Artigos de revistas sobre o tema "Hydrologic models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hydrologic models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Guilpart, Etienne, Vahid Espanmanesh, Amaury Tilmant e François Anctil. "Combining split-sample testing and hidden Markov modelling to assess the robustness of hydrological models". Hydrology and Earth System Sciences 25, n.º 8 (30 de agosto de 2021): 4611–29. http://dx.doi.org/10.5194/hess-25-4611-2021.
Texto completo da fonteMendoza, Pablo A., Martyn P. Clark, Naoki Mizukami, Andrew J. Newman, Michael Barlage, Ethan D. Gutmann, Roy M. Rasmussen, Balaji Rajagopalan, Levi D. Brekke e Jeffrey R. Arnold. "Effects of Hydrologic Model Choice and Calibration on the Portrayal of Climate Change Impacts". Journal of Hydrometeorology 16, n.º 2 (1 de abril de 2015): 762–80. http://dx.doi.org/10.1175/jhm-d-14-0104.1.
Texto completo da fonteGanoulis, J. "Modeling Hydrologic Phenomena [Free opinion]". Revue des sciences de l'eau 9, n.º 4 (12 de abril de 2005): 421–34. http://dx.doi.org/10.7202/705260ar.
Texto completo da fonteAbbas, Ather, Laurie Boithias, Yakov Pachepsky, Kyunghyun Kim, Jong Ahn Chun e Kyung Hwa Cho. "AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods". Geoscientific Model Development 15, n.º 7 (8 de abril de 2022): 3021–39. http://dx.doi.org/10.5194/gmd-15-3021-2022.
Texto completo da fonteNaik, M. Ravi, e Dr MVSS Giridhar. "Spatial Variability of Rainfall and Classification of Peninsular Indian Catchments". International Journal of Advanced Engineering and Nano Technology 10, n.º 12 (30 de dezembro de 2023): 8–15. http://dx.doi.org/10.35940/ijaent.f4214.12101223.
Texto completo da fontePawitan, Hidayat, e Muh Taufik. "Non-linear Routing Scheme at Grid Cell Level for Large Scale Hydrologic Models: A Review". Agromet 35, n.º 2 (12 de agosto de 2021): 60–72. http://dx.doi.org/10.29244/j.agromet.35.2.60-72.
Texto completo da fontePerra, Enrica, Monica Piras, Roberto Deidda, Claudio Paniconi, Giuseppe Mascaro, Enrique R. Vivoni, Pierluigi Cau, Pier Andrea Marras, Ralf Ludwig e Swen Meyer. "Multimodel assessment of climate change-induced hydrologic impacts for a Mediterranean catchment". Hydrology and Earth System Sciences 22, n.º 7 (30 de julho de 2018): 4125–43. http://dx.doi.org/10.5194/hess-22-4125-2018.
Texto completo da fonteJanicka, Ewelina, Jolanta Kanclerz, Tropikë Agaj e Katarzyna Gizińska. "Comparison of Two Hydrological Models, the HEC-HMS and Nash Models, for Runoff Estimation in Michałówka River". Sustainability 15, n.º 10 (12 de maio de 2023): 7959. http://dx.doi.org/10.3390/su15107959.
Texto completo da fonteCarleton, Tyler J., e Steven R. Fassnacht. "Linking Hydrologic and Hydraulic Data with Models to Assess Flow and Channel Alteration at Hog Park, Wyoming USA". Hydrology 7, n.º 2 (23 de maio de 2020): 29. http://dx.doi.org/10.3390/hydrology7020029.
Texto completo da fonteValdés-Pineda, Rodrigo, Juan B. Valdés, Sungwook Wi, Aleix Serrat-Capdevila e Tirthankar Roy. "Improving Operational Short- to Medium-Range (SR2MR) Streamflow Forecasts in the Upper Zambezi Basin and Its Sub-Basins Using Variational Ensemble Forecasting". Hydrology 8, n.º 4 (20 de dezembro de 2021): 188. http://dx.doi.org/10.3390/hydrology8040188.
Texto completo da fonteWang, Jie, Guoqing Wang, Amgad Elmahdi, Zhenxin Bao, Qinli Yang, Zhangkang Shu e Mingming Song. "Comparison of hydrological model ensemble forecasting based on multiple members and ensemble methods". Open Geosciences 13, n.º 1 (1 de janeiro de 2021): 401–15. http://dx.doi.org/10.1515/geo-2020-0239.
Texto completo da fonteDooge, J. C. I. "Hydrologic models and climate change". Journal of Geophysical Research 97, n.º D3 (1992): 2677. http://dx.doi.org/10.1029/91jd02156.
Texto completo da fonteFord, David T., e Darryl W. Davis. "HYDROLOGIC ENGINEERING CENTER PLANNING MODELS". Journal of the American Water Resources Association 21, n.º 1 (fevereiro de 1985): 135–44. http://dx.doi.org/10.1111/j.1752-1688.1985.tb05359.x.
Texto completo da fonteVepraskas, M. J., R. L. Huffman e G. S. Kreiser. "Hydrologic models for altered landscapes". Geoderma 131, n.º 3-4 (abril de 2006): 287–98. http://dx.doi.org/10.1016/j.geoderma.2005.03.010.
Texto completo da fontePietroniro, A., V. Fortin, N. Kouwen, C. Neal, R. Turcotte, B. Davison, D. Verseghy et al. "Using the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale". Hydrology and Earth System Sciences Discussions 3, n.º 4 (29 de agosto de 2006): 2473–521. http://dx.doi.org/10.5194/hessd-3-2473-2006.
Texto completo da fontePietroniro, A., V. Fortin, N. Kouwen, C. Neal, R. Turcotte, B. Davison, D. Verseghy et al. "Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale". Hydrology and Earth System Sciences 11, n.º 4 (3 de maio de 2007): 1279–94. http://dx.doi.org/10.5194/hess-11-1279-2007.
Texto completo da fonteSingh, Kuldeep. "Stream Order Delineation using SRTM 30 meter Resolution Digital Elevation Model (DEM) and Hydrology Tools in ArcGIS 10.3 and QGIS: Mapping of Drainage Pattern of Mandi District, Himachal Pradesh, India". Asian Review of Civil Engineering 10, n.º 2 (5 de novembro de 2021): 9–17. http://dx.doi.org/10.51983/tarce-2021.10.2.3118.
Texto completo da fonteHarpold, Adrian A., Michael L. Kaplan, P. Zion Klos, Timothy Link, James P. McNamara, Seshadri Rajagopal, Rina Schumer e Caitriana M. Steele. "Rain or snow: hydrologic processes, observations, prediction, and research needs". Hydrology and Earth System Sciences 21, n.º 1 (2 de janeiro de 2017): 1–22. http://dx.doi.org/10.5194/hess-21-1-2017.
Texto completo da fonteGunathilake, Miyuru B., Chamaka Karunanayake, Anura S. Gunathilake, Niranga Marasingha, Jayanga T. Samarasinghe, Isuru M. Bandara e Upaka Rathnayake. "Hydrological Models and Artificial Neural Networks (ANNs) to Simulate Streamflow in a Tropical Catchment of Sri Lanka". Applied Computational Intelligence and Soft Computing 2021 (27 de maio de 2021): 1–9. http://dx.doi.org/10.1155/2021/6683389.
Texto completo da fonteSivapalan, Murugesu. "From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science". Hydrology and Earth System Sciences 22, n.º 3 (7 de março de 2018): 1665–93. http://dx.doi.org/10.5194/hess-22-1665-2018.
Texto completo da fonteShen, Chaopeng, Eric Laloy, Amin Elshorbagy, Adrian Albert, Jerad Bales, Fi-John Chang, Sangram Ganguly et al. "HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community". Hydrology and Earth System Sciences 22, n.º 11 (1 de novembro de 2018): 5639–56. http://dx.doi.org/10.5194/hess-22-5639-2018.
Texto completo da fonteHöge, Marvin, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert e Fabrizio Fenicia. "Improving hydrologic models for predictions and process understanding using neural ODEs". Hydrology and Earth System Sciences 26, n.º 19 (11 de outubro de 2022): 5085–102. http://dx.doi.org/10.5194/hess-26-5085-2022.
Texto completo da fontePande, Saket, Luis A. Bastidas, Sandjai Bhulai e Mac McKee. "Parameter-dependent convergence bounds and complexity measure for a class of conceptual hydrological models". Journal of Hydroinformatics 14, n.º 2 (18 de outubro de 2011): 443–63. http://dx.doi.org/10.2166/hydro.2011.005.
Texto completo da fonteThompson, S. E., M. Sivapalan, C. J. Harman, V. Srinivasan, M. R. Hipsey, P. Reed, A. Montanari e G. Blöschl. "Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene". Hydrology and Earth System Sciences Discussions 10, n.º 6 (20 de junho de 2013): 7897–961. http://dx.doi.org/10.5194/hessd-10-7897-2013.
Texto completo da fonteXu, Xiaoyong, Jonathan Li e Bryan A. Tolson. "Progress in integrating remote sensing data and hydrologic modeling". Progress in Physical Geography: Earth and Environment 38, n.º 4 (5 de junho de 2014): 464–98. http://dx.doi.org/10.1177/0309133314536583.
Texto completo da fonteSubramani, T., e K. A.Niasi. "Study of Hydrological Parameter with Respect to DEM Using GIS & RS in Nelliampathy Hill, Kerala". International Journal of Engineering & Technology 7, n.º 3.10 (15 de julho de 2018): 125. http://dx.doi.org/10.14419/ijet.v7i3.10.15643.
Texto completo da fonteThompson, S. E., M. Sivapalan, C. J. Harman, V. Srinivasan, M. R. Hipsey, P. Reed, A. Montanari e G. Blöschl. "Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene". Hydrology and Earth System Sciences 17, n.º 12 (12 de dezembro de 2013): 5013–39. http://dx.doi.org/10.5194/hess-17-5013-2013.
Texto completo da fonteCaja, CC, NL Ibunes, JA Paril, AR Reyes, JP Nazareno, CE Monjardin e FA Uy. "Effects of Land Cover Changes to the Quantity of Water Supply and Hydrologic Cycle using Water Balance Models". MATEC Web of Conferences 150 (2018): 06004. http://dx.doi.org/10.1051/matecconf/201815006004.
Texto completo da fonteHollaus, M., W. Wagner e K. Kraus. "Airborne laser scanning and usefulness for hydrological models". Advances in Geosciences 5 (16 de dezembro de 2005): 57–63. http://dx.doi.org/10.5194/adgeo-5-57-2005.
Texto completo da fonteJohnson, K. A., e N. Sitar. "Hydrologic conditions leading to debris-flow initiation". Canadian Geotechnical Journal 27, n.º 6 (1 de dezembro de 1990): 789–801. http://dx.doi.org/10.1139/t90-092.
Texto completo da fonteRajaram, Harihar, e Konstantine P. Georgakakos. "Recursive parameter estimation of hydrologic models". Water Resources Research 25, n.º 2 (fevereiro de 1989): 281–94. http://dx.doi.org/10.1029/wr025i002p00281.
Texto completo da fonteK. W. Migliaccio e P. Srivastava. "Hydrologic Components of Watershed-Scale Models". Transactions of the ASABE 50, n.º 5 (2007): 1695–703. http://dx.doi.org/10.13031/2013.23955.
Texto completo da fonteBouraoui, Faycal, e Mary Leigh Wolfe. "Application of hydrologic models to rangelands". Journal of Hydrology 121, n.º 1-4 (dezembro de 1990): 173–91. http://dx.doi.org/10.1016/0022-1694(90)90231-l.
Texto completo da fonteManeta, M. P., e N. L. Silverman. "A Spatially Distributed Model to Simulate Water, Energy, and Vegetation Dynamics Using Information from Regional Climate Models". Earth Interactions 17, n.º 11 (1 de agosto de 2013): 1–44. http://dx.doi.org/10.1175/2012ei000472.1.
Texto completo da fonteSehgal, Vinit, Venkataramana Sridhar, Luke Juran e Jactone Arogo Ogejo. "Integrating Climate Forecasts with the Soil and Water Assessment Tool (SWAT) for High-Resolution Hydrologic Simulations and Forecasts in the Southeastern U.S." Sustainability 10, n.º 9 (29 de agosto de 2018): 3079. http://dx.doi.org/10.3390/su10093079.
Texto completo da fonteHerman, J. D., J. B. Kollat, P. M. Reed e T. Wagener. "Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models". Hydrology and Earth System Sciences 17, n.º 7 (24 de julho de 2013): 2893–903. http://dx.doi.org/10.5194/hess-17-2893-2013.
Texto completo da fonteHerman, J. D., J. B. Kollat, P. M. Reed e T. Wagener. "Technical note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models". Hydrology and Earth System Sciences Discussions 10, n.º 4 (5 de abril de 2013): 4275–99. http://dx.doi.org/10.5194/hessd-10-4275-2013.
Texto completo da fonteAstuti, Anik Juli Dwi, Sofie Annys, Mekete Dessie, Jan Nyssen e Stefaan Dondeyne. "To What Extent Is Hydrologic Connectivity Taken into Account in Catchment Studies in the Lake Tana Basin, Ethiopia? A Review". Land 11, n.º 12 (30 de novembro de 2022): 2165. http://dx.doi.org/10.3390/land11122165.
Texto completo da fonteWu, Rui, Lei Yang, Chao Chen, Sajjad Ahmad, Sergiu M. Dascalu e Frederick C. Harris Jr. "MELPF version 1: Modeling Error Learning based Post-Processor Framework for Hydrologic Models Accuracy Improvement". Geoscientific Model Development 12, n.º 9 (23 de setembro de 2019): 4115–31. http://dx.doi.org/10.5194/gmd-12-4115-2019.
Texto completo da fonteJavadinejad, Safieh, Rebwar Dara e Neda Dolatabadi. "Runoff coefficient estimation for various catchment surfaces". Resources Environment and Information Engineering 3, n.º 1 (2022): 145–55. http://dx.doi.org/10.25082/reie.2021.01.005.
Texto completo da fonteParajka, J., V. Naeimi, G. Blöschl, W. Wagner, R. Merz e K. Scipal. "Assimilating scatterometer soil moisture data into conceptual hydrologic models at the regional scale". Hydrology and Earth System Sciences Discussions 2, n.º 6 (22 de dezembro de 2005): 2739–86. http://dx.doi.org/10.5194/hessd-2-2739-2005.
Texto completo da fonteParajka, J., V. Naeimi, G. Blöschl, W. Wagner, R. Merz e K. Scipal. "Assimilating scatterometer soil moisture data into conceptual hydrologic models at the regional scale". Hydrology and Earth System Sciences 10, n.º 3 (17 de maio de 2006): 353–68. http://dx.doi.org/10.5194/hess-10-353-2006.
Texto completo da fonteEhsan Bhuiyan, Md Abul, Efthymios I. Nikolopoulos, Emmanouil N. Anagnostou, Jan Polcher, Clément Albergel, Emanuel Dutra, Gabriel Fink, Alberto Martínez-de la Torre e Simon Munier. "Assessment of precipitation error propagation in multi-model global water resource reanalysis". Hydrology and Earth System Sciences 23, n.º 4 (15 de abril de 2019): 1973–94. http://dx.doi.org/10.5194/hess-23-1973-2019.
Texto completo da fonteNewman, Andrew J., Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor e Martyn P. Clark. "Identifying sensitivities in flood frequency analyses using a stochastic hydrologic modeling system". Hydrology and Earth System Sciences 25, n.º 10 (25 de outubro de 2021): 5603–21. http://dx.doi.org/10.5194/hess-25-5603-2021.
Texto completo da fonteFenicia, F., D. P. Solomatine, H. H. G. Savenije e P. Matgen. "Soft combination of local models in a multi-objective framework". Hydrology and Earth System Sciences Discussions 4, n.º 1 (19 de janeiro de 2007): 91–123. http://dx.doi.org/10.5194/hessd-4-91-2007.
Texto completo da fonteHaberlandt, U. "From hydrological modelling to decision support". Advances in Geosciences 27 (23 de agosto de 2010): 11–19. http://dx.doi.org/10.5194/adgeo-27-11-2010.
Texto completo da fonteP. C. Beeson, P. C. Doraiswamy, A. M. Sadeghi, M. Di Luzio, M. D. Tomer, J. G. Arnold e C. S. T. Daughtry. "Treatments of Precipitation Inputs to Hydrologic Models". Transactions of the ASABE 54, n.º 6 (2011): 2011–20. http://dx.doi.org/10.13031/2013.40652.
Texto completo da fonteThiemann, M., M. Trosset, H. Gupta e S. Sorooshian. "Bayesian recursive parameter estimation for hydrologic models". Water Resources Research 37, n.º 10 (outubro de 2001): 2521–35. http://dx.doi.org/10.1029/2000wr900405.
Texto completo da fonteYapo, Patrice Ogou, Hoshin Vijai Gupta e Soroosh Sorooshian. "Multi-objective global optimization for hydrologic models". Journal of Hydrology 204, n.º 1-4 (janeiro de 1998): 83–97. http://dx.doi.org/10.1016/s0022-1694(97)00107-8.
Texto completo da fonteVogel, Richard M. "Stochastic watershed models for hydrologic risk management". Water Security 1 (julho de 2017): 28–35. http://dx.doi.org/10.1016/j.wasec.2017.06.001.
Texto completo da fonte