Artigos de revistas sobre o tema "Hydrogen bonding"

Siga este link para ver outros tipos de publicações sobre o tema: Hydrogen bonding.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hydrogen bonding".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Breugst, Martin, Daniel von der Heiden e Julie Schmauck. "Novel Noncovalent Interactions in Catalysis: A Focus on Halogen, Chalcogen, and Anion-π Bonding". Synthesis 49, n.º 15 (23 de maio de 2017): 3224–36. http://dx.doi.org/10.1055/s-0036-1588838.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Noncovalent interactions play an important role in many biological and chemical processes. Among these, hydrogen bonding is very well studied and is already routinely used in organocatalysis. This Short Review focuses on three other types of promising noncovalent interactions. Halogen bonding, chalcogen bonding, and anion-π bonding have been introduced into organocatalysis in the last few years and could become important alternate modes of activation to hydrogen bonding in the future.1 Introduction2 Halogen Bonding3 Chalcogen Bonding4 Anion-π Bonding5 Conclusions
2

Wang, Xinyu, Huiyuan Wang, Hongmin Zhang, Tianxi Yang, Bin Zhao e Juan Yan. "Investigation of the Impact of Hydrogen Bonding Degree in Long Single-Stranded DNA (ssDNA) Generated with Dual Rolling Circle Amplification (RCA) on the Preparation and Performance of DNA Hydrogels". Biosensors 13, n.º 7 (23 de julho de 2023): 755. http://dx.doi.org/10.3390/bios13070755.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
DNA hydrogels have gained significant attention in recent years as one of the most promising functional polymer materials. To broaden their applications, it is critical to develop efficient methods for the preparation of bulk-scale DNA hydrogels with adjustable mechanical properties. Herein, we introduce a straightforward and efficient molecular design approach to producing physically pure DNA hydrogel and controlling its mechanical properties by adjusting the degree of hydrogen bonding in ultralong single-stranded DNA (ssDNA) precursors, which were generated using a dual rolling circle amplification (RCA)-based strategy. The effect of hydrogen bonding degree on the performance of DNA hydrogels was thoroughly investigated by analyzing the preparation process, morphology, rheology, microstructure, and entrapment efficiency of the hydrogels for Au nanoparticles (AuNPs)–BSA. Our results demonstrate that DNA hydrogels can be formed at 25 °C with simple vortex mixing in less than 10 s. The experimental results also indicate that a higher degree of hydrogen bonding in the precursor DNA resulted in stronger internal interaction forces, a more complex internal network of the hydrogel, a denser hydrogel, improved mechanical properties, and enhanced entrapment efficiency. This study intuitively demonstrates the effect of hydrogen bonding on the preparation and properties of DNA hydrogels. The method and results presented in this study are of great significance for improving the synthesis efficiency and economy of DNA hydrogels, enhancing and adjusting the overall quality and performance of the hydrogel, and expanding the application field of DNA hydrogels.
3

Li, Zhangkang, Cheng Yu, Hitendra Kumar, Xiao He, Qingye Lu, Huiyu Bai, Keekyoung Kim e Jinguang Hu. "The Effect of Crosslinking Degree of Hydrogels on Hydrogel Adhesion". Gels 8, n.º 10 (21 de outubro de 2022): 682. http://dx.doi.org/10.3390/gels8100682.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
The development of adhesive hydrogel materials has brought numerous advances to biomedical engineering. Hydrogel adhesion has drawn much attention in research and applications. In this paper, the study of hydrogel adhesion is no longer limited to the surface of hydrogels. Here, the effect of the internal crosslinking degree of hydrogels prepared by different methods on hydrogel adhesion was explored to find the generality. The results show that with the increase in crosslinking degree, the hydrogel adhesion decreased significantly due to the limitation of segment mobility. Moreover, two simple strategies to improve hydrogel adhesion generated by hydrogen bonding were proposed. One was to keep the functional groups used for hydrogel adhesion and the other was to enhance the flexibility of polymer chains that make up hydrogels. We hope this study can provide another approach for improving the hydrogel adhesion generated by hydrogen bonding.
4

Dai, Bailin, Ting Cui, Yue Xu, Shaoji Wu, Youwei Li, Wu Wang, Sihua Liu, Jianxin Tang e Li Tang. "Smart Antifreeze Hydrogels with Abundant Hydrogen Bonding for Conductive Flexible Sensors". Gels 8, n.º 6 (13 de junho de 2022): 374. http://dx.doi.org/10.3390/gels8060374.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Recently, flexible sensors based on conductive hydrogels have been widely used in human health monitoring, human movement detection and soft robotics due to their excellent flexibility, high water content, good biocompatibility. However, traditional conductive hydrogels tend to freeze and lose their flexibility at low temperature, which greatly limits their application in a low temperature environment. Herein, according to the mechanism that multi−hydrogen bonds can inhibit ice crystal formation by forming hydrogen bonds with water molecules, we used butanediol (BD) and N−hydroxyethyl acrylamide (HEAA) monomer with a multi−hydrogen bond structure to construct LiCl/p(HEAA−co−BD) conductive hydrogel with antifreeze property. The results indicated that the prepared LiCl/p(HEAA−co−BD) conductive hydrogel showed excellent antifreeze property with a low freeze point of −85.6 °C. Therefore, even at −40 °C, the hydrogel can still stretch up to 400% with a tensile stress of ~450 KPa. Moreover, the hydrogel exhibited repeatable adhesion property (~30 KPa), which was attributed to the existence of multiple hydrogen bonds. Furthermore, a simple flexible sensor was fabricated by using LiCl/p(HEAA−co−BD) conductive hydrogel to detect compression and stretching responses. The sensor had excellent sensitivity and could monitor human body movement.
5

Faust, Bruce C. "Hydrogen Bonding". Science 258, n.º 5081 (16 de outubro de 1992): 381. http://dx.doi.org/10.1126/science.258.5081.381.c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Kollman, Peter A. "Hydrogen bonding". Current Biology 9, n.º 14 (julho de 1999): R501. http://dx.doi.org/10.1016/s0960-9822(99)80319-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Abraham, Michael H., Gary S. Whiting, Jenik Andonian-Haftvan, Jonathan W. Steed e Jay W. Grate. "Hydrogen bonding". Journal of Chromatography A 588, n.º 1-2 (dezembro de 1991): 361–0364. http://dx.doi.org/10.1016/0021-9673(91)85048-k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Abraham, Michael H., Gary S. Whiting, Ruth M. Doherty e Wendel J. Shuely. "Hydrogen bonding". Journal of Chromatography A 587, n.º 2 (dezembro de 1991): 213–28. http://dx.doi.org/10.1016/0021-9673(91)85158-c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Abraham, Michael H., Gary S. Whiting, Ruth M. Doherty e Wendel J. Shuely. "Hydrogen bonding". Journal of Chromatography A 587, n.º 2 (dezembro de 1991): 229–36. http://dx.doi.org/10.1016/0021-9673(91)85159-d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Abraham, Michael H., e Gary S. Whiting. "Hydrogen bonding". Journal of Chromatography A 594, n.º 1-2 (março de 1992): 229–41. http://dx.doi.org/10.1016/0021-9673(92)80335-r.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Abraham, Michael H., e David P. Walsh. "Hydrogen bonding". Journal of Chromatography A 627, n.º 1-2 (dezembro de 1992): 294–99. http://dx.doi.org/10.1016/0021-9673(92)87210-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Abraham, Michael H. "Hydrogen bonding". Journal of Chromatography A 644, n.º 1 (julho de 1993): 95–139. http://dx.doi.org/10.1016/0021-9673(93)80123-p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Toccalino, Patricia L., Kenneth M. Harmon e Jennifer Harmon. "Hydrogen bonding". Journal of Molecular Structure 189, n.º 3-4 (outubro de 1988): 373–82. http://dx.doi.org/10.1016/s0022-2860(98)80137-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Harmon, K. M., e A. C. Webb. "Hydrogen bonding". Journal of Molecular Structure 508, n.º 1-3 (setembro de 1999): 119–28. http://dx.doi.org/10.1016/s0022-2860(99)00009-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Abraham, Michael H., Gary S. Whiting, Ruth M. Doherty e Wendel J. Shuely. "Hydrogen bonding". Journal of Chromatography A 518 (janeiro de 1990): 329–48. http://dx.doi.org/10.1016/s0021-9673(01)93194-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Faust, B. C. "Hydrogen Bonding". Science 258, n.º 5081 (16 de outubro de 1992): 381. http://dx.doi.org/10.1126/science.258.5081.381-b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Harmon, Kenneth M., Dawn M. Brooks e Patricia K. Keefer. "Hydrogen bonding". Journal of Molecular Structure 317, n.º 1-2 (janeiro de 1994): 17–31. http://dx.doi.org/10.1016/0022-2860(93)07855-q.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Abraham, Michael H., Jenik Andonian-Haftvan, Ian Hamerton, Colin F. Poole e Theophilus O. Kollie. "Hydrogen bonding". Journal of Chromatography A 646, n.º 2 (setembro de 1993): 351–60. http://dx.doi.org/10.1016/0021-9673(93)83348-v.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Abraham, Michael H., Harpreet S. Chadha e Albert J. Leo. "Hydrogen bonding". Journal of Chromatography A 685, n.º 2 (novembro de 1994): 203–11. http://dx.doi.org/10.1016/0021-9673(94)00686-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Harmon, Kenneth M., e Günsel F. Avci. "Hydrogen bonding". Journal of Molecular Structure 140, n.º 3-4 (fevereiro de 1986): 261–68. http://dx.doi.org/10.1016/0022-2860(86)87009-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Harmon, Kenneth M., Günself F. Avci e Anne C. Thiel. "Hydrogen bonding". Journal of Molecular Structure 145, n.º 1-2 (junho de 1986): 83–91. http://dx.doi.org/10.1016/0022-2860(86)87031-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Harmon, Kenneth M., Günsel F. Avci, Julie M. Gabriele e Marsha J. Jacks. "Hydrogen bonding". Journal of Molecular Structure 159, n.º 3-4 (julho de 1987): 255–63. http://dx.doi.org/10.1016/0022-2860(87)80044-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Harmon, Kenneth M., Günsel F. Avci e Anne C. Thiel. "Hydrogen bonding". Journal of Molecular Structure 161 (outubro de 1987): 205–18. http://dx.doi.org/10.1016/0022-2860(87)85075-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Harmon, Kenneth M., Günsel F. Avci, Jennifer Harmon e Anne C. Thiel. "Hydrogen bonding". Journal of Molecular Structure 160, n.º 1-2 (agosto de 1987): 57–66. http://dx.doi.org/10.1016/0022-2860(87)87004-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Harmon, Kenneth M., Joan E. Cross e Patricia L. Toccalino. "Hydrogen bonding". Journal of Molecular Structure 178 (agosto de 1988): 141–45. http://dx.doi.org/10.1016/0022-2860(88)85012-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Lovelace, Ronald R., e Kenneth M. Harmon. "Hydrogen bonding". Journal of Molecular Structure 193 (fevereiro de 1989): 247–62. http://dx.doi.org/10.1016/0022-2860(89)80137-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Harmon, Kenneth M., Patricia L. Toccalino e Marcia S. Janos. "Hydrogen bonding". Journal of Molecular Structure 213 (outubro de 1989): 193–200. http://dx.doi.org/10.1016/0022-2860(89)85119-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Harmon, Kenneth M., Lisa M. Pappalardo e Patricia K. Keefer. "Hydrogen bonding". Journal of Molecular Structure 221 (abril de 1990): 189–94. http://dx.doi.org/10.1016/0022-2860(90)80402-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Harmon, Kenneth M., Anne C. Akin, Günsel F. Avci, Lydia S. Nowos e Mary Beth Tierney. "Hydrogen bonding". Journal of Molecular Structure 244 (abril de 1991): 223–36. http://dx.doi.org/10.1016/0022-2860(91)80158-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Harmon, Kenneth M., Susan L. Madeira, Marshan J. Jacks, Günsel F. Avci e Anne C. Thiel. "Hydrogen bonding". Journal of Molecular Structure 128, n.º 4 (maio de 1985): 305–14. http://dx.doi.org/10.1016/0022-2860(85)85006-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Harmon, Kenneth M., Günsel F. Avci, Nancy J. Desantis e Anne C. Thiel. "Hydrogen bonding". Journal of Molecular Structure 128, n.º 4 (maio de 1985): 315–26. http://dx.doi.org/10.1016/0022-2860(85)85007-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Ghafouri, Reza, Fatemeh Ektefa e Mansour Zahedi. "Characterization of Hydrogen Bonds in the End-Functionalized Single-Wall Carbon Nanotubes: A DFT Study". Nano 10, n.º 03 (abril de 2015): 1550036. http://dx.doi.org/10.1142/s1793292015500368.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
A systematic computational study is carried out to shed some light on the structure of semiconducting armchair single-wall carbon nanotubes (n, n) SWCNTs, n = 4, 5 and 6, functionalized at the end with carboxyl (– COOH ) and amide (– CONH 2) from the viewpoint of characterizing the intramolecular hydrogen bondings at the B3LYP/6-31++G(d, p) level. Geometry parameters display different types of intramolecular hydrogen bonding possibilities in the considered functionalized SWCNTs. All of the hydrogen bondings are confirmed by natural bonding orbitals (NBO) analysis as well as nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) parameters. Based on NBO analysis, the calculated [Formula: see text] delocalization energies E(2), 1.15 kcal/mol to 7.04 kcal/mol, are in direct relation with the hydrogen bonding strengths. Differences in the chemical shielding principal components of 13 C and 17 O nuclei correlate well with the strengths of the hydrogen bondings. Participating in stronger hydrogen bondings, a larger SWCNT has a decreasing effect on 13 C (= O ) and 17 O isotropic chemical shieldings, σiso, consistent with the NBO analysis. The considerable changes of 13 C /17 O σiso can be interpreted as a result of shielding tensor component orientation. The 13 C (= O ) and 17 O quadrupole coupling constants C Q decrease under the effect of hydrogen bonding while asymmetry parameters ηQ significantly increase, indicating that 17 O ηQ is more sensitive to hydrogen bondings.
33

IKEDA, Takashi, e Kiyoyuki TERAKURA. "Hydrogen Bonding. Hydrogen Bonding of Hydrogen Halides and Its Pressure Dependence." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 10, n.º 1 (2000): 26–32. http://dx.doi.org/10.4131/jshpreview.10.26.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

ZHANG, YAN, CHANG-SHENG WANG e ZHONG-ZHI YANG. "ESTIMATION ON THE INTRAMOLECULAR 8- AND 12-MEMBERED RING N–H…O=C HYDROGEN BONDING ENERGIES IN β-PEPTIDES". Journal of Theoretical and Computational Chemistry 08, n.º 02 (abril de 2009): 279–97. http://dx.doi.org/10.1142/s0219633609004708.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Computation of accurate hydrogen bonding energies in peptides is of great importance in understanding the conformational stabilities of peptides. In this paper, the intramolecular 8- and 12-membered ring N – H … O = C hydrogen bonding energies in β-peptide structures were evaluated. The optimal structures of the β-peptide conformers were obtained using MP2/6-31G(d) method. The MP2/6-311++G(d,p) calculations were then carried out to evaluate the single-point energies. The results show that the intramolecular 8-membered ring N – H … O = C hydrogen bonding energies in the five β-dipeptide structures β-di, β-di-R1, β-di-R2, β-di-R3, and β-di-R4 are -5.50, -5.40, -7.28, -4.94, and -6.84 kcal/mol with BSSE correction, respectively; the intramolecular 12-membered ring N – H … O = C hydrogen bonding energies in the nine β-tripeptide structures β-tri, β-tri-R1, β-tri-R2, β-tri-R3, β-tri-R4, β-tri-R1', β-tri-R2', β-tri-R3' and β-tri-R4' are -10.23, -10.32, -9.53, -10.30, -10.32, -10.55, -10.09, -10.51, and -9.60 kcal/mol with BSSE correction, respectively. Our calculation results further indicate that for the intramolecular 8-membered ring hydrogen bondings, the structures where the orientation of the side chain methyl group is "a–a" have stronger intramolecular hydrogen bondings than those where the orientation of the side chain methyl group is "e–e", while for the intramolecular 12-membered ring hydrogen bondings, the structures where the orientation of the side chain methyl group is "e–e" have stronger intramolecular hydrogen bondings than those where the orientation of the side chain methyl group is "a–a". The method is also applied to estimate the individual intermolecular hydrogen bonding energies in the dimers of amino-acetaldehyde, 2-amino-acetamide, 2-oxo-acetamide, and oxalamide, each dimer having two identical intermolecular hydrogen bonds. According to our method, the individual intermolecular hydrogen bonding energies in the four dimers are calculated to be -1.71, -1.50, -4.67, and -3.22 kcal/mol at the MP2/6-311++G(d,p) level, which are in good agreement with the values of -1.84, -1.72, -4.93, and -3.26 kcal/mol predicted by the supermolecular method.
35

Purohit, Dr S. J., Rajan Mishra e Akhil Subramanian. "Hydrogen Bonding - The Key to Desalination (A Review)". International Journal of Environmental and Agriculture Research 3, n.º 6 (30 de junho de 2017): 49–52. http://dx.doi.org/10.25125/agriculture-journal-ijoear-may-2017-10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Hoffmann, Roald. "Bonding to Hydrogen". American Scientist 100, n.º 5 (2012): 1. http://dx.doi.org/10.1511/2012.98.1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Hoffmann, Roald. "Bonding to Hydrogen". American Scientist 100, n.º 5 (2012): 374. http://dx.doi.org/10.1511/2012.98.374.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Gallagher, James. "Hydrogen bonding boost". Nature Energy 4, n.º 10 (outubro de 2019): 822. http://dx.doi.org/10.1038/s41560-019-0488-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Harmon, Kenneth M., Thomas E. Nelson e Marcia S. Janos. "β Hydrogen bonding". Journal of Molecular Structure 213 (outubro de 1989): 185–91. http://dx.doi.org/10.1016/0022-2860(89)85118-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Etim, Emmanuel E., Prasanta Gorai, Ankan Das, Sandip K. Chakrabarti e Elangannan Arunan. "Interstellar hydrogen bonding". Advances in Space Research 61, n.º 11 (junho de 2018): 2870–80. http://dx.doi.org/10.1016/j.asr.2018.03.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Devi, Periasamy, Packianathan Thomas Muthiah, Tayur N. Guru Row e Vijay Thiruvenkatam. "Hydrogen bonding in pyrimethamine hydrogen adipate". Acta Crystallographica Section E Structure Reports Online 63, n.º 10 (15 de setembro de 2007): o4065—o4066. http://dx.doi.org/10.1107/s1600536807044364.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Hernández-Trujillo, Jesús, e Chérif F. Matta. "Hydrogen–hydrogen bonding in biphenyl revisited". Structural Chemistry 18, n.º 6 (5 de setembro de 2007): 849–57. http://dx.doi.org/10.1007/s11224-007-9231-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Zierkiewicz, Wiktor, Petr Jure?ka e Pavel Hobza. "On Differences between Hydrogen Bonding and Improper Blue-Shifting Hydrogen Bonding". ChemPhysChem 6, n.º 4 (15 de abril de 2005): 609–17. http://dx.doi.org/10.1002/cphc.200400243.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Yokura, Miyoshi, Kenichi Uehara, Guo Xiang, Kazuya Hanada, Yoshinobu Nakamura, Lakshmi Sanapa Reddy, Kazuhiro Endo e Tamio Endo. "Ultralong Lifetime of Active Surface of Oxygenated PET Films by Plasma-irradiation and Bonding Elements". MRS Proceedings 1454 (2012): 201–6. http://dx.doi.org/10.1557/opl.2012.1128.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
ABSTRACTBiaxially oriented polyethylene terephthalate (PET) films can be bonded directly by oxygen plasma irradiation and low temperature heat press around 100°C. The irradiated films were kept in the atmosphere for six years, yet they can be bonded tightly as well. Dry- and wet-peel tests indicate that two bonding elements can be suggested, hydrogen bonding and chemical bonding. The films are bonded by these two elements at lower temperatures, but by the pure chemical bonding at higher temperatures. FTIR results on the non-irradiated, irradiated and bonded samples indicate that OH and COOH groups are created at the surface, they are responsible for the hydrogen and chemical bondings. Dehydrated condensation reaction is proposed for the chemical bonding. It is briefly mentioned on two origins for the long lifetime of irradiated active surface.
45

Zhang, Bing, Xu Zhang, Kening Wan, Jixin Zhu, Jingsan Xu, Chao Zhang e Tianxi Liu. "Dense Hydrogen-Bonding Network Boosts Ionic Conductive Hydrogels with Extremely High Toughness, Rapid Self-Recovery, and Autonomous Adhesion for Human-Motion Detection". Research 2021 (15 de abril de 2021): 1–14. http://dx.doi.org/10.34133/2021/9761625.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
The construction of ionic conductive hydrogels with high transparency, excellent mechanical robustness, high toughness, and rapid self-recovery is highly desired yet challenging. Herein, a hydrogen-bonding network densification strategy is presented for preparing a highly stretchable and transparent poly(ionic liquid) hydrogel (PAM-r-MVIC) from the perspective of random copolymerization of 1-methyl-3-(4-vinylbenzyl) imidazolium chloride and acrylamide in water. Ascribing to the formation of a dense hydrogen-bonding network, the resultant PAM-r-MVIC exhibited an intrinsically high stretchability (>1000%) and compressibility (90%), fast self-recovery with high toughness (2950 kJ m-3), and excellent fatigue resistance with no deviation for 100 cycles. Dissipative particle dynamics simulations revealed that the orientation of hydrogen bonds along the stretching direction boosted mechanical strength and toughness, which were further proved by the restriction of molecular chain movements ascribing to the formation of a dense hydrogen-bonding network from mean square displacement calculations. Combining with high ionic conductivity over a wide temperature range and autonomous adhesion on various surfaces with tailored adhesive strength, the PAM-r-MVIC can readily work as a highly stretchable and healable ionic conductor for a capacitive/resistive bimodal sensor with self-adhesion, high sensitivity, excellent linearity, and great durability. This study might provide a new path of designing and fabricating ionic conductive hydrogels with high mechanical elasticity, high toughness, and excellent fatigue resilience for skin-inspired ionic sensors in detecting complex human motions.
46

R0UHI, MAUREEN. "CATALYSIS BY HYDROGEN BONDING". Chemical & Engineering News Archive 81, n.º 28 (14 de julho de 2003): 13. http://dx.doi.org/10.1021/cen-v081n028.p013a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Jabłoński, Mirosław. "Intramolecular Hydrogen Bonding 2021". Molecules 26, n.º 20 (19 de outubro de 2021): 6319. http://dx.doi.org/10.3390/molecules26206319.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Gilli, G. "Modern hydrogen bonding theory". Acta Crystallographica Section A Foundations of Crystallography 62, a1 (6 de agosto de 2006): s3. http://dx.doi.org/10.1107/s0108767306099946.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Jeffrey, George A. "Hydrogen-Bonding: An update". Crystallography Reviews 9, n.º 2-3 (abril de 2003): 135–76. http://dx.doi.org/10.1080/08893110310001621754.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Jeffrey, George A. "Hydrogen-Bonding: An Update". Crystallography Reviews 4, n.º 3 (fevereiro de 1995): 213–54. http://dx.doi.org/10.1080/08893119508039923.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Vá para a bibliografia