Artigos de revistas sobre o tema "Hydrogénation du CO/CO2"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hydrogénation du CO/CO2".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ahouari, Hania, Ahcène Soualah, Anthony Le Valant, Ludovic Pinard, Patrick Magnoux e Yannick Pouilloux. "Hydrogénation du CO2 en hydrocarbures sur des catalyseurs bifonctionnels CFA-HZSM-5". Comptes Rendus Chimie 18, n.º 3 (março de 2015): 241–49. http://dx.doi.org/10.1016/j.crci.2014.08.001.
Texto completo da fonteKim, Jun-Sik, Sang-Bong Lee, Min-Chul Kang, Kyu-Wan Lee, Myoung-Jae Choi e Yong Kang. "Promotion of CO2 hydrogénation to hydrocarbons in three-phase catalytic (Fe-Cu-K-Al) slurry reactors". Korean Journal of Chemical Engineering 20, n.º 5 (setembro de 2003): 967–72. http://dx.doi.org/10.1007/bf02697307.
Texto completo da fonteDrouin, Michel, e John F. Harrod. "Insertion and other reactions of some hydridoolefin complexes of iridium(I)". Canadian Journal of Chemistry 63, n.º 2 (1 de fevereiro de 1985): 353–60. http://dx.doi.org/10.1139/v85-060.
Texto completo da fonteBagheri, Mohammad B., Matthew Wallace, Vello Kuuskraa, Hadi Nourollah, Matthias Raab e Tim Duff. "CO". APPEA Journal 62, n.º 2 (13 de maio de 2022): S372—S377. http://dx.doi.org/10.1071/aj21144.
Texto completo da fonteSrivastava, Sumit, Manvender S. Dagur, Afsar Ali e Rajeev Gupta. "Trinuclear {Co2+–M3+–Co2+} complexes catalyze reduction of nitro compounds". Dalton Transactions 44, n.º 40 (2015): 17453–61. http://dx.doi.org/10.1039/c5dt03442f.
Texto completo da fonteKovács, István, Ferenc Ungváry e László Markó. "Cleavage of Co-C and Co-Co bonds by hydrogen halides. Reaction of (CH3)2CHC(O)Co(CO)4, Co2(CO)8, Co2(CO)7PPh3 and Co2(CO)6(PBun3)with HX (X = Cl, I)". Inorganica Chimica Acta 116, n.º 1 (junho de 1986): L15—L16. http://dx.doi.org/10.1016/s0020-1693(00)84604-6.
Texto completo da fonteBargrizan, Sima, Tapas K. Biswas, Klaus D. Joehnk e Luke M. Mosley. "Sustained high CO". Marine and Freshwater Research 73, n.º 4 (8 de fevereiro de 2022): 540–51. http://dx.doi.org/10.1071/mf21154.
Texto completo da fonteXiao, Yurou Celine, Christine M. Gabardo, Shijie Liu, Geonhui Lee, Yong Zhao, Colin P. O'Brien, Rui Kai Miao et al. "Integrated Capture and Electrochemical Conversion of CO2 into CO". ECS Meeting Abstracts MA2023-02, n.º 47 (22 de dezembro de 2023): 2390. http://dx.doi.org/10.1149/ma2023-02472390mtgabs.
Texto completo da fonteFišer, Jiří, Tomáš Boublík e Rudolf Polák. "Intermolecular Interactions in the (CO2)2, N2-CO2 and CO-CO2 Complexes". Collection of Czechoslovak Chemical Communications 69, n.º 1 (2004): 177–88. http://dx.doi.org/10.1135/cccc20040177.
Texto completo da fonteTsuchiya, Y. "Co/co2 Ratios In Fire". Fire Safety Science 4 (1994): 515–26. http://dx.doi.org/10.3801/iafss.fss.4-515.
Texto completo da fonteYamamoto, Takashi, Tatsuhiko Mikami, Mai Tomisaki e Yasuaki Einaga. "Electroreduction of CO2 into CO Using Amine-Modified Diamond Electrode". ECS Meeting Abstracts MA2023-02, n.º 52 (22 de dezembro de 2023): 2502. http://dx.doi.org/10.1149/ma2023-02522502mtgabs.
Texto completo da fonteTan, Jeannie Z. Y., Stelios Gavrielides, Hao R. Xu, Warren A. Thompson e M. Mercedes Maroto-Valer. "Alkali modified P25 with enhanced CO2 adsorption for CO2 photoreduction". RSC Advances 10, n.º 47 (2020): 27989–94. http://dx.doi.org/10.1039/d0ra05010e.
Texto completo da fonteWolf, Stephanie E., Lucy Dittrich, Markus Nohl, Tobias Duyster, Izaak C. Vinke, Rüdiger-A. Eichel e L. G. J. (Bert) de Haart. "Boundary Investigation of High-Temperature Co-Electrolysis Towards Direct CO2 Electrolysis". Journal of The Electrochemical Society 169, n.º 3 (1 de março de 2022): 034531. http://dx.doi.org/10.1149/1945-7111/ac5e45.
Texto completo da fontePark, Chae-Young, Bong-Jun Chang, Jeong-Hoon Kim e Young Moo Lee. "UV-crosslinked poly(PEGMA-co-MMA-co-BPMA) membranes: Synthesis, characterization, and CO2/N2 and CO2/CO separation". Journal of Membrane Science 587 (outubro de 2019): 117167. http://dx.doi.org/10.1016/j.memsci.2019.06.007.
Texto completo da fonteUngváry, Ferenc, Jabir Shanshool e László Markó. "Kinetics and equilibrium of Co2(CO)6(η4-norbornadiene) formation from Co2(CO)8 and norbornadiene under CO". Journal of Organometallic Chemistry 296, n.º 1-2 (novembro de 1985): 155–59. http://dx.doi.org/10.1016/0022-328x(85)80346-6.
Texto completo da fonteFan, Yan, Jianqiang Feng, Miao Yang, Xin Tan, Hongjun Fan, Meijin Guo, Binju Wang e Song Xue. "CO2(aq) concentration–dependent CO2 fixation via carboxylation by decarboxylase". Green Chemistry 23, n.º 12 (2021): 4403–9. http://dx.doi.org/10.1039/d1gc00825k.
Texto completo da fonteLiu, Yan, Yawei Li, Yuanzhen Chen, Ting Qu, Chengyong Shu, Xiaodong Yang, Haiyan Zhu et al. "A CO2/H2 fuel cell: reducing CO2 while generating electricity". Journal of Materials Chemistry A 8, n.º 17 (2020): 8329–36. http://dx.doi.org/10.1039/d0ta02855j.
Texto completo da fonteGómez-Ortiz, Carlos, Guillaume Monteil, Sourish Basu e Marko Scholze. "A CO2–Δ14CO2 inversion setup for estimating European fossil CO2 emissions". Atmospheric Chemistry and Physics 25, n.º 1 (13 de janeiro de 2025): 397–424. https://doi.org/10.5194/acp-25-397-2025.
Texto completo da fonteScarpelli, Tia R., Paul I. Palmer, Mark Lunt, Ingrid Super e Arjan Droste. "Verifying national inventory-based combustion emissions of CO2 across the UK and mainland Europe using satellite observations of atmospheric CO and CO2". Atmospheric Chemistry and Physics 24, n.º 18 (26 de setembro de 2024): 10773–91. http://dx.doi.org/10.5194/acp-24-10773-2024.
Texto completo da fonteFrogneux, Xavier, Olivier Jacquet e Thibault Cantat. "Iron-catalyzed hydrosilylation of CO2: CO2 conversion to formamides and methylamines". Catal. Sci. Technol. 4, n.º 6 (2014): 1529–33. http://dx.doi.org/10.1039/c4cy00130c.
Texto completo da fonteZhao, Kechao, Zhenhua Li e Li Bian. "CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2O3 catalysts". Frontiers of Chemical Science and Engineering 10, n.º 2 (14 de março de 2016): 273–80. http://dx.doi.org/10.1007/s11705-016-1563-5.
Texto completo da fonteFrerichs, M., F. X. Schweiger, F. Voigts, S. Rudenkiy, W. Maus-Friedrichs e V. Kempter. "Interaction of O2, CO and CO2 with Co films". Surface and Interface Analysis 37, n.º 7 (2005): 633–40. http://dx.doi.org/10.1002/sia.2060.
Texto completo da fonteMoskovich, Shahar, Dana Reuvenov e Richard H. Schultz. "Microsecond UV flash photolysis of Co2(CO)8 in solution: Wavelength dependence of the Co(CO)4/Co2(CO)7 branching ratio". Chemical Physics Letters 431, n.º 1-3 (novembro de 2006): 62–66. http://dx.doi.org/10.1016/j.cplett.2006.09.012.
Texto completo da fonteWang, Ruiqin, Mengxin Zhang, Ying Guan, Mao Chen e Yongjun Zhang. "A CO2-responsive hydrogel film for optical sensing of dissolved CO2". Soft Matter 15, n.º 30 (2019): 6107–15. http://dx.doi.org/10.1039/c9sm00958b.
Texto completo da fonteLončarević, D., e Ž. Čupić. "Characterization and Catalytic Activity of Poly(4-Vinylpyridine-Co-Divinylbenzene)-Co2+ Complex". Materials Science Forum 494 (setembro de 2005): 363–68. http://dx.doi.org/10.4028/www.scientific.net/msf.494.363.
Texto completo da fonteVardag, S. N., C. Gerbig, G. Janssens-Maenhout e I. Levin. "Estimation of continuous anthropogenic CO<sub>2</sub> using CO<sub>2</sub>, CO, δ<sup>13</sup>C(CO<sub>2</sub>) and Δ<sup>14</sup>C(CO<sub>2</sub>)". Atmospheric Chemistry and Physics Discussions 15, n.º 14 (24 de julho de 2015): 20181–243. http://dx.doi.org/10.5194/acpd-15-20181-2015.
Texto completo da fonteAhmad Syuhada, M.I. Maulana e R. Sary. "The Ability of Selected Plants to Absorbing CO₂, CO and HC from Gasoline Engine Exhaust". International Journal of Automotive and Mechanical Engineering 19, n.º 4 (28 de dezembro de 2022): 10094–102. http://dx.doi.org/10.15282/ijame.19.4.2022.06.0780.
Texto completo da fonteVardag, S. N., C. Gerbig, G. Janssens-Maenhout e I. Levin. "Estimation of continuous anthropogenic CO<sub>2</sub>: model-based evaluation of CO<sub>2</sub>, CO, δ<sup>13</sup>C(CO<sub>2</sub>) and Δ<sup>14</sup>C(CO<sub>2</sub>) tracer methods". Atmospheric Chemistry and Physics 15, n.º 22 (16 de novembro de 2015): 12705–29. http://dx.doi.org/10.5194/acp-15-12705-2015.
Texto completo da fontePing, Chao, Bao-Qi Feng, Yun-Lei Teng, Han-Qing Chen, Si-Li Liu, Yun-Long Tai, Hao-Nan Liu e Bao-Xia Dong. "Acquiring an effective CaO-based CO2 sorbent and achieving selective methanation of CO2". RSC Advances 10, n.º 36 (2020): 21509–16. http://dx.doi.org/10.1039/d0ra02495c.
Texto completo da fonteTian, Jing, Qing Zhang, Wei Feng Li, Yue Meng, Tong Yan, Hong Kai Wang, You Fang Li, Ming Su Liu e Hui Fen Guo. "Influence of Co(ii) Ionic Liquids Catalytic System for Polycarbonate (CHO/CO2) Synthesis". Advanced Materials Research 1095 (março de 2015): 345–48. http://dx.doi.org/10.4028/www.scientific.net/amr.1095.345.
Texto completo da fonteAnila, Sebastian, e Cherumuttathu H. Suresh. "Guanidine as a strong CO2 adsorbent: a DFT study on cooperative CO2 adsorption". Physical Chemistry Chemical Physics 23, n.º 24 (2021): 13662–71. http://dx.doi.org/10.1039/d1cp00754h.
Texto completo da fonteMelnikova, Irina, Philippe Ciais, Katsumasa Tanaka, Hideo Shiogama, Kaoru Tachiiri, Tokuta Yokohata e Olivier Boucher. "Carbon cycle and climate feedbacks under CO2 and non-CO2 overshoot pathways". Earth System Dynamics 16, n.º 1 (6 de fevereiro de 2025): 257–73. https://doi.org/10.5194/esd-16-257-2025.
Texto completo da fonteDwivedi, Tatsat, Ayan Ghosh, M. B. Sai Prasad e Padma Nilaya Jonnalagadda. "Experimental estimation of CO concentration in LN2 cooled CW CO laser operating with CO2 laser gas mixture". Laser Physics Letters 19, n.º 9 (13 de julho de 2022): 095001. http://dx.doi.org/10.1088/1612-202x/ac7ecc.
Texto completo da fonteJessen, Cecilie Høgfeldt, Jesper Bendix, Theis Brock Nannestad, Heloisa Bordallo, Martin Jæger Pedersen, Christian Marcus Pedersen e Mikael Bols. "CO2 complexation with cyclodextrins". Beilstein Journal of Organic Chemistry 19 (17 de julho de 2023): 1021–27. http://dx.doi.org/10.3762/bjoc.19.78.
Texto completo da fonteLee, Jae Won, e Hyunjoo Lee. "Biohybrid CO2 Electrolysis for the Direct Synthesis of Biomass from CO2". ECS Meeting Abstracts MA2024-02, n.º 28 (22 de novembro de 2024): 2179. https://doi.org/10.1149/ma2024-02282179mtgabs.
Texto completo da fonteLiu, Hanbin, Shaojian Lin, Yujun Feng e Patrick Theato. "CO2-Responsive polymer materials". Polymer Chemistry 8, n.º 1 (2017): 12–23. http://dx.doi.org/10.1039/c6py01101b.
Texto completo da fonteSimon, Alexia, Karin I. Öberg, Mahesh Rajappan e Pavlo Maksiutenko. "Entrapment of CO in CO2 Ice". Astrophysical Journal 883, n.º 1 (17 de setembro de 2019): 21. http://dx.doi.org/10.3847/1538-4357/ab32e5.
Texto completo da fonteIshchenko, Olena V., Alla G. Dyachenko, Andrii V. Yatsymyrskiy, Tetiana M. Zakharova, Snizhana V. Gaidai, Vladyslav V. Lisnyak e Ruslan Mariychuk. "CO2 methanation over Co–Ni catalysts". E3S Web of Conferences 154 (2020): 02001. http://dx.doi.org/10.1051/e3sconf/202015402001.
Texto completo da fonteBähr, Cornelia. "Rohstoffbasis: CO und CO2 biotechnisch verwerten". Nachrichten aus der Chemie 65, n.º 1 (janeiro de 2017): 35–37. http://dx.doi.org/10.1002/nadc.20174057460.
Texto completo da fonteKwon, Min Jung, Ashley Ballantyne, Philippe Ciais, Ana Bastos, Frédéric Chevallier, Zhihua Liu, Julia K. Green, Chunjing Qiu e John S. Kimball. "Siberian 2020 heatwave increased spring CO2 uptake but not annual CO2 uptake". Environmental Research Letters 16, n.º 12 (25 de novembro de 2021): 124030. http://dx.doi.org/10.1088/1748-9326/ac358b.
Texto completo da fonteGarcia, Thelma Y., James C. Fettinger, Marilyn M. Olmstead e Alan L. Balch. "Splendid symmetry: crystallization of an unbridged isomer of Co2(CO)8 in Co2(CO)8·C60". Chemical Communications, n.º 46 (2009): 7143. http://dx.doi.org/10.1039/b915083h.
Texto completo da fonteOsella, Domenico, Luciano Milone, Carlo Nervi e Mauro Ravera. "Electronic Communication in [Co2(CO)6]2-Diyne and [Co2(CO)4(dppm)]2-Diyne Complexes". European Journal of Inorganic Chemistry 1998, n.º 10 (outubro de 1998): 1473–77. http://dx.doi.org/10.1002/(sici)1099-0682(199810)1998:10<1473::aid-ejic1473>3.0.co;2-t.
Texto completo da fonteKobychev, V. B., N. M. Vitkovskaya e F. K. Shmidt. "Nonempirical study of the interaction of CO and Co, Co+, and Co2+". Journal of Structural Chemistry 28, n.º 5 (1988): 766–67. http://dx.doi.org/10.1007/bf00752061.
Texto completo da fonteJiménez, Vicente, Paula Sánchez, Paraskevi Panagiotopoulou, José Luís Valverde e Amaya Romero. "Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts". Applied Catalysis A: General 390, n.º 1-2 (20 de dezembro de 2010): 35–44. http://dx.doi.org/10.1016/j.apcata.2010.09.026.
Texto completo da fonteVesztergom, Soma, Alessandro Senocrate, Ying Kong, Viliam Kolivoška, Francesco Bernasconi, Robert Zboray, Corsin Battaglia e Peter Broekmann. "Eliminating Flooding-related Issues in Electrochemical CO₂-to-CO Converters: Two Lines of Defense". CHIMIA 77, n.º 3 (29 de março de 2023): 104. http://dx.doi.org/10.2533/chimia.2023.104.
Texto completo da fonteCao, Shuang Cindy, Jong Won Jung e Jong Wan Hu. "CO2-Brine Displacement in Geological CO2 Sequestration: Microfluidic Flow Model Study". Applied Mechanics and Materials 752-753 (abril de 2015): 1210–13. http://dx.doi.org/10.4028/www.scientific.net/amm.752-753.1210.
Texto completo da fonteWang, H., D. J. Jacob, M. Kopacz, D. B. A. Jones, P. Suntharalingam, J. A. Fisher, R. Nassar, S. Pawson e J. E. Nielsen. "Error correlation between CO<sub>2</sub> and CO as constraint for CO<sub>2</sub> flux inversions using satellite data". Atmospheric Chemistry and Physics Discussions 9, n.º 3 (12 de maio de 2009): 11783–810. http://dx.doi.org/10.5194/acpd-9-11783-2009.
Texto completo da fonteM. Yusof, S., e L. P. Teh. "Bifunctional Materials for CO₂ Adsorption: Short Review". Journal of Chemical Engineering and Industrial Biotechnology 7, n.º 2 (21 de novembro de 2021): 15–19. http://dx.doi.org/10.15282/jceib.v7i2.7021.
Texto completo da fonteCartwright, Richard J., Bryan J. Holler, William M. Grundy, Stephen C. Tegler, Marc Neveu, Ujjwal Raut, Christopher R. Glein et al. "JWST Reveals CO Ice, Concentrated CO2 Deposits, and Evidence for Carbonates Potentially Sourced from Ariel’s Interior". Astrophysical Journal Letters 970, n.º 2 (24 de julho de 2024): L29. http://dx.doi.org/10.3847/2041-8213/ad566a.
Texto completo da fonteWang, H., D. J. Jacob, M. Kopacz, D. B. A. Jones, P. Suntharalingam, J. A. Fisher, R. Nassar, S. Pawson e J. E. Nielsen. "Error correlation between CO<sub>2</sub> and CO as constraint for CO<sub>2</sub> flux inversions using satellite data". Atmospheric Chemistry and Physics 9, n.º 19 (2 de outubro de 2009): 7313–23. http://dx.doi.org/10.5194/acp-9-7313-2009.
Texto completo da fonte