Literatura científica selecionada sobre o tema "Hydrogen bonding"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Hydrogen bonding".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Hydrogen bonding":

1

Breugst, Martin, Daniel von der Heiden e Julie Schmauck. "Novel Noncovalent Interactions in Catalysis: A Focus on Halogen, Chalcogen, and Anion-π Bonding". Synthesis 49, n.º 15 (23 de maio de 2017): 3224–36. http://dx.doi.org/10.1055/s-0036-1588838.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Noncovalent interactions play an important role in many biological and chemical processes. Among these, hydrogen bonding is very well studied and is already routinely used in organocatalysis. This Short Review focuses on three other types of promising noncovalent interactions. Halogen bonding, chalcogen bonding, and anion-π bonding have been introduced into organocatalysis in the last few years and could become important alternate modes of activation to hydrogen bonding in the future.1 Introduction2 Halogen Bonding3 Chalcogen Bonding4 Anion-π Bonding5 Conclusions
2

Wang, Xinyu, Huiyuan Wang, Hongmin Zhang, Tianxi Yang, Bin Zhao e Juan Yan. "Investigation of the Impact of Hydrogen Bonding Degree in Long Single-Stranded DNA (ssDNA) Generated with Dual Rolling Circle Amplification (RCA) on the Preparation and Performance of DNA Hydrogels". Biosensors 13, n.º 7 (23 de julho de 2023): 755. http://dx.doi.org/10.3390/bios13070755.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
DNA hydrogels have gained significant attention in recent years as one of the most promising functional polymer materials. To broaden their applications, it is critical to develop efficient methods for the preparation of bulk-scale DNA hydrogels with adjustable mechanical properties. Herein, we introduce a straightforward and efficient molecular design approach to producing physically pure DNA hydrogel and controlling its mechanical properties by adjusting the degree of hydrogen bonding in ultralong single-stranded DNA (ssDNA) precursors, which were generated using a dual rolling circle amplification (RCA)-based strategy. The effect of hydrogen bonding degree on the performance of DNA hydrogels was thoroughly investigated by analyzing the preparation process, morphology, rheology, microstructure, and entrapment efficiency of the hydrogels for Au nanoparticles (AuNPs)–BSA. Our results demonstrate that DNA hydrogels can be formed at 25 °C with simple vortex mixing in less than 10 s. The experimental results also indicate that a higher degree of hydrogen bonding in the precursor DNA resulted in stronger internal interaction forces, a more complex internal network of the hydrogel, a denser hydrogel, improved mechanical properties, and enhanced entrapment efficiency. This study intuitively demonstrates the effect of hydrogen bonding on the preparation and properties of DNA hydrogels. The method and results presented in this study are of great significance for improving the synthesis efficiency and economy of DNA hydrogels, enhancing and adjusting the overall quality and performance of the hydrogel, and expanding the application field of DNA hydrogels.
3

Li, Zhangkang, Cheng Yu, Hitendra Kumar, Xiao He, Qingye Lu, Huiyu Bai, Keekyoung Kim e Jinguang Hu. "The Effect of Crosslinking Degree of Hydrogels on Hydrogel Adhesion". Gels 8, n.º 10 (21 de outubro de 2022): 682. http://dx.doi.org/10.3390/gels8100682.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
The development of adhesive hydrogel materials has brought numerous advances to biomedical engineering. Hydrogel adhesion has drawn much attention in research and applications. In this paper, the study of hydrogel adhesion is no longer limited to the surface of hydrogels. Here, the effect of the internal crosslinking degree of hydrogels prepared by different methods on hydrogel adhesion was explored to find the generality. The results show that with the increase in crosslinking degree, the hydrogel adhesion decreased significantly due to the limitation of segment mobility. Moreover, two simple strategies to improve hydrogel adhesion generated by hydrogen bonding were proposed. One was to keep the functional groups used for hydrogel adhesion and the other was to enhance the flexibility of polymer chains that make up hydrogels. We hope this study can provide another approach for improving the hydrogel adhesion generated by hydrogen bonding.
4

Dai, Bailin, Ting Cui, Yue Xu, Shaoji Wu, Youwei Li, Wu Wang, Sihua Liu, Jianxin Tang e Li Tang. "Smart Antifreeze Hydrogels with Abundant Hydrogen Bonding for Conductive Flexible Sensors". Gels 8, n.º 6 (13 de junho de 2022): 374. http://dx.doi.org/10.3390/gels8060374.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Recently, flexible sensors based on conductive hydrogels have been widely used in human health monitoring, human movement detection and soft robotics due to their excellent flexibility, high water content, good biocompatibility. However, traditional conductive hydrogels tend to freeze and lose their flexibility at low temperature, which greatly limits their application in a low temperature environment. Herein, according to the mechanism that multi−hydrogen bonds can inhibit ice crystal formation by forming hydrogen bonds with water molecules, we used butanediol (BD) and N−hydroxyethyl acrylamide (HEAA) monomer with a multi−hydrogen bond structure to construct LiCl/p(HEAA−co−BD) conductive hydrogel with antifreeze property. The results indicated that the prepared LiCl/p(HEAA−co−BD) conductive hydrogel showed excellent antifreeze property with a low freeze point of −85.6 °C. Therefore, even at −40 °C, the hydrogel can still stretch up to 400% with a tensile stress of ~450 KPa. Moreover, the hydrogel exhibited repeatable adhesion property (~30 KPa), which was attributed to the existence of multiple hydrogen bonds. Furthermore, a simple flexible sensor was fabricated by using LiCl/p(HEAA−co−BD) conductive hydrogel to detect compression and stretching responses. The sensor had excellent sensitivity and could monitor human body movement.
5

Faust, Bruce C. "Hydrogen Bonding". Science 258, n.º 5081 (16 de outubro de 1992): 381. http://dx.doi.org/10.1126/science.258.5081.381.c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Kollman, Peter A. "Hydrogen bonding". Current Biology 9, n.º 14 (julho de 1999): R501. http://dx.doi.org/10.1016/s0960-9822(99)80319-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Abraham, Michael H., Gary S. Whiting, Jenik Andonian-Haftvan, Jonathan W. Steed e Jay W. Grate. "Hydrogen bonding". Journal of Chromatography A 588, n.º 1-2 (dezembro de 1991): 361–0364. http://dx.doi.org/10.1016/0021-9673(91)85048-k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Abraham, Michael H., Gary S. Whiting, Ruth M. Doherty e Wendel J. Shuely. "Hydrogen bonding". Journal of Chromatography A 587, n.º 2 (dezembro de 1991): 213–28. http://dx.doi.org/10.1016/0021-9673(91)85158-c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Abraham, Michael H., Gary S. Whiting, Ruth M. Doherty e Wendel J. Shuely. "Hydrogen bonding". Journal of Chromatography A 587, n.º 2 (dezembro de 1991): 229–36. http://dx.doi.org/10.1016/0021-9673(91)85159-d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Abraham, Michael H., e Gary S. Whiting. "Hydrogen bonding". Journal of Chromatography A 594, n.º 1-2 (março de 1992): 229–41. http://dx.doi.org/10.1016/0021-9673(92)80335-r.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Hydrogen bonding":

1

Mitchell, John Blayney Owen. "Theoretical studies of hydrogen bonding". Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358697.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Mondal, Raju. "Systematic studies of hydrogen bonding". Thesis, Durham University, 2004. http://etheses.dur.ac.uk/2986/.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
This thesis deals with wider application and implications of the hydrogen bond in crystal engineering studies and beyond; in addition, it also highlights the Cambridge Structural Database (CSD) as the potential knowledge-mine for inorganic chemists. The content of this thesis covers mainly three areas, viz, the role of hydrogen bonding in crystal engineering studies, the bridging between mainstream crystal engineering studies and solvates via hydrogen bond, and CSD studies on metal coordination spheres. Chapter 2 deals with crystal structure prediction through understanding the driving forces for forming supramolecular synthons and some rare supramolecular networks (Carbomndum III). With the help of a series of supraminols we attempt to identify the underlying reason for forming P-As networks. Chapter 3 covers the much debated topic of acceptor capabilities of organic halogens and consequently, how the so-called illusory hydrogen bond involving an organic halogen as an acceptor can explain a complex topic like synthon change-over, in a perfectly comprehensible manner. The aim of the Chapters 4 to 6 is to bring two separate fields, "crystal engineering" and "solvates" closer via a common root, like hydrogen bonding. The serendipitous host molecules are part of our crystal engineering studies, yet they form solvates due to less than optimum hydrogen bonding in their respective crystal structures. Alongside some usual solvates, in an unconventional way, different amines with varying steric, strain and donor hydrogen atoms were used. Different geometrical as well as crystallographical aspects and their explicit role in synthon selection has also been discussed. In Chapter 7, geometrical distortions of three-coordinate metal complexes in the crystal structures in the CSD have been analysed using symmetry modified Principal Component Analysis (PCA). Results shows that 90% of three coordinate species are accounted for by the five elements Cu, Ag, Hg, Au and Zn. Among the three major types of geometries, trigonal planar dominates the data sets, with smaller contribution for Y- and T-shaped structure. For Hg complexes, a possible reaction pathway for ligand addition reaction to two-coordinate linear complexes via T-shaped geometries leading to trigonal planar is discussed in detail. The background information and an overview of the experiments are discussed in the Introductory Chapter.
3

Sagar, Rajeeve. "Self-assembly via hydrogen bonding". Thesis, University of Warwick, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247352.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Scott, Tianeka S. "Understanding Hydrogen Bonding in Photoenolization". University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1378196534.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Howard, Daryl L., e n/a. "Hydrogen bonding in the near infrared". University of Otago. Department of Chemistry, 2006. http://adt.otago.ac.nz./public/adt-NZDU20060823.150321.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
OH-stretching spectra of various vapour phase species were recorded to investigate hydrogen bonding. The species studied include 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, acetylacetone, hexafluoroacetylacetone and the complex formed in the heterogeneous mixture of methanol and trimethylamine. The spectra range from the infrared, near infrared to visible wavelengths. The main focus of this study is in the near infrared region, in which the OH-stretching overtones are dominant. The near infrared and visible spectrum of formic acid has been recorded to investigate coupling across bonds, specifically a resonance occurring between OH- and CH-stretching vibrations. The same resonance was also observed in the spectrum of 1,2-ethanediol. The spectra of deuterated isotopomers of formic acid and 1,2-ethanediol were recorded to experimentally verify the resonance. The inherently weak nature of the vibrational overtone transitions required sensitive spectroscopic techniques to observe the spectra. The spectra were recorded with conventional long path length absorption spectroscopy and intracavity laser photoacoustic spectroscopy. Anharmonic oscillator local mode calculations of the OH-stretching transitions were performed to simulate the observed spectra. These calculations require calculation of potential energy surfaces and dipole moment functions. Simulated spectra obtained with highly correlated ab initio methods and large basis sets have yielded the best agreement with observation.
6

Biemond, Gerard Jan Eduard. "Hydrogen bonding in segmented block copolymers". Enschede : University of Twente, 2006. http://doc.utwente.nl/51102.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Taylor, Russell Alan. "Hydrogen bonding effects in homogeneous catalysis". Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500138.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Thomson, Patrick. "Extremely strong contiguous hydrogen bonding arrays". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7856.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
When multiple hydrogen bonds lie in-plane and parallel to each other in close proximity, they experience additional positive or negative secondary electrostatic interactions. When a pair of molecules are arranged such that every hydrogen bond acceptor is on one molecule and every hydrogen bond donor is on another, the positive secondary electrostatic interactions are maximised, and thus the association constant of the complex is enhanced. This thesis will present the development of a family of quadruple hydrogen bonded complexes containing only positive secondary interactions, which confers unprecedented stability. The complexes are sufficiently stable to maintain strong binding in polar solvents such as acetonitrile and can be switched “on” and “off” with acid and base. They will be developed into synthons for acid-base responsive supramolecular recognition, for use in stimuli-responsive supramolecular polymers and gelators.
9

Locke, Christopher John. "Competitive hydrogen bonding in polymeric systems". Thesis, University of York, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259805.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Hayward, Owen David. "Hydrogen bonding in the crystalline state". Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391181.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Hydrogen bonding":

1

Han, Ke-Li. Excited-state hydrogen bonding and hydrogen transfer. Hoboken, N.J: Wiley, 2010.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

1941-, Schuster P., e Mikenda Werner, eds. Hydrogen bond research. Wien: Springer, 1999.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

1943-, Bellissent-Funel M. C., Dore John C e NATO Advanced Research Workshop on Hydrogen Bond Networks (1993 : Cargèse, France), eds. Hydrogen bond networks. Dordrecht: Kluwer Academic Publishers, 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kuo, Shiao-Wei. Hydrogen Bonding in Polymeric Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804276.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Jeffrey, George A., e Wolfram Saenger. Hydrogen Bonding in Biological Structures. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-85135-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Pihko, Petri M. Hydrogen Bonding in Organic Synthesis. Weinheim: WILEY-VCH, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Jeffrey, George A. Hydrogen bonding in biological structures. Berlin: Springer-Verlag, 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Jeffrey, George A. An introduction to hydrogen bonding. New York: Oxford University Press, 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

D, Hadži, ed. Theoretical treatments of hydrogen bonding. Chichester: John Wiley Sons, 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Scheiner, Steve. Hydrogen bonding: A theoretical perspective. New York: Oxford University Press, 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Hydrogen bonding":

1

Hirao, Hajime, e Xiaoqing Wang. "Hydrogen Bonding". In The Chemical Bond, 501–22. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664658.ch17.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Zhang, Chaoyang, Jing Huang e Rupeng Bu. "Hydrogen Bonding, Hydrogen Transfer, and Halogen Bonding". In Intrinsic Structures and Properties of Energetic Materials, 317–77. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2699-2_9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Chen, Chang-Hwei. "Deuterium Bonding Versus Hydrogen Bonding". In Deuterium Oxide and Deuteration in Biosciences, 29–42. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08605-2_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Dong, Kun, Qian Wang, Xingmei Lu, Qing Zhou e Suojiang Zhang. "Structure, Interaction and Hydrogen Bond". In Structure and Bonding, 1–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38619-0_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Huyskens, P. L., e G. G. Siegel. "Hydrogen Bonding and Entropy". In Intermolecular Forces, 397–408. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76260-4_17.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Vilar, Ramón. "Hydrogen-Bonding Templated Assemblies". In Supramolecular Assembly via Hydrogen Bonds II, 85–137. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b14141.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Todres, Zory Vlad. "Effects of Hydrogen Bonding". In Organic Chemistry in Confining Media, 89–102. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00158-6_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Jeffrey, George A., e Wolfram Saenger. "Hydrogen Bonding in Carbohydrates". In Hydrogen Bonding in Biological Structures, 169–219. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85135-3_13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Jeffrey, George A., e Wolfram Saenger. "Hydrogen Bonding in Proteins". In Hydrogen Bonding in Biological Structures, 351–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85135-3_19.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Hawthorne, F. C., e W. H. Baur. "Hydrogen Bonding in Minerals". In Advanced Mineralogy, 340–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78523-8_23.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Hydrogen bonding":

1

Kasai, Paul H. "Hydrogen Bonding in Disk Lubricants". In 2006 Asia-Pacific Magnetic Recording Conference. IEEE, 2006. http://dx.doi.org/10.1109/apmrc.2006.365901.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Dilshard, Rahima, John R. Dixon, William O. George, Robert A. Lewis, Brian Minty e Roger Upton. "Molecular modeling of hydrogen bonding interactions". In Fourier Transform Spectroscopy: Ninth International Conference, editado por John E. Bertie e Hal Wieser. SPIE, 1994. http://dx.doi.org/10.1117/12.166742.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Ilgen, Anastasia, Jeffery A. Greathouse, Ward Thompson e Hasini Senanayake. "Hydrogen-bonding networks in nanoconfined water". In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.9797.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Rusev, Rostislav. "Hydrogen bonding network as a logic gate". In 2017 XXVI International Scientific Conference "Electronics" (ET). IEEE, 2017. http://dx.doi.org/10.1109/et.2017.8124383.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Pohl, Radek, Lenka Poštová Slavětínská e Dominik Rejman. "Pyrrolidine nucleotides conformationally constrained via hydrogen bonding". In XVIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2014. http://dx.doi.org/10.1135/css201414352.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Arrivo, S. M., T. P. Dougherty, W. T. Grubbs e E. J. Heilweil. "New Advances in Measuring Hydrogen Bonding Dynamics". In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.tha.3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
We report the only known comprehensive study of conserved vibrational energy transfer during association and dissociation of biologically relevant hydrogen-bonded complexes in dilute (0.1 M acid) room temperature solution. Newly applied picosecond infrared techniques which vibrationally tag and probe interacting proton donating (-OH, -NH) and accepting (e.g., -C = O, ≡ON) constituents will be presented. From these measurements, details of steric interactions, equilibrium reaction rates and unexpected vibrational excitation transfer during hydrogen-bond formation are revealed for the first time.
7

King, John, e Kevin Kubarych. "Solvent Dependent Spectral Diffusion in Hydrogen Bonding Environments". In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/up.2010.the17.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hagihara, Taizo, Tatsuya Takeuchi e Yasuhide Ohno. "Fluxless Flip-Chip Bonding Process Using Hydrogen Radical". In 2008 10th Electronics Packaging Technology Conference (EPTC). IEEE, 2008. http://dx.doi.org/10.1109/eptc.2008.4763498.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Medcraft, Chris, Nick Walker, Anthony Legon e Yannick Geboes. "HALOGEN BONDING VS HYDROGEN BONDING IN CHF2I COMPLEXES WITH NH3 AND N(CH3)3". In 71st International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2016. http://dx.doi.org/10.15278/isms.2016.wf02.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Laib, Jonathan P., e Daniel M. Mittleman. "Terahertz absorption in non-polar, non-hydrogen-bonding liquids". In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cmt4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Hydrogen bonding":

1

Zhou, Xu, Hunaid Nulwala, Hyung Kim e Shiaoguo Chen. Universal Solvent Viscosity Reduction via Hydrogen Bonding Disruptors. Office of Scientific and Technical Information (OSTI), junho de 2022. http://dx.doi.org/10.2172/1873907.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wendlandt, Johanna. Study of Hydrogen Bonding in Small Water Clusters with Density Functional Theory Calculations. Office of Scientific and Technical Information (OSTI), dezembro de 2005. http://dx.doi.org/10.2172/877463.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Roberds, B. E., K. D. Choquette, K. M. Geib, S. H. Kravitz, R. D. Twesten e S. N. Farrens. Wafer bonding of GaAs, InP, and Si annealed without hydrogen for advanced device technologies. Office of Scientific and Technical Information (OSTI), outubro de 1997. http://dx.doi.org/10.2172/634098.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Wei, Jing-Fong. Determination of the effect of various hydrogen bonding functionalities on the viscosity of coal liquids. Office of Scientific and Technical Information (OSTI), novembro de 1990. http://dx.doi.org/10.2172/6203549.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Gragson, D. E., e G. L. Richmond. Investigations of the Structure and Hydrogen Bonding of Water Molecules at Liquid Surfaces by Vibrational Sum Frequency Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, junho de 1998. http://dx.doi.org/10.21236/ada347409.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Craven, S., D. Kramer e W. Moddeman. Chemistry of glass-ceramic to metal bonding for header applications: 2. Hydrogen bubble formation during glass-ceramic to metal sealing. Office of Scientific and Technical Information (OSTI), dezembro de 1986. http://dx.doi.org/10.2172/6963554.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Gragson, D. E., e G. L. Richmond. Probing the Intermolecular Hydrogen Bonding of Water Molecules at the CCl sub 4 Water Interface in the Presence of Charged Soluble Surfactant. Fort Belvoir, VA: Defense Technical Information Center, junho de 1998. http://dx.doi.org/10.21236/ada347139.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Gao, Q., e J. C. Hemminger. A Vibrational Spectroscopy Study of CH3COOH, CH3COOD and (13)CD3COOH(D) Adsorption on Pt(111). 1. Surface Dimer Formation and Hydrogen Bonding. Fort Belvoir, VA: Defense Technical Information Center, junho de 1991. http://dx.doi.org/10.21236/ada237240.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Gao, Quanyin, e John C. Hemminger. A Vibrational Spectroscopy Study of Ch3COOH, CH3COOD and (13)CD3COOH(D) Adsorption on Pt (111): 1. Surface Dimer Formation and Hydrogen Bonding. Fort Belvoir, VA: Defense Technical Information Center, junho de 1991. http://dx.doi.org/10.21236/ada237284.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kubas, G. J., J. Eckert e X. L. Luo. Binding of hydrocarbons and other extremely weak ligands to transition metal complexes that coordinate hydrogen: Investigation of cis-interactions and delocalized bonding involving sigma bonds. Office of Scientific and Technical Information (OSTI), julho de 1997. http://dx.doi.org/10.2172/505275.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Vá para a bibliografia