Artigos de revistas sobre o tema "Hydrothermolysis"

Siga este link para ver outros tipos de publicações sobre o tema: Hydrothermolysis.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hydrothermolysis".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Ståhl, Marina, Kaarlo Nieminen e Herbert Sixta. "Hydrothermolysis of pine wood". Biomass and Bioenergy 109 (fevereiro de 2018): 100–113. http://dx.doi.org/10.1016/j.biombioe.2017.12.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Pei, Pei, Mark Cannon, Grace Quan e Erik Kjeang. "Effective hydrogen release from ammonia borane and sodium borohydride mixture through homopolar based dehydrocoupling driven by intermolecular interaction and restrained water supply". Journal of Materials Chemistry A 8, n.º 36 (2020): 19050–56. http://dx.doi.org/10.1039/d0ta04720a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Diwan, Moiz, Victor Diakov, Evgeny Shafirovich e Arvind Varma. "Noncatalytic hydrothermolysis of ammonia borane". International Journal of Hydrogen Energy 33, n.º 4 (fevereiro de 2008): 1135–41. http://dx.doi.org/10.1016/j.ijhydene.2007.12.049.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Guthrie, Robert D., Sreekumar Ramakrishnan, Phillip F. Britt, A. C. Buchanan e Burtron H. Davis. "Hydrothermolysis of a Silica-Immobilized Diphenylethane". Energy & Fuels 9, n.º 6 (novembro de 1995): 1097–103. http://dx.doi.org/10.1021/ef00054a025.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Yamanoi, Takashi, Naoshi Inoue, Masaki Fujimoto, Hideaki Sasaura e Akihiko Murota. "Hydrothermolysis of the Fully Benzylated α-Cyclodextrin". HETEROCYCLES 60, n.º 11 (2003): 2425. http://dx.doi.org/10.3987/com-03-9861.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Kallury, R. Krishna M. R., Chris Ambidge, Thomas T. Tidwell, David G. B. Boocock, Foster A. Agblevor e Daniel J. Stewart. "Rapid hydrothermolysis of cellulose and related carbohydrates". Carbohydrate Research 158 (dezembro de 1986): 253–61. http://dx.doi.org/10.1016/0008-6215(86)84024-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

González, Guillermo, e Daniel Montané. "Kinetics of dibenzylether hydrothermolysis in supercritical water". AIChE Journal 51, n.º 3 (16 de fevereiro de 2005): 971–81. http://dx.doi.org/10.1002/aic.10362.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Fedyaeva, O. N., A. A. Vostrikov, A. V. Shishkin, M. Ya Sokol, N. I. Fedorova e V. A. Kashirtsev. "Hydrothermolysis of brown coal in cyclic pressurization–depressurization mode". Journal of Supercritical Fluids 62 (fevereiro de 2012): 155–64. http://dx.doi.org/10.1016/j.supflu.2011.11.028.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ross, David S., e Indira Jayaweera. "The hydrothermolysis of the picrate anion: kinetics and mechanism". Thermochimica Acta 384, n.º 1-2 (fevereiro de 2002): 155–62. http://dx.doi.org/10.1016/s0040-6031(01)00789-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Hörmeyer, H. F., W. Schwald, G. Bonn e O. Bobleter. "Hydrothermolysis of Birch Wood as Pretreatment for Enzymatic Saccharification". Holzforschung 42, n.º 2 (janeiro de 1988): 95–98. http://dx.doi.org/10.1515/hfsg.1988.42.2.95.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Lei, Binglong, Wu Qin, Guiluan Kang, Cheng Peng e Jianqing Wu. "Desert Rose-Shaped Zircon Synthesized by Low-Temperature Hydrothermolysis". Journal of the American Ceramic Society 98, n.º 5 (22 de janeiro de 2015): 1626–33. http://dx.doi.org/10.1111/jace.13456.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Ohmura, W., S. Ohara, K. Hashida, M. Aoyama e S. Doi. "Hydrothermolysis of Flavonoids in Relation to Steaming of Japanese Larch Wood". Holzforschung 56, n.º 5 (26 de agosto de 2002): 493–97. http://dx.doi.org/10.1515/hf.2002.076.

Texto completo da fonte
Resumo:
Summary Four flavonoid compounds, ((+)-taxifolin, (+)-aromadendrin, quercetin and (−)-naringenin), from Japanese larch (Larix leptolepis) wood were heated at 170 ℃C for 60 min at pH=3.46 (hydrothermolysis treatment). Alphitonin, four taxifolin steric isomers and quercetin were recovered from the treatment of (+)-taxifolin, and maesopsin, four aromadendrin steric isomers and kaempferol from (+)-aromadendrin. The reaction products from (−)-naringenin were found to be a mixture with (+)-naringenin. Quercetin was not changed by the treatment. Possible pathways for the formation of these products are discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Hörmeyer, H. F., G. Bonn, D. W. Kim e O. Bobleter. "Enzymatic Saccharification of Cellulosic Materials after Hydrothermolysis and Organosolv Pretreatments". Journal of Wood Chemistry and Technology 7, n.º 2 (janeiro de 1987): 269–83. http://dx.doi.org/10.1080/02773818708085267.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Eswaran, Sudha, Senthil Subramaniam, Scott Geleynse, Kristin Brandt, Michael Wolcott e Xiao Zhang. "Techno-economic analysis of catalytic hydrothermolysis pathway for jet fuel production". Renewable and Sustainable Energy Reviews 151 (novembro de 2021): 111516. http://dx.doi.org/10.1016/j.rser.2021.111516.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Zhang, Junshe, Yu Zhao, Daniel L. Akins e Jae W. Lee. "Calorimetric and Microscopic Studies on the Noncatalytic Hydrothermolysis of Ammonia Borane". Industrial & Engineering Chemistry Research 50, n.º 18 (21 de setembro de 2011): 10407–13. http://dx.doi.org/10.1021/ie200878u.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Jiang, Weikun, Shubin Wu, Lucian A. Lucia e Jiangyong Chu. "Effect of side-chain structure on hydrothermolysis of lignin model compounds". Fuel Processing Technology 166 (novembro de 2017): 124–30. http://dx.doi.org/10.1016/j.fuproc.2017.06.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Schwald, W., e O. Bobleter. "Hydrothermolysis of Cellulose Under Static and Dynamic Conditions at High Temperatures". Journal of Carbohydrate Chemistry 8, n.º 4 (setembro de 1989): 565–78. http://dx.doi.org/10.1080/07328308908048017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Islam, Mohammad Nazrul, Golam Taki, Masud Rana e Jeong-Hun Park. "Yield of Phenolic Monomers from Lignin Hydrothermolysis in Subcritical Water System". Industrial & Engineering Chemistry Research 57, n.º 14 (19 de março de 2018): 4779–84. http://dx.doi.org/10.1021/acs.iecr.7b05062.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Hirth, Th, e E. U. Franck. "Oxidation and Hydrothermolysis of Hydrocarbons in Supercritical Water at High Pressures". Berichte der Bunsengesellschaft für physikalische Chemie 97, n.º 9 (setembro de 1993): 1091–97. http://dx.doi.org/10.1002/bbpc.19930970905.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Kim, Youn Chul, Ryuichi Higuchi e Tetsuya Komori. "Thermal Degradation of Glycosides, VI. Hydrothermolysis of Cardenolide and Flavonoid Glycosides". Liebigs Annalen der Chemie 1992, n.º 6 (26 de junho de 1992): 575–79. http://dx.doi.org/10.1002/jlac.1992199201100.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Kim, Youn Chul, Ryuichi Higuchi e Tetsuya Komori. "Thermal Degradation of Glycosides, V. Hydrothermolysis of Triterpenoid and Steroid Glycosides". Liebigs Annalen der Chemie 1992, n.º 5 (19 de maio de 1992): 453–59. http://dx.doi.org/10.1002/jlac.199219920181.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Diwan, Moiz, Hyun Tae Hwang, Ahmad Al-Kukhun e Arvind Varma. "Hydrogen generation from noncatalytic hydrothermolysis of ammonia borane for vehicle applications". AIChE Journal 57, n.º 1 (3 de março de 2010): 259–64. http://dx.doi.org/10.1002/aic.12240.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Burtscher, Eduard, Ortwin Bobleter, Wolfgang Schwald, Roland Concin e Hanno Binder. "Chromatographic analysis of biomass reaction products produced by hydrothermolysis of poplar wood". Journal of Chromatography A 390, n.º 2 (janeiro de 1987): 401–12. http://dx.doi.org/10.1016/s0021-9673(01)94391-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

McGarvey, Elspeth, e Wallace E. Tyner. "A stochastic techno-economic analysis of the catalytic hydrothermolysis aviation biofuel technology". Biofuels, Bioproducts and Biorefining 12, n.º 3 (22 de fevereiro de 2018): 474–84. http://dx.doi.org/10.1002/bbb.1863.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Suacharoen, Sirinart, e Duangamol Nuntasri Tungasmita. "Hydrothermolysis of carbohydrates to levulinic acid using metal supported on porous aluminosilicate". Journal of Chemical Technology & Biotechnology 88, n.º 8 (17 de dezembro de 2012): 1538–44. http://dx.doi.org/10.1002/jctb.4000.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Suryawati, Lilis, Mark R. Wilkins, Danielle D. Bellmer, Raymond L. Huhnke, Niels O. Maness e Ibrahim M. Banat. "Simultaneous saccharification and fermentation of Kanlow switchgrass pretreated by hydrothermolysis usingKluyveromyces marxianusIMB4". Biotechnology and Bioengineering 101, n.º 5 (1 de dezembro de 2008): 894–902. http://dx.doi.org/10.1002/bit.21965.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Griebl, Alexandra, Thomas Lange, Hedda Weber, Walter Milacher e Herbert Sixta. "Xylo-Oligosaccharide (XOS) Formation through Hydrothermolysis of Xylan Derived from Viscose Process". Macromolecular Symposia 232, n.º 1 (dezembro de 2005): 107–20. http://dx.doi.org/10.1002/masy.200551413.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Jung, Chan-Duck, Ju-Hyun Yu, In-Yong Eom e Kyung-Sik Hong. "Sugar yields from sunflower stalks treated by hydrothermolysis and subsequent enzymatic hydrolysis". Bioresource Technology 138 (junho de 2013): 1–7. http://dx.doi.org/10.1016/j.biortech.2013.03.033.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Komova, Oksana V., Valentina I. Simagina, Alena A. Pochtar, Olga A. Bulavchenko, Arcady V. Ishchenko, Galina V. Odegova, Anna M. Gorlova et al. "Catalytic Behavior of Iron-Containing Cubic Spinel in the Hydrolysis and Hydrothermolysis of Ammonia Borane". Materials 14, n.º 18 (19 de setembro de 2021): 5422. http://dx.doi.org/10.3390/ma14185422.

Texto completo da fonte
Resumo:
The paper presents a comparative study of the activity of magnetite (Fe3O4) and copper and cobalt ferrites with the structure of a cubic spinel synthesized by combustion of glycine-nitrate precursors in the reactions of ammonia borane (NH3BH3) hydrolysis and hydrothermolysis. It was shown that the use of copper ferrite in the studied reactions of NH3BH3 dehydrogenation has the advantages of a high catalytic activity and the absence of an induction period in the H2 generation curve due to the activating action of copper on the reduction of iron. Two methods have been proposed to improve catalytic activity of Fe3O4-based systems: (1) replacement of a portion of Fe2+ cations in the spinel by active cations including Cu2+ and (2) preparation of highly dispersed multiphase oxide systems, involving oxide of copper.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Yulianto, Mohamad Endy, Rizka Amalia, Vita Paramita, Indah Hartati e Qurrotun A’yuni Khoirun Nisa’. "Autocatalytic Hydrolysis of Palm Oil for Fatty Acid Production by Using Hydrothermolysis Process". IOP Conference Series: Materials Science and Engineering 1053, n.º 1 (1 de fevereiro de 2021): 012065. http://dx.doi.org/10.1088/1757-899x/1053/1/012065.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Eswaran, Sudha, Senthil Subramaniam, Scott Geleynse, Kristin Brandt, Michael Wolcott e Xiao Zhang. "Dataset for techno-economic analysis of catalytic hydrothermolysis pathway for jet fuel production". Data in Brief 39 (dezembro de 2021): 107514. http://dx.doi.org/10.1016/j.dib.2021.107514.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Kallury, R. Krishna Mohan Rao, Thomas T. Tidwell, Foster A. Agblevor, David C. B. Boocock e Martin Holysh. "Rapid Hydrothermolysis of Poplar Wood: Comparison of Sapwood, Heartwood, Bark, and Isolated Lignin". Journal of Wood Chemistry and Technology 7, n.º 3 (janeiro de 1987): 353–71. http://dx.doi.org/10.1080/02773818708085274.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Liu, Kan, Hasan K. Atiyeh, Oscar Pardo-Planas, Thaddeus C. Ezeji, Victor Ujor, Jonathan C. Overton, Kalli Berning, Mark R. Wilkins e Ralph S. Tanner. "Butanol production from hydrothermolysis-pretreated switchgrass: Quantification of inhibitors and detoxification of hydrolyzate". Bioresource Technology 189 (agosto de 2015): 292–301. http://dx.doi.org/10.1016/j.biortech.2015.04.018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Brill, T. B., e A. J. Belsky. "Self-Reaction and Hydrothermolysis of Cyanamide(NH2CN) in H2O at High Pressure and Temperature." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 7 (1998): 1379–82. http://dx.doi.org/10.4131/jshpreview.7.1379.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

KIM, Y. C., R. HIGUCHI e T. KOMORI. "ChemInform Abstract: Thermal Degradation of Glycosides. Part 5. Hydrothermolysis of Triterpenoid and Steroid Glycosides." ChemInform 23, n.º 37 (21 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199237286.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

KIM, Y. C., R. HIGUCHI e T. KOMORI. "ChemInform Abstract: Thermal Degradation of Glycosides. Part 6. Hydrothermolysis of Cardenolide and Flavonoid Glycosides". ChemInform 23, n.º 41 (21 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199241231.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Wang, Caiwei, Shouyu Zhang, Shunyan Wu, Zhongyao Cao, Yifan Zhang, Hao Li, Fenghao Jiang e Junfu Lyu. "Effect of oxidation processing on the preparation of post-hydrothermolysis acid from cotton stalk". Bioresource Technology 263 (setembro de 2018): 289–96. http://dx.doi.org/10.1016/j.biortech.2018.05.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Marçal, Adriano de Figueiredo, Luiz Ferreira de França e Nadia Cristina Fernandes Corrêa. "Hydrothermal treatment of empty fruit bunch (EFB) aimed at increased production of reducing sugars". BioResources 13, n.º 3 (27 de julho de 2018): 6911–21. http://dx.doi.org/10.15376/biores.13.3.6911-6921.

Texto completo da fonte
Resumo:
The waste generated from the palm oil production chain is increasing. The purpose of this work is to enable more effective use of empty fruit bunches (EFB) to produce reducing sugars by a hydrothermal treatment process (hydrothermolysis) at elevated pressures and temperatures. The EFB was dried and milled to obtain three different granulometries: thin (> 60 mesh), medium (28 to 60 mesh), and thick (< 28 mesh). The operating conditions were defined using a complete factorial design of 25, while considering the variables as particle size (thin, medium, and thick), solid/liquid ratio (1/13.33 and 1/20), temperature (130 and 170 ºC), reactor pressure using CO2 (150 bar and 200 bar), and reaction time (10 and 20 min). The reactional system converted the EFB into 17.5% and 57.9% of reducing sugars, for thin and medium samples, respectively, which were performed under the same conditions. The statistical analysis indicated that the main effects for hydrothermal treatment are time and temperature.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Hashmi, Syed Farhan, Heidi Meriö-Talvio, Kati Johanna Hakonen, Kyösti Ruuttunen e Herbert Sixta. "Hydrothermolysis of organosolv lignin for the production of bio-oil rich in monoaromatic phenolic compounds". Fuel Processing Technology 168 (dezembro de 2017): 74–83. http://dx.doi.org/10.1016/j.fuproc.2017.09.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Hashmi, Syed Farhan, Leena Pitkänen, Anne Usvalampi, Heidi Meriö-Talvio, Kyösti Ruuttunen e Herbert Sixta. "Effect of metal formates on hydrothermolysis of organosolv lignin for the production of bio-oil". Fuel 271 (julho de 2020): 117573. http://dx.doi.org/10.1016/j.fuel.2020.117573.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Pińkowska, Hanna, Małgorzata Krzywonos, Paweł Wolak e Adrianna Złocińska. "Production of uronic acids by hydrothermolysis of pectin as a model substance for plant biomass waste". Green Processing and Synthesis 8, n.º 1 (28 de janeiro de 2019): 683–90. http://dx.doi.org/10.1515/gps-2019-0039.

Texto completo da fonte
Resumo:
Abstract The hydrolysis of high methyl ester citrus-apple pectin as a model substance for plant biomass waste rich in pectin fraction resulting in an uronic acids was performed in a batch reactor using subcritical water. The effects of the reaction temperature and time on the composition of the products contained in the separated liquid fractions were studied. The optimal experimental design methodology was used for modelling and optimizing the yield of uronic acids. In good agreement with experimental results (R2 = 0.986), the model predicts an optimal yield of uronic acids (approx. 77.3 g kg-1 ± 0.7 g kg-1) at a temperature and a time of about 155°C and 36 min. Uronic acids were isolated from reaction mixture using the ion exchange method. Higher temperature and longer holding time resulted in a greater degree of thermal degradation of uronic acids and simultaneously higher yield of losses and gas fractions
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Agblevor, F. A., e D. G. B. Boocock. "The Origins of Phenol Produced in the Rapid Hydrothermolysis and Alkaline Hydrolysis of Hybrid Poplar Lignins". Journal of Wood Chemistry and Technology 9, n.º 2 (junho de 1989): 167–88. http://dx.doi.org/10.1080/02773818908050292.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Hwang, Hyun Tae, Ahmad Al-Kukhun e Arvind Varma. "Hydrogen for Vehicle Applications from Hydrothermolysis of Ammonia Borane: Hydrogen Yield, Thermal Characteristics, and Ammonia Formation". Industrial & Engineering Chemistry Research 49, n.º 21 (3 de novembro de 2010): 10994–1000. http://dx.doi.org/10.1021/ie100520r.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Pińkowska, Hanna, Paweł Wolak e Adrianna Złocińska. "Hydrothermal decomposition of xylan as a model substance for plant biomass waste – Hydrothermolysis in subcritical water". Biomass and Bioenergy 35, n.º 9 (outubro de 2011): 3902–12. http://dx.doi.org/10.1016/j.biombioe.2011.06.015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Mongkolpichayarak, Isara, Duangkamon Jiraroj, Wipark Anutrasakda, Chawalit Ngamcharussrivichai, Joseph S. M. Samec e Duangamol Nuntasri Tungasmita. "Cr/MCM-22 catalyst for the synthesis of levulinic acid from green hydrothermolysis of renewable biomass resources". Journal of Catalysis 405 (janeiro de 2022): 373–84. http://dx.doi.org/10.1016/j.jcat.2021.12.019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Castro, Jean F., Carolina Parra, Mauricio Yáñez-S, Jonathan Rojas, Regis Teixeira Mendonça, Jaime Baeza e Juanita Freer. "Optimal Pretreatment of Eucalyptus globulus by Hydrothermolysis and Alkaline Extraction for Microbial Production of Ethanol and Xylitol". Industrial & Engineering Chemistry Research 52, n.º 16 (12 de abril de 2013): 5713–20. http://dx.doi.org/10.1021/ie301859x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Pińkowska, Hanna, Paweł Wolak e Esther Oliveros. "Hydrothermolysis of rapeseed cake in subcritical water. Effect of reaction temperature and holding time on product composition". Biomass and Bioenergy 64 (maio de 2014): 50–61. http://dx.doi.org/10.1016/j.biombioe.2014.03.028.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Komova, O. V., N. L. Kayl, G. V. Odegova, O. V. Netskina e V. I. Simagina. "Destabilization of NH3BH3 by water during hydrothermolysis as a key factor in the high hydrogen evolution rates". International Journal of Hydrogen Energy 41, n.º 39 (outubro de 2016): 17484–95. http://dx.doi.org/10.1016/j.ijhydene.2016.07.163.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Vallecilla Yepez, Lisbeth, Boanerges Bamaca Saquic e Mark R. Wilkins. "Comparison of hydrothermolysis and mild-alkaline pretreatment methods on enhancing succinic acid production from hydrolyzed corn fiber". Enzyme and Microbial Technology 172 (janeiro de 2024): 110346. http://dx.doi.org/10.1016/j.enzmictec.2023.110346.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Nazos, Antonios, Dorothea Politi, Georgios Giakoumakis e Dimitrios Sidiras. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review". Energies 15, n.º 23 (30 de novembro de 2022): 9083. http://dx.doi.org/10.3390/en15239083.

Texto completo da fonte
Resumo:
This review deals with the simulation and optimization of the dry- and wet-torrefaction processes of lignocellulosic biomass. The torrefaction pretreatment regards the production of enhanced biofuels and other materials. Dry torrefaction is a mild pyrolytic treatment method under an oxidative or non-oxidative atmosphere and can improve lignocellulosic biomass solid residue heating properties by reducing its oxygen content. Wet torrefaction usually uses pure water in an autoclave and is also known as hydrothermal carbonization, hydrothermal torrefaction, hot water extraction, autohydrolysis, hydrothermolysis, hot compressed water treatment, water hydrolysis, aqueous fractionation, aqueous liquefaction or solvolysis/aquasolv, or pressure cooking. In the case of treatment with acid aquatic solutions, wet torrefaction is called acid-catalyzed wet torrefaction. Wet torrefaction produces fermentable monosaccharides and oligosaccharides as well as solid residue with enhanced higher heating value. The simulation and optimization of dry- and wet-torrefaction processes are usually achieved using kinetic/thermodynamic/thermochemical models, severity factors, response surface methodology models, artificial neural networks, multilayer perceptron neural networks, multivariate adaptive regression splines, mixed integer linear programming, Taguchi experimental design, particle swarm optimization, a model-free isoconversional approach, dynamic simulation modeling, and commercial simulation software. Simulation of the torrefaction process facilitates the optimization of the pretreatment conditions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia