Artigos de revistas sobre o tema "Hydrology Mathematical models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hydrology Mathematical models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Mulla, D. J. "Mathematical Models of Small Watershed Hydrology and Applications". Journal of Environmental Quality 32, n.º 1 (janeiro de 2003): 374. http://dx.doi.org/10.2134/jeq2003.374a.
Texto completo da fonteSawada, Yohei, e Risa Hanazaki. "Socio-hydrological data assimilation: analyzing human–flood interactions by model–data integration". Hydrology and Earth System Sciences 24, n.º 10 (5 de outubro de 2020): 4777–91. http://dx.doi.org/10.5194/hess-24-4777-2020.
Texto completo da fonteMilks, Robert R., William C. Fonteno e Roy A. Larson. "Hydrology of Horticultural Substrates: I. Mathematical Models for Moisture Characteristics of Horticultural Container Media". Journal of the American Society for Horticultural Science 114, n.º 1 (janeiro de 1989): 48–52. http://dx.doi.org/10.21273/jashs.114.1.48.
Texto completo da fonteMańko, Robert, e Norbert Laskowski. "Comparative analysis of the effectiveness of the conceptual rainfall-runoff hydrological models on the selected rivers in Odra and Vistula basins". ITM Web of Conferences 23 (2018): 00025. http://dx.doi.org/10.1051/itmconf/20182300025.
Texto completo da fonteSun, Si Miao, Chang Lei Dai, Hou Chu Liao e Di Fang Xiao. "A Conceptual Model of Soil Moisture Movement in Seasonal Frozen Unsaturated Zone". Applied Mechanics and Materials 90-93 (setembro de 2011): 2612–18. http://dx.doi.org/10.4028/www.scientific.net/amm.90-93.2612.
Texto completo da fontePonnambalam, Kumaraswamy, e S. Jamshid Mousavi. "CHNS Modeling for Study and Management of Human–Water Interactions at Multiple Scales". Water 12, n.º 6 (14 de junho de 2020): 1699. http://dx.doi.org/10.3390/w12061699.
Texto completo da fonteVieux, Baxter E. "Review of Mathematical Models of Large Watershed Hydrology by Vijay P. Singh and Donald K. Prevert". Journal of Hydraulic Engineering 130, n.º 1 (janeiro de 2004): 89–90. http://dx.doi.org/10.1061/(asce)0733-9429(2004)130:1(89).
Texto completo da fontePaz Pellat, Fernando, Jaime Garatuza Payán, Víctor Salas Aguilar, Alma Socorro Velázquez Rodríguez e Martín Alejandro Bolaños González. "Budyko-Type Models and the Proportionality Hypothesis in Long-Term Water and Energy Balances". Water 14, n.º 20 (20 de outubro de 2022): 3315. http://dx.doi.org/10.3390/w14203315.
Texto completo da fonteRezaie-Balf, Mohammad, e Ozgur Kisi. "New formulation for forecasting streamflow: evolutionary polynomial regression vs. extreme learning machine". Hydrology Research 49, n.º 3 (27 de março de 2017): 939–53. http://dx.doi.org/10.2166/nh.2017.283.
Texto completo da fonteKinar, Nicholas J. "Introducing electronic circuits and hydrological models to postsecondary physical geography and environmental science students: systems science, circuit theory, construction, and calibration". Geoscience Communication 4, n.º 2 (13 de abril de 2021): 209–31. http://dx.doi.org/10.5194/gc-4-209-2021.
Texto completo da fonteMorbidelli, Renato, Corrado Corradini, Carla Saltalippi, Alessia Flammini, Jacopo Dari e Rao Govindaraju. "Rainfall Infiltration Modeling: A Review". Water 10, n.º 12 (18 de dezembro de 2018): 1873. http://dx.doi.org/10.3390/w10121873.
Texto completo da fonteGarbrecht, Jurgen D. "Review of Mathematical Models of Small Watershed Hydrology and Applications by Vijay P. Singh and Donald K. Frevert". Journal of Hydraulic Engineering 129, n.º 7 (julho de 2003): 558–59. http://dx.doi.org/10.1061/(asce)0733-9429(2003)129:7(558).
Texto completo da fonteJocea, Andreea Florina, E. G. Crăciun e A. Anton. "Approximation Of Scours Using Terrestrial 3D Laser Scanning". Journal of Applied Engineering Sciences 5, n.º 1 (1 de maio de 2015): 31–36. http://dx.doi.org/10.1515/jaes-2015-0004.
Texto completo da fonteChipepa, Fastel, Thatayaone Moakofi e Broderick Oluyede. "Marshall-Olkin-Odd Power Generalized Weibull-G Family of Distributions with Applications of COVID-19 Data". Journal of Probability and Statistical Science 20, n.º 1 (3 de outubro de 2022): 1–20. http://dx.doi.org/10.37119/jpss2022.v20i1.509.
Texto completo da fonteALI MUNZER, SULEIMAN, D. S. BEGLYAROV e R. R. SHAKIROV. "FEATURES AND ANALYSIS OF STUDIES OF FISH PROTECTION COMPLEX FOR WATER RECEIVERS OF LARGE HIGH-PRESSURE HYDROELECTRIC POWER PLANTS". Prirodoobustrojstvo, n.º 2 (2022): 86–93. http://dx.doi.org/10.26897/1997-6011-2022-2-86-93.
Texto completo da fonteWetter, Oliver. "The potential of historical hydrology in Switzerland". Hydrology and Earth System Sciences 21, n.º 11 (23 de novembro de 2017): 5781–803. http://dx.doi.org/10.5194/hess-21-5781-2017.
Texto completo da fonteShein, Ye V., A. G. Bolotov e A. V. Dembovetskii. "Soil Hydrology of Agricultural Landscapes: Quantitative Description, Research Methods, and Availability of Soil Water". Eurasian Soil Science 54, n.º 9 (setembro de 2021): 1367–74. http://dx.doi.org/10.1134/s1064229321090076.
Texto completo da fonteGenuchten, Martinus Th van, Feike J. Leij, Todd H. Skaggs, Nobuo Toride, Scott A. Bradford e Elizabeth M. Pontedeiro. "Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation". Journal of Hydrology and Hydromechanics 61, n.º 2 (1 de junho de 2013): 146–60. http://dx.doi.org/10.2478/johh-2013-0020.
Texto completo da fonteBelvederesi, Chiara, Mohamed S. Zaghloul, Gopal Achari, Anil Gupta e Quazi K. Hassan. "Modelling river flow in cold and ungauged regions: a review of the purposes, methods, and challenges". Environmental Reviews 30, n.º 1 (março de 2022): 159–73. http://dx.doi.org/10.1139/er-2021-0043.
Texto completo da fonteRosso, R., M. C. Rulli e D. Bocchiola. "Transient catchment hydrology after wildfires in a Mediterranean basin: runoff, sediment and woody debris". Hydrology and Earth System Sciences 11, n.º 1 (17 de janeiro de 2007): 125–40. http://dx.doi.org/10.5194/hess-11-125-2007.
Texto completo da fonteDinu, Cristian, Radu Drobot, Claudiu Pricop e Tudor Viorel Blidaru. "Genetic Programming Technique Applied for Flash-Flood Modelling Using Radar Rainfall Estimates". Mathematical Modelling in Civil Engineering 13, n.º 4 (20 de dezembro de 2017): 27–38. http://dx.doi.org/10.1515/mmce-2017-0012.
Texto completo da fonteAbreu, Marcel Carvalho, Roberto Avelino Cecílio, Sidney Sara Zanetti e Cecília Neves Catrinck. "ESTIMATIVA DA PRECIPITAÇÃO NO ESPÍRITO SANTO POR INTERMÉDIO DE REGRESSÃO POLINOMIAL". Nativa 7, n.º 2 (11 de março de 2019): 174. http://dx.doi.org/10.31413/nativa.v7i2.6169.
Texto completo da fonteDeumlich, D., A. Jha e G. Kirchner. "Comparing measurements, 7Be radiotracer technique and process-based erosion model for estimating short-term soil loss from cultivated land in Northern Germany". Soil and Water Research 12, No. 3 (28 de junho de 2017): 177–86. http://dx.doi.org/10.17221/124/2016-swr.
Texto completo da fonteGautam, Narayan Prasad. "Flow routing with Semi-distributed hydrological model HEC- HMS in case of Narayani River Basin". Journal of the Institute of Engineering 10, n.º 1 (31 de julho de 2014): 45–58. http://dx.doi.org/10.3126/jie.v10i1.10877.
Texto completo da fonteJames, William, e Boregowda Shivalingaiah. "Storm water pollution modelling: buildup of dust and dirt on surfaces subject to runoff". Canadian Journal of Civil Engineering 12, n.º 4 (1 de dezembro de 1985): 906–15. http://dx.doi.org/10.1139/l85-103.
Texto completo da fonteZhu, D., e I. D. Cluckie. "A preliminary appraisal of Thurnham dual polarisation radar in the context of hydrological modelling structure". Hydrology Research 43, n.º 5 (3 de maio de 2012): 736–52. http://dx.doi.org/10.2166/nh.2012.023.
Texto completo da fonteIqbal, Muhammad Zafar, Muhammad Zeshan Arshad, Gamze Özel e Oluwafemi Samson Balogun. "A better approach to discuss medical science and engineering data with a modified Lehmann Type – II model". F1000Research 10 (17 de agosto de 2021): 823. http://dx.doi.org/10.12688/f1000research.54305.1.
Texto completo da fonteSebayang, Ika Sari Damayanthi, e Muhammad Fahmia. "Dependable flow modeling in upper basin Citarum using multilayer perceptron backpropagation". International Journal of Artificial Intelligence Research 4, n.º 2 (5 de janeiro de 2021): 75. http://dx.doi.org/10.29099/ijair.v4i2.174.
Texto completo da fonteMacías Barberán, José Ricardo, Gerardo José Cuenca Nevárez, Frank Guillermo Intriago Flor, Creuci Maria Caetano, Juan Carlos Menjivar Flores e Henry Antonio Pacheco Gil. "Vulnerability to climate change of smallholder cocoa producers in the province of Manabí, Ecuador". Revista Facultad Nacional de Agronomía Medellín 72, n.º 1 (1 de janeiro de 2019): 8707–16. http://dx.doi.org/10.15446/rfnam.v72n1.72564.
Texto completo da fonteLivingstone, Stephen J., Emma L. M. Lewington, Chris D. Clark, Robert D. Storrar, Andrew J. Sole, Isabelle McMartin, Nico Dewald e Felix Ng. "A quasi-annual record of time-transgressive esker formation: implications for ice-sheet reconstruction and subglacial hydrology". Cryosphere 14, n.º 6 (18 de junho de 2020): 1989–2004. http://dx.doi.org/10.5194/tc-14-1989-2020.
Texto completo da fonteAbdulai, Patricia Jitta, e Eun-Sung Chung. "Uncertainty Assessment in Drought Severities for the Cheongmicheon Watershed Using Multiple GCMs and the Reliability Ensemble Averaging Method". Sustainability 11, n.º 16 (8 de agosto de 2019): 4283. http://dx.doi.org/10.3390/su11164283.
Texto completo da fonteSimmonds, Jose, Juan A. Gómez e Agapito Ledezma. "The role of agent-based modeling and multi-agent systems in flood-based hydrological problems: a brief review". Journal of Water and Climate Change 11, n.º 4 (25 de outubro de 2019): 1580–602. http://dx.doi.org/10.2166/wcc.2019.108.
Texto completo da fonteChan, T. P., e Rao S. Govindaraju. "Pore-morphology-based simulations of drainage and wetting processes in porous media". Hydrology Research 42, n.º 2-3 (1 de abril de 2011): 128–49. http://dx.doi.org/10.2166/nh.2011.058.
Texto completo da fonteLundström, T., Hans Åkerstedt, I. Larsson, Jiri Marsalek e Maria Viklander. "Dynamic Distributed Storage of Stormwater in Sponge-Like Porous Bodies: Modelling Water Uptake". Water 12, n.º 8 (22 de julho de 2020): 2080. http://dx.doi.org/10.3390/w12082080.
Texto completo da fonteBalogun, Oluwafemi Samson, Muhammad Zeshan Arshad, Muhammad Zafar Iqbal e Madiha Ghamkhar. "A new modified Lehmann type – II G class of distributions: exponential distribution with theory, simulation, and applications to engineering sector". F1000Research 10 (17 de junho de 2021): 483. http://dx.doi.org/10.12688/f1000research.52494.1.
Texto completo da fonteLee, Kun-Fa, e Jia-Qi Lai. "Research on Modeling Technology and Application of Simulation Planning Based on Urban Ecological Park". International Journal of Engineering and Technology 12, n.º 3 (agosto de 2020): 37–40. http://dx.doi.org/10.7763/ijet.2020.v12.1181.
Texto completo da fonteTang, Jinyun, William J. Riley e Qing Zhu. "Supporting hierarchical soil biogeochemical modeling: version 2 of the Biogeochemical Transport and Reaction model (BeTR-v2)". Geoscientific Model Development 15, n.º 4 (24 de fevereiro de 2022): 1619–32. http://dx.doi.org/10.5194/gmd-15-1619-2022.
Texto completo da fonteStefanyshyn, Dmytro V., Yaroslaw V. Khodnevich e Vasyl M. Korbutiak. "Еstimating the Chézy roughness coefficient as a characteristic of hydraulic resistance to flow in river channels: a general overview, existing challenges, and ways of their overcoming". Environmental safety and natural resources 39, n.º 3 (23 de setembro de 2021): 16–43. http://dx.doi.org/10.32347/2411-4049.2021.3.16-43.
Texto completo da fonteGoldsmith, W., D. Bernardi e L. Schippa. "River, delta and coastal morphological response accounting for biological dynamics". Proceedings of the International Association of Hydrological Sciences 367 (3 de março de 2015): 413–20. http://dx.doi.org/10.5194/piahs-367-413-2015.
Texto completo da fonteCabezas Pinzón, Laura Viviana, Rigaud Sanabria-Marin, Federico Andrade-Rivas, Aquiles Darghan e Víctor-Alberto Olano. "Relation between Environmental Variables and the Spatial Distribution of the Aedes aegypti Mosquito in Rural Colombia". Revista Salud Bosque 12, n.º 1 (25 de abril de 2022): 1–18. http://dx.doi.org/10.18270/rsb.v12i1.3218.
Texto completo da fonteRathi, Vinay Kumar, Shobha Ram, Rohitashw Kumar, Avinash Agarwal e R. K. Nema. "Hydrological classification and performance of Himalayan springs in climate change scenario – a case study". Water Supply 20, n.º 2 (27 de dezembro de 2019): 594–608. http://dx.doi.org/10.2166/ws.2019.191.
Texto completo da fonteDong, Leihua, Lihua Xiong e Kun-xia Yu. "Uncertainty Analysis of Multiple Hydrologic Models Using the Bayesian Model Averaging Method". Journal of Applied Mathematics 2013 (2013): 1–11. http://dx.doi.org/10.1155/2013/346045.
Texto completo da fonteCárdenas Gutiérrez, Javier Alfonso, Jose Leonardo Jacome Carrascal e Mawency Vergel Ortega. "Determination of potential and actual evapotranspiration in watershed, using mathematical models". Revista Boletín Redipe 10, n.º 3 (1 de março de 2021): 225–31. http://dx.doi.org/10.36260/rbr.v10i3.1230.
Texto completo da fonteShu, Lele, Paul A. Ullrich e Christopher J. Duffy. "Simulator for Hydrologic Unstructured Domains (SHUD v1.0): numerical modeling of watershed hydrology with the finite volume method". Geoscientific Model Development 13, n.º 6 (18 de junho de 2020): 2743–62. http://dx.doi.org/10.5194/gmd-13-2743-2020.
Texto completo da fonteVERGARA, FERNÁN, VIVIANE CHIESA, CECILIA COSTA, ROBERTA OLIVEIRA, RICARDO DIAS e GIRLENE MACIEL. "Aplicabilidade do modelo matemático SAD-IPH na análise de processos de outorga: o caso da Bacia do Ribeirão Taquaruçu". GOT - Journal of Geography and Spatial Planning, n.º 21 (30 de junho de 2021): 208–34. http://dx.doi.org/10.17127/got/2021.21.009.
Texto completo da fonteD. K. Borah e M. Bera. "WATERSHED-SCALE HYDROLOGIC AND NONPOINT-SOURCE POLLUTION MODELS: REVIEW OF MATHEMATICAL BASES". Transactions of the ASAE 46, n.º 6 (2003): 1553–66. http://dx.doi.org/10.13031/2013.15644.
Texto completo da fontePawitan, Hidayat, e Muh Taufik. "Non-linear Routing Scheme at Grid Cell Level for Large Scale Hydrologic Models: A Review". Agromet 35, n.º 2 (12 de agosto de 2021): 60–72. http://dx.doi.org/10.29244/j.agromet.35.2.60-72.
Texto completo da fonteSharma, Ashish, Suresh Hettiarachchi e Conrad Wasko. "Estimating design hydrologic extremes in a warming climate: alternatives, uncertainties and the way forward". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, n.º 2195 (março de 2021): 20190623. http://dx.doi.org/10.1098/rsta.2019.0623.
Texto completo da fonteShindell, Drew. "Estimating the potential for twenty-first century sudden climate change". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365, n.º 1860 (30 de julho de 2007): 2675–94. http://dx.doi.org/10.1098/rsta.2007.2088.
Texto completo da fonteReichert, P., G. White, M. J. Bayarri e E. B. Pitman. "Mechanism-based emulation of dynamic simulation models: Concept and application in hydrology". Computational Statistics & Data Analysis 55, n.º 4 (abril de 2011): 1638–55. http://dx.doi.org/10.1016/j.csda.2010.10.011.
Texto completo da fonte