natural killer cell-mediated lysis involves an hydroxyl radical-dependent step." Journal of Immunology 134, n.º 4 (1 de abril de 1985): 2637–44. http://dx.doi.org/10.4049/jimmunol.134.4.2637.
Texto completo da fonteGebicka, L., e J. L. Gebicki. "Scavenging of oxygen radicals by heme peroxidases." Acta Biochimica Polonica 43, n.º 4 (31 de dezembro de 1996): 673–78. http://dx.doi.org/10.18388/abp.1996_4463.
Texto completo da fonteBi, Yong Guang, e Chun Chun Liu. "Study on Scavenging Free Radical Activity with Polysaccharides Materials in Chuanxiong Based on Composite Properties of Biomaterials". Advanced Materials Research 583 (outubro de 2012): 244–47. http://dx.doi.org/10.4028/www.scientific.net/amr.583.244.
Texto completo da fonteFlitter, W. D., e R. P. Mason. "The spin trapping of pyrimidine nucleotide free radicals in a Fenton system". Biochemical Journal 261, n.º 3 (1 de agosto de 1989): 831–39. http://dx.doi.org/10.1042/bj2610831.
Texto completo da fonteTeses / dissertações sobre o assunto "Hydroxyle radical"
Alkhuraiji, Turki. "Ionisation par faisceau d'électrons de solutions aqueuses de benzènesulfonate et naphthalènesulfonate et sous-produits". Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2259/document.
Texto completo da fonteThis research belongs to the study of the ionization of aqueous solutions by electron beam (E.B.) as an advanced oxidation process for water treatment. The hydroxyl radical (•OH) and hydrated electron(eaq¯) are the two major active species produced from the ionization of aqueous solutions by high energy electron beam. It has been shown that the generation of additional radicals such as the sulphate radical (SO4•¯) and hydroxyl radical from the reaction of persulfate ion (S2O8¯) or hydrogen peroxide (H2O2) with the hydrated electron, improved the efficiency of this process towards the degradation and mineralization of organic pollutants in aquaeous solution. In the présent work, the degradation and mineralization of naphthalenesulfonate, benzenesulfonate and gallic acid were studied by electron beam irradiation alone and coupled with oxidants (S2O8¯, H2O2).In the absence of oxidant, an absorbed dose of 1,5 kGy leads to total elimnation of these pollutants. The presence of added oxidants usually reduces the radiation dose required. In addition, increasing oxidant concentration or applied dose had a beneficial effect towards the organic carbon removal. It was found that coupling E.B./S2O8¯ has more suitable than E.B./ H2O2 even in the presence of inorganic constituents. The results also highlighted the importance of dissolved oxygen in the system when mineralization is aimed. For each of the molecules studied, oxidation by-products resulting from hydroxylation and aromatic ring opening were identified
Varmenot, Nicolas. "Processus d'oxydation des sulfures organiques par le radical hydroxyle : influence du groupement S-acétyle". Paris 5, 2001. http://www.theses.fr/2001PA05S019.
Texto completo da fonteDemougeot, Céline. "Etude de la toxicité cérébrale du fer et évaluation du N-Acétyl-L-aspartate comme marqueur biochimique de la mort neuronale : application à l'ischémie cérébrale". Dijon, 2001. http://www.theses.fr/2001DIJOPE02.
Texto completo da fonteAbila, Paul-André. "Application de la spectroscopie moléculaire au diagnostic d'un plasma inductif d'argon". Lyon, INSA, 1989. http://www.theses.fr/1989ISAL0074.
Texto completo da fonteEl, Omar Abdel Karim. "Études des réactions primaires en solutions par la radiolyse pulsée picoseconde". Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00931405.
Texto completo da fonteBrosse, Fabien. "Influence de la couche limite convective sur la réactivité chimique en Afrique de l'Ouest". Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30324/document.
Texto completo da fonteThis thesis focuses on the influence of the convective and cloudy boundary layer on the chemical reactivity in West Africa. To answer this question, high resolution simulations (50m) are performed on the atmospheric model Meso-NH coupled to a detailed chemical scheme representing the gaseous and aqueous phases. This spatial scale allow to explicitly represent the spatial and temporal characteristics of turbulent structures. Thermals in the boundary layer are identified by a conditional sampling based on a radioactive-decay passive scalar. The turbulent transport influence on the redistribution of chemical species depends on the chemical lifetimes of these species. Spatial segregation is created within the convective boundary layer that increases or decreases the mean reaction rates between compounds. AMMA campaign field study, and more recently DACCIWA, are used to define dynamical and chemical forcing of two simulated environments. The first one is representative of a biogenic environment dominated by natural emissions of VOC. The second reproduces a moderately polluted typical urban area of the Guinean Gulf (Cotonou in Benin). For the sake of simplicity, simulations analysis are limited to the chemical reaction between isoprene and OH in the biogenic case, and the reaction between C>2 aldehydes and OH in the anthropogenic case. The convective boundary layer influence is studied at thermal and domain scale. This makes the connection with coarse resolution models for which a hypothesis of perfect and immediate mixing is made, neglecting the spatial variability of chemical species within a grid cell. The first results are based on the gaseous phase only. Cloudy development in the convective boundary layer only affects the vertical transport of chemical species. The simulations show that thermals are preferential reaction zones where the chemical reactivity is the highest. The top of the boundary layer is the region characterized by the highest calculated segregation intensities but of the opposite sign in both environments. In the biogenic environment, the inhomogeneous mixing of isoprene and OH in this zone leads to a maximum decrease of 30% of the mean reaction rate. In the anthropogenic case, the effective rate constant for OH reacting with aldehydes is 16% higher at maximum than the averaged value. The OH reactivity is higher by 15 to 40% inside thermals compared to the surroundings depending on the chemical environment and time of the day. Because thermals occupy a small fraction of the simulated domain, the impact of turbulent motions on the domain-averaged OH total reactivity reaches a maximum 9% decrease for the biogenic case and a maximum of 5% increase for the anthropogenic case. LES simulations including the aqueous reactivity reveal a significant decrease in OH mixing ratios associated to the presence of clouds. Consequently, isoprene and C>2 aldehydes mixing ratios increase at these altitudes
Oppilliart, Sophie. "Etude par échange isotopique du radical tyrosyle en solution et dans la catalase bovine". Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00361211.
Texto completo da fontePar ailleurs, il a été montré au laboratoire que l'identification et la quantification des radicaux formés sur les acides aminés d'une protéine par l'attaque de radicaux hydroxyle sont possibles. Cette méthode est basée sur le marquage au tritium des résidus acides aminés. Notre approche est basée sur la génération de radicaux hydroxyle par radiolyse de l'eau. Les radicaux hydroxyle formés arrachent un hydrogène sur la chaîne latérale des acides aminés et génèrent ainsi un radical carboné. Il est ensuite “réparé” in situ par un composé, le sel sodique de l'acide phénylphosphinique tritié, qui permet d'introduire un atome de tritium à la place de l'hydrogène précédemment arraché. Cet atome de tritium sert de marqueur pour détecter les sites de formation des radicaux.
Nous avons donc utilisé les propriétés de réparation du vecteur tritié pour identifier quelle est la tyrosine impliquée dans les transferts d'électrons de la BLC. Même s'il a été montré par RPE que la disparition du radical porté par la tyrosine est effective en présence de l'agent de réparation, les études de marquage n'ont pas abouti à déterminer l'exacte localisation du radical. Une des raisons invoquées est le manque d'efficacité de l'agent de réparation pour transférer son atome d'hydrogène. C'est pourquoi d'autres composés capables eux aussi de fournir un atome d'hydrogène par voie radicalaire ont été synthétisés puis testés sur ce système enzymatique par une étude de spectroscopie RPE.
En parallèle, nous avons voulu comprendre les mécanismes d'action des ces mêmes composés sur un système modèle en générant des radicaux sur la tyrosine en solution par radiolyse de l'eau. La méthode consiste à produire dans une solution aqueuse de tyrosine des radicaux hydroxyle, qui vont former les radicaux tyrosyle. Les radicaux ainsi générés peuvent être ensuite réparés par un atome de deutérium fourni par un donneur. L'incorporation en deutérium et la régiosélectivité de l'attaque sont ensuite analysées par spectrométrie de masse et RMN 2H. L'irradiation de solution de tyrosine en présence des différents composés choisis s'est révélée difficile à analyser, en raison notamment de la difficulté à déterminer la proportion de radicaux hydroxyle réagissant avec l'agent réparateur au lieu de la tyrosine, mais surtout en raison de l'incorporation inattendue de deutérium dans la tyrosine en l'absence de tout agent de transfert. Ce phénomène jusqu'alors inconnu a, dès lors, retenu toute notre attention. Nous avons alors focalisé nos travaux sur la compréhension des processus intervenant dans l'autoréparation de la tyrosine et ainsi proposé un mécanisme pour expliquer nos observations.
Lallement, Audrey. "Impact des processus photochimiques et biologiques sur la composition chimique du nuage". Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC066/document.
Texto completo da fonteIn the context of global warming, more precise knowledge of atmospheric processes is needed to evaluate their impact on the Earth radiative budget. Clouds can limit the increase of temperature but this retroaction is not well understood due to a lack of knowledge of cloud media (like organic fraction composition). From the beginning of atmospheric studies, only chemical, especially radical, reactions was taken into account. However microorganisms metabolically active were found in cloud water arising questions about their role as biocatalyst. They are able to use carboxylic acids as nutriments, to degrade radical precursor (like H2O2) and to survive oxidative stress. The aim of this work is to quantify the impact of photochemical and biological processes on cloud chemistry composition. First, the concentrations of •OH, the most reactive radical, were evaluated and the influence of microorganisms on the concentrations were studied. A new method was developed in artificial medial before direct quantification of steady state •OH concentration in atmospheric waters (rain and cloud waters). Concentrations ranged from 10-17 to 10-15 M and did not change in presence of microorganisms. These measures were lower than concentrations estimated by chemical atmospheric models. A possible explanation was an underestimation of the main sink of this radical (organic matter). To better characterize this fraction, simple aromatic compounds were identified in cloud waters, phenol was found in the 8 samples analyzed. To go further, we studied phenol degradation in detail. Enzyme transcripts involved in phenol degradation were present in cloud water samples showing in situ activity of native bacteria. 93% of tested cultural strains, isolated from cloud waters, were able to degrade phenol. To quantify the relative contribution of radical versus microbial processes allowing phenol degradation, we performed photo-biodegradation experiment with a model strain (Rhodococcus erythropolis PDD-23b-28). Our results showed that these two processes participated equally to phenol degradation, suggesting that microorganisms and radicals can be involved in atmospheric natural remediation
Rabat, Hervé. "Utilisation du spectre UV du radical OH dans la métrologie des hautes températures des gaz chauds et des plasmas". Orléans, 2004. http://www.theses.fr/2004ORLE2050.
Texto completo da fonteJoshi, Prasad. "Isolation and reactivity of hydroxyl radical with astrochemically and atmospherically relevant species studied by Fourier transform infrared spectroscopy". Paris 6, 2012. http://www.theses.fr/2012PA066092.
Texto completo da fonteOH radicals play a fundamental role in the chemistry of interstellar media. The isolation and the characterization of the highly reactive species is challenging and represents an important prerequisite for reactivity studies that might be crucial in different fields such as astrochemistry and atmospheric chemistry. Different experimental approaches were tested to produce OH radicals. First of all, gaseous pure water was subjected to a microwave discharge. The species thus formed were condensed onto a cryogenic mirror maintained at 3 K and further characterized with a Fourier-transform IR spectrometer (FTIR). Under these conditions, radical recombination lead to the formation of a water-ice and the presence of OH radicals cannot be clearly established. Gaseous water was diluted into different rare gases (RG = He, Ne, Ar) prior to their introduction into the microwave discharge source. This approach allows to isolate and characterize OH radicals both in solid phase (RG = He) and in neon matrix (RG = Ne). Further reactivity experiments were carried out between these radicals and small species such as H2O, CO, NO, N2, O2, and CH4 in solid phase as well as in neon matrix
Livros sobre o assunto "Hydroxyle radical"
Edney, Edward. Hydroxyl radical rate constant intercomparison study. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory, 1987.
Encontre o texto completo da fonteCrosley, David R. Local measurement of tropospheric HOx: Summary of a workshop held at SRI International, Menlo Park, California, March 23-26, 1992. Hampton, Va: Langley Research Center, 1994.
Encontre o texto completo da fonteSharkey, Paul. Kinetics of hydroxyl radical reactions at low temperatures. Birmingham: University of Birmingham, 1994.
Encontre o texto completo da fonteUnited States. National Aeronautics and Space Administration., ed. Spectroscopic study of combustion diagnostics on hydroxyl radicals: Final research report. Huntsville, Ala: The University of Alabama in Huntsville, 1990.
Encontre o texto completo da fonteB, DeMore William, e United States. National Aeronautics and Space Administration., eds. Temperature-dependent rate constants and substituent effects for the reactions of hydroxyl radicals with three partially fluorinated ethers. 2a ed. [Washington, DC: National Aeronautics and Space Administration, 1995.
Encontre o texto completo da fonteB, DeMore William, e United States. National Aeronautics and Space Administration., eds. Temperature-dependent rate constants and substituent effects for the reactions of hydroxyl radicals with three partially fluorinated ethers. 2a ed. [Washington, DC: National Aeronautics and Space Administration, 1995.
Encontre o texto completo da fonteH, Phillips Donald, e Langley Research Center, eds. An ab initio investigation of possible intermediates in the reaction of hydroxy and hydroperoxyl radicals. [Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1985.
Encontre o texto completo da fonteLacheur, Richard M. Le. Reactions of ozone and hydroxyl radicals with amino acids. Denver, CO: The Foundation and American Water Works Association, 1995.
Encontre o texto completo da fonteBurnett, Elizabeth Beaver. Periodic behaviors in the observed vertical column abundances of atmospheric hydroxyl. [Boca Raton, Fla.?: Florida Atlantic University, 1989.
Encontre o texto completo da fonteCarter, Campbell D. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames. West Lafayette, Ind: Purdue University, 1990.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Hydroxyle radical"
Irvine, William M. "Hydroxyl Radical". In Encyclopedia of Astrobiology, 1167–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1810.
Texto completo da fonteIrvine, William M. "Hydroxyl Radical". In Encyclopedia of Astrobiology, 793–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1810.
Texto completo da fonteIrvine, William M. "Hydroxyl Radical". In Encyclopedia of Astrobiology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1810-4.
Texto completo da fonteBell, David M., Manuela Cirtog, Jean-François Doussin, Hendrik Fuchs, Jan Illmann, Amalia Muñoz, Iulia Patroescu-Klotz, Bénédicte Picquet-Varrault, Mila Ródenas e Harald Saathoff. "Preparation of Experiments: Addition and In Situ Production of Trace Gases and Oxidants in the Gas Phase". In A Practical Guide to Atmospheric Simulation Chambers, 129–61. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22277-1_4.
Texto completo da fonteO'Brien, Robert J., e Thomas M. Hard. "Tropospheric Hydroxyl Radical". In Advances in Chemistry, 323–71. Washington, DC: American Chemical Society, 1993. http://dx.doi.org/10.1021/ba-1993-0232.ch012.
Texto completo da fonteIrvine, William M. "Hydroxyl Radical (OH)". In Encyclopedia of Astrobiology, 1396. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_1810.
Texto completo da fonteHoffman, M. Z. "Of Hydroxyl Radicals". In Inorganic Reactions and Methods, 274–75. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145302.ch107.
Texto completo da fonteMcKenzie, Thomas G., Amin Reyhani, Mitchell D. Nothling e Greg G. Qiao. "Hydroxyl Radical Activated RAFT Polymerization". In ACS Symposium Series, 307–21. Washington, DC: American Chemical Society, 2018. http://dx.doi.org/10.1021/bk-2018-1284.ch014.
Texto completo da fonteJagannathan, Indu, e Jeffrey J. Hayes. "Hydroxyl Radical Footprinting of Protein-DNA Complexes". In Methods in Molecular Biology™, 57–71. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-015-1_5.
Texto completo da fonteCosta, Maria, e Dario Monachello. "Probing RNA Folding by Hydroxyl Radical Footprinting". In Methods in Molecular Biology, 119–42. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-667-2_7.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Hydroxyle radical"
Mooney, C. E., L. C. Anderson e J. H. Lunsford. "Formation and desorption of hydroxyl radicals during Pt-catalyzed oxidation". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.thii4.
Texto completo da fonteKing, Matthew, e Raoul Kopelman. "Development of a hydroxyl radical nanoprobe". In International Symposium on Biomedical Optics, editado por Gerald E. Cohn. SPIE, 2002. http://dx.doi.org/10.1117/12.469776.
Texto completo da fonteZhao, Yi Yi, Mark P. Wilson, Tao Wang, Igor V. Timoshkin e Scott J. MacGregor. "Hydroxyl radical production in DC streamer discharge". In 2015 IEEE Pulsed Power Conference (PPC). IEEE, 2015. http://dx.doi.org/10.1109/ppc.2015.7296962.
Texto completo da fonteSears, Trevor J., H. E. Radford e Mary Ann Moore. "b-Dipole Transitions in X ˜ 2A' t-HOCO Observed by FIR Laser Magnetic Resonance". In High Resolution Spectroscopy. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/hrs.1993.thb1.
Texto completo da fonteDong, Fang, Qinzhao Xue, Jingli Liu, Zhanyong Guo, Hongmao Zhong e Huili Sun. "The Influence of Amino and Hydroxyl of Chitosan on Hydroxyl Radical Scavenging Activity". In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5163624.
Texto completo da fonteZhang, Fenghua, Changzheng Zhou e Chuanlin Tang. "Capacity of Hydroxyl Radical Produced by Choking Cavitator". In The 3rd International Conference on Machinery, Materials Science and Energy Engineering (ICMMSEE 2015). WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814719391_0024.
Texto completo da fonteKhalil Hasan, Ahmed E., e Ashwani K. Gupta. "Hydroxyl Radical Distribution under Colorless Distributed Combustion Conditions". In 52nd Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-0459.
Texto completo da fonteDeMore, William B. "Rates of hydroxyl radical reactions with some HFCs". In Environmental Sensing '92, editado por Harold I. Schiff e Ulrich Platt. SPIE, 1993. http://dx.doi.org/10.1117/12.140207.
Texto completo da fonteHan, Ruixia, Gang Li e Yong-Guan Zhu. "Humic Substances Affect Iron-Driven Hydroxyl Radical Production". In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.15484.
Texto completo da fonteJanik, Ireneusz, e G. Tripathi. "STRUCTURAL CHARACTERIZATION OF HYDROXYL RADICAL ADDUCTS IN AQUEOUS MEDIA". In 70th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2015. http://dx.doi.org/10.15278/isms.2015.th14.
Texto completo da fonteRelatórios de organizações sobre o assunto "Hydroxyle radical"
Lee, Y., H. Pennline e J. Markussen. Flue gas cleanup with hydroxyl radical reactions. Office of Scientific and Technical Information (OSTI), fevereiro de 1990. http://dx.doi.org/10.2172/7163736.
Texto completo da fonteChan, Cornelius. Laser induced hydroxyl radical fluoresence at atmospheric pressure. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.69.
Texto completo da fonteLester, Marsha I. Quenching Dynamics of Electronically Excited Hydroxyl Radicals. Fort Belvoir, VA: Defense Technical Information Center, maio de 2008. http://dx.doi.org/10.21236/ada482242.
Texto completo da fonteCalidonna, Sheryl E., e William R. Bradley. The Hydroxyl Radical Reaction Rate Constant and Products of Dimethyl Succinate. Fort Belvoir, VA: Defense Technical Information Center, março de 2008. http://dx.doi.org/10.21236/ada489770.
Texto completo da fontePeterman, Dean R., Gregory P. Horne, Jamie M. Gleason, Anneka J. Miller e Stephen P. Mezyk. Determine rate of reaction of hydroxyl radical with carboxylic acids and polyaminocarboxylates. Office of Scientific and Technical Information (OSTI), abril de 2017. http://dx.doi.org/10.2172/1483694.
Texto completo da fonteLester, M. I. Spectroscopy and reaction dynamics of collision complexes containing hydroxyl radicals. Office of Scientific and Technical Information (OSTI), fevereiro de 1992. http://dx.doi.org/10.2172/5710534.
Texto completo da fontePeak, J. G., T. Ito, M. J. Peak e F. T. Robb. DNA damage produced by exposure of supercoiled plasmid DNA to high- and low-LET ionizing radiation: Effects of hydroxyl radical quenchers. DNA breakage, neutrons, OH radicals. Office of Scientific and Technical Information (OSTI), agosto de 1994. http://dx.doi.org/10.2172/10172487.
Texto completo da fonteCohen, N. A shock tube study of the reactions of the hydroxyl radical with combustion species. Office of Scientific and Technical Information (OSTI), maio de 1991. http://dx.doi.org/10.2172/5573201.
Texto completo da fonteAtherton, C. S. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model. Office of Scientific and Technical Information (OSTI), janeiro de 1995. http://dx.doi.org/10.2172/130611.
Texto completo da fonteCohen, N. A shock tube study of the reactions of the hydroxyl radical with combustion species and pollutants. Office of Scientific and Technical Information (OSTI), agosto de 1992. http://dx.doi.org/10.2172/6645854.
Texto completo da fonte