Artigos de revistas sobre o tema "Hydro Unit Commitment"

Siga este link para ver outros tipos de publicações sobre o tema: Hydro Unit Commitment.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hydro Unit Commitment".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Chao-An Li, A. J. Svoboda, Chung-Li Tseng, R. B. Johnson e E. Hsu. "Hydro unit commitment in hydro-thermal optimization". IEEE Transactions on Power Systems 12, n.º 2 (maio de 1997): 764–69. http://dx.doi.org/10.1109/59.589675.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Philpott, A. B., M. Craddock e H. Waterer. "Hydro-electric unit commitment subject to uncertain demand". European Journal of Operational Research 125, n.º 2 (setembro de 2000): 410–24. http://dx.doi.org/10.1016/s0377-2217(99)00172-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Bruninx, Kenneth, Yury Dvorkin, Erik Delarue, Hrvoje Pandzic, William Dhaeseleer e Daniel S. Kirschen. "Coupling Pumped Hydro Energy Storage With Unit Commitment". IEEE Transactions on Sustainable Energy 7, n.º 2 (abril de 2016): 786–96. http://dx.doi.org/10.1109/tste.2015.2498555.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Siu, T. K., G. A. Nash e Z. K. Shawwash. "A Practical Hydro, Dynamic Unit Commitment and Loading Model". IEEE Power Engineering Review 21, n.º 5 (maio de 2001): 64. http://dx.doi.org/10.1109/mper.2001.4311393.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chaa-An Li, R. B. Johnson, A. J. Svoboda, Chung-Li Tseng e E. Hsu. "A robust unit commitment algorithm for hydro-thermal optimization". IEEE Transactions on Power Systems 13, n.º 3 (1998): 1051–56. http://dx.doi.org/10.1109/59.709098.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Siu, T. K., G. A. Nash e Z. K. Shawwash. "A practical hydro, dynamic unit commitment and loading model". IEEE Transactions on Power Systems 16, n.º 2 (maio de 2001): 301–6. http://dx.doi.org/10.1109/59.918302.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Zhou, Boran, Guangchao Geng e Quanyuan Jiang. "Hydro-Thermal-Wind Coordination_newline in Day-Ahead Unit Commitment". IEEE Transactions on Power Systems 31, n.º 6 (novembro de 2016): 4626–37. http://dx.doi.org/10.1109/tpwrs.2016.2530689.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Brito, Brunno H., Erlon C. Finardi e Fabrício Y. K. Takigawa. "Unit-commitment via logarithmic aggregated convex combination in multi-unit hydro plants". Electric Power Systems Research 189 (dezembro de 2020): 106784. http://dx.doi.org/10.1016/j.epsr.2020.106784.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Sutradhar, Suman, Nalin B. Dev Choudhury e Nidul Sinha. "Modelling of Hydrothermal Unit Commitment Coordination Using Efficient Metaheuristic Algorithm: A Hybridized Approach". Journal of Optimization 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/4529836.

Texto completo da fonte
Resumo:
In this paper, a novel approach of hybridization of two efficient metaheuristic algorithms is proposed for energy system analysis and modelling based on a hydro and thermal based power system in both single and multiobjective environment. The scheduling of hydro and thermal power is modelled descriptively including the handling method of various practical nonlinear constraints. The main goal for the proposed modelling is to minimize the total production cost (which is highly nonlinear and nonconvex problem) and emission while satisfying involved hydro and thermal unit commitment limitations. The cascaded hydro reservoirs of hydro subsystem and intertemporal constraints regarding thermal units along with nonlinear nonconvex, mixed-integer mixed-binary objective function make the search space highly complex. To solve such a complicated system, a hybridization of Gray Wolf Optimization and Artificial Bee Colony algorithm, that is, h-ABC/GWO, is used for better exploration and exploitation in the multidimensional search space. Two different test systems are used for modelling and analysis. Experimental results demonstrate the superior performance of the proposed algorithm as compared to other recently reported ones in terms of convergence and better quality of solutions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Colonetti, Bruno, Erlon Finardi e Lucas Borges Picarelli. "Hydrothermal Unit-Commitment Problem of a Large-Scale System with Representation of Forbidden Zones". Energies 15, n.º 1 (22 de dezembro de 2021): 39. http://dx.doi.org/10.3390/en15010039.

Texto completo da fonte
Resumo:
As we move towards electrical networks with a growing presence of renewable generation, the representation of the electrical components becomes more important. In hydro-dominated power systems, modelling the forbidden zones of hydro plants becomes increasingly challenging as the number of plants increases. Such zones are ranges of generation that either should be avoided or are altogether unreachable. However, because representing the forbidden zones introduces a substantial computational burden, hydrothermal unit-commitment problems (HTUC) for large systems are usually formulated ignoring the forbidden zones. Nonetheless, this simplification may demand adjustments to the solution of the HTUC, because the generation of the hydro stations may fall in forbidden zones. In practice, the adjustments are usually performed based on the experience of system operators and, then, can be far from an optimal correction. In this paper, we study the impact of explicitly representing the hydro-generation forbidden zones in a large-scale system with more than 7000 buses, 10,000 lines, and 700 hydro units. Our findings show that the simplified model that is current used can deviate significantly from the model with forbidden zones, both in terms of the generation of hydro plants, as well as the generation of thermal plants and the system marginal costs.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Jiang, Ruiwei, Jianhui Wang e Yongpei Guan. "Robust Unit Commitment With Wind Power and Pumped Storage Hydro". IEEE Transactions on Power Systems 27, n.º 2 (maio de 2012): 800–810. http://dx.doi.org/10.1109/tpwrs.2011.2169817.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Gang, Li, e Cheng Chuntian. "Hybrid PSO Algorithm with Tabu Search for Hydro Unit Commitment". HKIE Transactions 19, n.º 2 (janeiro de 2012): 18–23. http://dx.doi.org/10.1080/1023697x.2012.10668254.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

IGUCHI, Masaru, Guoliang ZHAO, Susumu YAMASHIRO e Naoyuki MORIYA. "A Weekly Scheduling Method for Hydro and Thermal Unit Commitment". IEEJ Transactions on Power and Energy 122, n.º 3 (2002): 375–84. http://dx.doi.org/10.1541/ieejpes1990.122.3_375.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Chen, Yue, Feng Liu, Bin Liu, Wei Wei e Shengwei Mei. "An Efficient MILP Approximation for the Hydro-Thermal Unit Commitment". IEEE Transactions on Power Systems 31, n.º 4 (julho de 2016): 3318–19. http://dx.doi.org/10.1109/tpwrs.2015.2479397.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

van Ackooij, Wim, Claudia D'Ambrosio, Leo Liberti, Raouia Taktak, Dimitri Thomopulos e Sonia Toubaline. "Shortest Path Problem variants for the Hydro Unit Commitment Problem". Electronic Notes in Discrete Mathematics 69 (agosto de 2018): 309–16. http://dx.doi.org/10.1016/j.endm.2018.07.040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Parvez, Iram, e Jianjian Shen. "Algorithms of approximate dynamic programming for hydro scheduling". E3S Web of Conferences 144 (2020): 01001. http://dx.doi.org/10.1051/e3sconf/202014401001.

Texto completo da fonte
Resumo:
In hydro scheduling, unit commitment is a complex sub-problem. This paper proposes a new approximate dynamic programming technique to solve unit commitment. A new method called Least Square Policy Iteration (LSPI) algorithm is introduced which is efficient and faster in convergence. This algorithm takes the properties of widely used algorithm least square temporal difference (LSTD), enhance it further and make it useful for optimization problems. First value function is to find a fixed policy by using least square temporal difference Q (LSTDQ) algorithm which is similar to LSTD, then LSPI is introduced for making the policy iteration algorithm by using the results of LSTDQ. It combines the data efficiency of LSTDQ and policy-search efficiency of policy iteration.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Arsenov, Arsen, e Georgi M. Dimirovski. "Optimizing Unit Commitment Technique for Operating Automated Hydro-Electric Power Plants". IFAC Proceedings Volumes 37, n.º 19 (outubro de 2004): 189–94. http://dx.doi.org/10.1016/s1474-6670(17)30681-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Guerrero, Victoria, Agustín Sánchez de la Nieta, Javier Contreras e Pedro F. Correia. "Unit Commitment with Wind Generation and Reversible-Hydro System in Islands". IFAC Proceedings Volumes 47, n.º 3 (2014): 4050–55. http://dx.doi.org/10.3182/20140824-6-za-1003.00686.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Jain, Achala, e Anupama P. Huddar. "Multi-objective-based robust unit commitment using hydro-thermal-wind: a hybrid technique". International Journal of Energy Sector Management 13, n.º 4 (4 de novembro de 2019): 804–27. http://dx.doi.org/10.1108/ijesm-07-2018-0015.

Texto completo da fonte
Resumo:
Purpose The purpose of this paper is to solve economic emission dispatch problem in connection of wind with hydro-thermal units. Design/methodology/approach The proposed hybrid methodology is the joined execution of both the modified salp swarm optimization algorithm (MSSA) with artificial intelligence technique aided with particle swarm optimization (PSO) technique. Findings The proposed approach is introduced to figure out the optimal power generated power from the thermal, wind farms and hydro units by minimizing the emission level and cost of generation simultaneously. The best compromise solution of the generation power outputs and related gas emission are subject to the equality and inequality constraints of the system. Here, MSSA is used to generate the optimal combination of thermal generator with the objective of minimum fuel and emission objective function. The proposed method also considers wind speed probability factor via PSO-artificial neural network (ANN) technique and hydro power generation at peak load demand condition to ensure economic utilization. Originality/value To validate the advantage of the proposed approach, six- and ten-units thermal systems are studied with fuel and emission cost. For minimizing the fuel and emission cost of the thermal system with the predicted wind speed factor, the proposed approach is used. The proposed approach is actualized in MATLAB/Simulink, and the results are examined with considering generation units and compared with various solution techniques. The comparison reveals the closeness of the proposed approach and proclaims its capability for handling multi-objective optimization problems of power systems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Shaaban, Mohamed Abdel Moneim, Hossein Zeynal e Khalid Nor. "MILP-Based Short-Term Thermal Unit Commitment and Hydrothermal Scheduling Including Cascaded Reservoirs and Fuel Constraints". International Journal of Electrical and Computer Engineering (IJECE) 9, n.º 4 (1 de agosto de 2019): 2732. http://dx.doi.org/10.11591/ijece.v9i4.pp2732-2742.

Texto completo da fonte
Resumo:
<span>Reservoirs are often built in cascade on the same river system, introducing inexorable constraints. It is therefore strategically important to scheme out an efficient commitment of thermal generation units along with the scheduling of hydro generation units for better operational efficiency, considering practical system conditions. This paper develops a comprehensive, unit-wise hydraulic model with reservoir and river system constraints, as well as gas constraints, with head effects, to commit thermal generation units and schedule hydro ones in the short-term. A mixed integer linear programming (MILP) methodology, using the branch and bound &amp; cut (BB&amp;C) algorithm, is employed to solve the resultant problem. Due to the detailed modelling of individual hydro units and cascaded dependent reservoirs, the problem size is substantially swollen. Multithread computing is invoked to accelerate the solution process. Simulation results, conducted on various test systems, reiterate that the developed MILP-based hydrothermal scheduling approach outperforms other techniques in terms of cost efficiency.</span>
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Yoshikawa, Motonobu, Hiroshi Nakajima, Yoshiyuki Kurebayashi, Toshiyuki Sawa, Mitsuo Kinoshita e Yuuji Nakata. "Method for Unit Commitment of Thermal and Pumped-storage Hydro Power Plants". IEEJ Transactions on Power and Energy 114, n.º 12 (1994): 1220–26. http://dx.doi.org/10.1541/ieejpes1990.114.12_1220.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Ploussard, Quentin, Thomas D. Veselka, Konstantinos Oikonomou e Nathalie Voisin. "Hydro-economics tradeoff surfaces to guide unit commitment in production cost models". Applied Energy 324 (outubro de 2022): 119728. http://dx.doi.org/10.1016/j.apenergy.2022.119728.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Reza Norouzi, Mohammad, Abdollah Ahmadi, Ali Esmaeel Nezhad e Amir Ghaedi. "Mixed integer programming of multi-objective security-constrained hydro/thermal unit commitment". Renewable and Sustainable Energy Reviews 29 (janeiro de 2014): 911–23. http://dx.doi.org/10.1016/j.rser.2013.09.020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Yuan, Xiaohui, Bin Ji, Yanbin Yuan, Rana M. Ikram, Xiaopan Zhang e Yuehua Huang. "An efficient chaos embedded hybrid approach for hydro-thermal unit commitment problem". Energy Conversion and Management 91 (fevereiro de 2015): 225–37. http://dx.doi.org/10.1016/j.enconman.2014.12.021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Paredes, M., L. S. A. Martins e S. Soares. "Using Semidefinite Relaxation to Solve the Day-Ahead Hydro Unit Commitment Problem". IEEE Transactions on Power Systems 30, n.º 5 (setembro de 2015): 2695–705. http://dx.doi.org/10.1109/tpwrs.2014.2359803.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Asir Rajan, C. Christober. "Hydro-thermal unit commitment problem using simulated annealing embedded evolutionary programming approach". International Journal of Electrical Power & Energy Systems 33, n.º 4 (maio de 2011): 939–46. http://dx.doi.org/10.1016/j.ijepes.2011.01.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Cristian Finardi, Erlon, e Murilo Reolon Scuzziato. "Hydro unit commitment and loading problem for day-ahead operation planning problem". International Journal of Electrical Power & Energy Systems 44, n.º 1 (janeiro de 2013): 7–16. http://dx.doi.org/10.1016/j.ijepes.2012.07.023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Postolov, Borče. "SECURITY CONSTRAINED HYDRO-THERMAL UNIT COMMITMENT FOR DIFFERENT HYDROLOGICAL SCENARIOS USING GENETIC ALGORITHM". Journal of Electrical Engineering and Information Technologies 6, n.º 1 (2021): 15–28. http://dx.doi.org/10.51466/jeeit2161182015p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Finardi, E. C., e E. L. daSilva. "Solving the Hydro Unit Commitment Problem via Dual Decomposition and Sequential Quadratic Programming". IEEE Transactions on Power Systems 21, n.º 2 (maio de 2006): 835–44. http://dx.doi.org/10.1109/tpwrs.2006.873121.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Finardi, E. C., R. D. Lobato, V. L. de Matos, C. Sagastizábal e A. Tomasgard. "Stochastic hydro-thermal unit commitment via multi-level scenario trees and bundle regularization". Optimization and Engineering 21, n.º 2 (3 de julho de 2019): 393–426. http://dx.doi.org/10.1007/s11081-019-09448-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Sahraoui, Youcef, Pascale Bendotti e Claudia D'Ambrosio. "Real-world hydro-power unit-commitment: Dealing with numerical errors and feasibility issues". Energy 184 (outubro de 2019): 91–104. http://dx.doi.org/10.1016/j.energy.2017.11.064.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Ming, Zeng, Zhang Kun e Wang Liang. "Study on unit commitment problem considering wind power and pumped hydro energy storage". International Journal of Electrical Power & Energy Systems 63 (dezembro de 2014): 91–96. http://dx.doi.org/10.1016/j.ijepes.2014.05.047.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Cheng, Xianliang, Suzhen Feng, Hao Zheng, Jinwen Wang e Shuangquan Liu. "A hierarchical model in short-term hydro scheduling with unit commitment and head-dependency". Energy 251 (julho de 2022): 123908. http://dx.doi.org/10.1016/j.energy.2022.123908.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Nayak, Nimain Charan. "A Hybrid EP-SA-TS Method To Solve The Hydro � Thermal Unit Commitment Problem". i-manager's Journal on Embedded Systems 2, n.º 4 (15 de janeiro de 2014): 1–11. http://dx.doi.org/10.26634/jes.2.4.2801.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Cheng, Chuntian, Jiayang Wang e Xinyu Wu. "Hydro Unit Commitment With a Head-Sensitive Reservoir and Multiple Vibration Zones Using MILP". IEEE Transactions on Power Systems 31, n.º 6 (novembro de 2016): 4842–52. http://dx.doi.org/10.1109/tpwrs.2016.2522469.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Padmini, S., R. Jegatheesan e K. Rubini. "A Novel Technique for Solving Hydrothermal Scheduling and Unit Commitment Using Artificial Immune System". Applied Mechanics and Materials 573 (junho de 2014): 679–83. http://dx.doi.org/10.4028/www.scientific.net/amm.573.679.

Texto completo da fonte
Resumo:
This paper presents an artificial immune system algorithm to the short-term hydrothermal scheduling and unit commitment problem. This technique is applied to maximize the profit of Generating Companies (GENCO) which consider the softer demand constraint. A novel method is proposed for solving Hydrothermal Scheduling (HTS) using Artificial Immune System (AIS) in a competitive electricity market. The proposed algorithm is tested on four-hydro and three-thermal system for 12 hours. It is observed from the numerical results that the proposed algorithm provides better profit as compared to the conventional method and hence can be adopted by GENCO. Keywords: Hydrothermal Scheduling (HTS), Artificial Immune System (AIS)
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Sediqi, Mohammad Masih, Mohammed Elsayed Lotfy, Abdul Matin Ibrahimi, Tomonobu Senjyu e Narayanan K. "Stochastic Unit Commitment and Optimal Power Trading Incorporating PV Uncertainty". Sustainability 11, n.º 16 (20 de agosto de 2019): 4504. http://dx.doi.org/10.3390/su11164504.

Texto completo da fonte
Resumo:
This paper focuses on the optimal unit commitment (UC) scheme along with optimal power trading for the Northeast Power System (NEPS) of Afghanistan with a penetration of 230 MW of PV power energy. The NEPS is the biggest power system of Afghanistan fed from three main sources; 1. Afghanistan’s own power generation units (three thermal units and three hydro units); 2. imported power from Tajikistan; 3. imported power from Uzbekistan. PV power forecasting fluctuations have been handled by means of 50 scenarios generated by Latin-hypercube sampling (LHS) after getting the point solar radiation forecast through the neural network (NN) toolbox. To carry out the analysis, we consider three deterministic UC and two stochastic UC cases with a two-stage programming model that indicates the day-ahead UC as the first stage and the intra-day operation of the system as the second stage. A binary-real genetic algorithm is coded in MATLAB software to optimize the proposed cases in terms of thermal units’ operation costs, import power tariffs, as well as from the perspective of the system reliability risks expressed as the reserve and load not served costs. The results indicate that in the deterministic UC models, the risk of reserve and load curtailment does exist. The stochastic UC approaches including the optimal power trading are superior to the deterministic ones. Moreover, the scheduled UC costs and reserves are different from the actual ones.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Marcelino, Carolina Gil, Carlos Camacho-Gómez, Silvia Jiménez-Fernández e Sancho Salcedo-Sanz. "Optimal Generation Scheduling in Hydro-Power Plants with the Coral Reefs Optimization Algorithm". Energies 14, n.º 9 (25 de abril de 2021): 2443. http://dx.doi.org/10.3390/en14092443.

Texto completo da fonte
Resumo:
Hydro-power plants are able to produce electrical energy in a sustainable way. A known format for producing energy is through generation scheduling, which is a task usually established as a Unit Commitment problem. The challenge in this process is to define the amount of energy that each turbine-generator needs to deliver to the plant, to fulfill the requested electrical dispatch commitment, while coping with the operational restrictions. An optimal generation scheduling for turbine-generators in hydro-power plants can offer a larger amount of energy to be generated with respect to non-optimized schedules, with significantly less water consumption. This work presents an efficient mathematical modelling for generation scheduling in a real hydro-power plant in Brazil. An optimization method based on different versions of the Coral Reefs Optimization algorithm with Substrate Layers (CRO) is proposed as an effective method to tackle this problem. This approach uses different search operators in a single population to refine the search for an optimal scheduling for this problem. We have shown that the solution obtained with the CRO using Gaussian search in exploration is able to produce competitive solutions in terms of energy production. The results obtained show a huge savings of 13.98 billion (liters of water) monthly projected versus the non-optimized scheduling.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Gomes e Souza, Henderson, Erlon Cristian Finardi, Brunno Henrique Brito e Fabrício Yutaka Kuwabata Takigawa. "Partitioning approach based on convex hull and multiple choice for solving hydro unit-commitment problems". Electric Power Systems Research 211 (outubro de 2022): 108285. http://dx.doi.org/10.1016/j.epsr.2022.108285.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Borghetti, A., C. D'Ambrosio, A. Lodi e S. Martello. "An MILP Approach for Short-Term Hydro Scheduling and Unit Commitment With Head-Dependent Reservoir". IEEE Transactions on Power Systems 23, n.º 3 (agosto de 2008): 1115–24. http://dx.doi.org/10.1109/tpwrs.2008.926704.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

van Ackooij, Wim. "Decomposition approaches for block-structured chance-constrained programs with application to hydro-thermal unit commitment". Mathematical Methods of Operations Research 80, n.º 3 (23 de agosto de 2014): 227–53. http://dx.doi.org/10.1007/s00186-014-0478-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Rudolf, A., e R. Bayrleithner. "A genetic algorithm for solving the unit commitment problem of a hydro-thermal power system". IEEE Transactions on Power Systems 14, n.º 4 (1999): 1460–68. http://dx.doi.org/10.1109/59.801929.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Taktak, Raouia, e Claudia D’Ambrosio. "An overview on mathematical programming approaches for the deterministic unit commitment problem in hydro valleys". Energy Systems 8, n.º 1 (13 de janeiro de 2016): 57–79. http://dx.doi.org/10.1007/s12667-015-0189-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Gea-Bermúdez, Juan, Kaushik Das, Hardi Koduvere e Matti Juhani Koivisto. "Day-Ahead Market Modelling of Large-Scale Highly-Renewable Multi-Energy Systems: Analysis of the North Sea Region towards 2050". Energies 14, n.º 1 (25 de dezembro de 2020): 88. http://dx.doi.org/10.3390/en14010088.

Texto completo da fonte
Resumo:
This paper proposes a mathematical model in order to simulate Day-ahead markets of large-scale multi-energy systems with a high share of renewable energy. Furthermore, it analyses the importance of including unit commitment when performing such analysis. The results of the case study, which is performed for the North Sea region, show the influence of massive renewable penetration in the energy sector and increasing electrification of the district heating sector towards 2050, and how this impacts the role of other energy sources, such as thermal and hydro. The penetration of wind and solar is likely to challenge the need for balancing in the system as well as the profitability of thermal units. The degree of influence of the unit commitment approach is found to be dependent on the configuration of the energy system. Overall, including unit commitment constraints with integer variables leads to more realistic behaviour of the units, at the cost of considerably increasing the computational time. Relaxing integer variables significantly reduces the computational time, without highly compromising the accuracy of the results. The proposed model, together with the insights from the study case, can be especially useful for system operators for optimal operational planning.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Parvez, Iram, JianJian Shen, Mehran Khan e Chuntian Cheng. "Modeling and Solution Techniques Used for Hydro Generation Scheduling". Water 11, n.º 7 (6 de julho de 2019): 1392. http://dx.doi.org/10.3390/w11071392.

Texto completo da fonte
Resumo:
The hydro generation scheduling problem has a unit commitment sub-problem which deals with start-up/shut-down costs related hydropower units. Hydro power is the only renewable energy source for many countries, so there is a need to find better methods which give optimal hydro scheduling. In this paper, the different optimization techniques like lagrange relaxation, augmented lagrange relaxation, mixed integer programming methods, heuristic methods like genetic algorithm, fuzzy logics, nonlinear approach, stochastic programming and dynamic programming techniques are discussed. The lagrange relaxation approach deals with constraints of pumped storage hydro plants and gives efficient results. Dynamic programming handles simple constraints and it is easily adaptable but its major drawback is curse of dimensionality. However, the mixed integer nonlinear programming, mixed integer linear programming, sequential lagrange and non-linear approach deals with network constraints and head sensitive cascaded hydropower plants. The stochastic programming, fuzzy logics and simulated annealing is helpful in satisfying the ramping rate, spinning reserve and power balance constraints. Genetic algorithm has the ability to obtain the results in a short interval. Fuzzy logic never needs a mathematical formulation but it is very complex. Future work is also suggested.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Nieva, R., A. Inda e J. Frausto. "CHT: A Digital Computer Package for Solving Short Term Hydro-Thermal Coordination and Unit Commitment Problems". IEEE Power Engineering Review PER-6, n.º 8 (agosto de 1986): 42–43. http://dx.doi.org/10.1109/mper.1986.5527793.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Aoki, K., T. Satoh, M. Itoh, T. Ichimori e K. Masegi. "Unit Commitment in a Large-Scale Power System Including Fuel Constrained Thermal and Pumped-Storage Hydro". IEEE Power Engineering Review PER-7, n.º 11 (novembro de 1987): 51–52. http://dx.doi.org/10.1109/mper.1987.5526916.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Vieira, Bruno, Ana Viana, Manuel Matos e João Pedro Pedroso. "A multiple criteria utility-based approach for unit commitment with wind power and pumped storage hydro". Electric Power Systems Research 131 (fevereiro de 2016): 244–54. http://dx.doi.org/10.1016/j.epsr.2015.10.024.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Nieva, R., A. Inda e J. Frausto. "CHT: A Digital Computer Package for Solving Short Term Hydro-Thermal Coordination and Unit Commitment Problems". IEEE Transactions on Power Systems 1, n.º 3 (1986): 168–74. http://dx.doi.org/10.1109/tpwrs.1986.4334977.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Aoki, K., T. Satoh, M. Itoh, T. Ichimori e K. Masegi. "Unit Commitment in a Large-Scale Power System including Fuel Constrained Thermal and Pumped-Storage Hydro". IEEE Transactions on Power Systems 2, n.º 4 (1987): 1077–84. http://dx.doi.org/10.1109/tpwrs.1987.4335304.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia