Artigos de revistas sobre o tema "Hydraulic fluids contamination"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hydraulic fluids contamination".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Paul, Sumit, Wolfgang Legner, Angelika Krenkow, Gerhard Müller, Thierry Lemettais, Francois Pradat e Delphine Hertens. "Chemical Contamination Sensor for Phosphate Ester Hydraulic Fluids". International Journal of Aerospace Engineering 2010 (2010): 1–9. http://dx.doi.org/10.1155/2010/156281.
Texto completo da fonteAliboyev, B. A. "Reliability of tractor hydraulic systems in the context of purity of power fluid". Traktory i sel hozmashiny 82, n.º 6 (15 de junho de 2015): 26–29. http://dx.doi.org/10.17816/0321-4443-65416.
Texto completo da fonteMajdan, R., Z. Tkáč, B. Stančík, R. Abrahám, I. Štulajter, P. Ševčík e M. Rášo. "Elimination of ecological fluids contamination in agricultural tractors". Research in Agricultural Engineering 60, Special Issue (30 de dezembro de 2014): S9—S15. http://dx.doi.org/10.17221/27/2013-rae.
Texto completo da fonteMain, B. G. "Explosion Hazards in Offshore Motion Compensators". Proceedings of the Institution of Mechanical Engineers, Part A: Power and Process Engineering 199, n.º 4 (novembro de 1985): 229–35. http://dx.doi.org/10.1243/pime_proc_1985_199_029_02.
Texto completo da fonteSCHOLZ, Dieter. "Routes of Aircraft Cabin Air Contamination from Engine Oil, Hydraulic and Deicing Fluid". INCAS BULLETIN 14, n.º 1 (7 de março de 2022): 153–70. http://dx.doi.org/10.13111/2066-8201.2022.14.1.13.
Texto completo da fonteKučera, Marián, Zdeněk Aleš, Jan Mareček e Pavel Máchal. "Effect of Contamination on the Lifetime of Hydraulic Oils and Systems". Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 65, n.º 4 (2017): 1205–12. http://dx.doi.org/10.11118/actaun201765041205.
Texto completo da fonteOwens, E. H., G. H. Smith e I. A. Reading. "An instrument for measurement of water contamination in hydraulic fluids". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 221, n.º 2 (fevereiro de 2007): 167–70. http://dx.doi.org/10.1243/09544070jauto457.
Texto completo da fonteTheissen, Heinrich W., David G. Holt, David K. Wills e S. W. Dean. "Effects of Contamination of Biobased Hydraulic Fluids with Mineral Oil". Journal of ASTM International 6, n.º 1 (2009): 101598. http://dx.doi.org/10.1520/jai101598.
Texto completo da fonteHunt, T. M. "Particle contamination and filtration of hydraulic fluids, lubricants and fuels". Tribology International 21, n.º 5 (outubro de 1988): 297–98. http://dx.doi.org/10.1016/0301-679x(88)90012-6.
Texto completo da fonteJanoško, I., T. Polonec e S. Lindák. "Performance parameters monitoring of the hydraulic system with bio-oil". Research in Agricultural Engineering 60, Special Issue (30 de dezembro de 2014): S37—S43. http://dx.doi.org/10.17221/32/2013-rae.
Texto completo da fonteHelwig, Andreas, Gerhard Müller e Sumit Paul. "Health Monitoring of Aviation Hydraulic Fluids Using Opto-Chemical Sensor Technologies". Chemosensors 8, n.º 4 (13 de dezembro de 2020): 131. http://dx.doi.org/10.3390/chemosensors8040131.
Texto completo da fonteKhan, Thawhid, Matthew Broderick e Chris M. Taylor. "Investigating the industrial impact of hydraulic oil contamination on tool wear during machining and the development of a novel quantification methodology". International Journal of Advanced Manufacturing Technology 112, n.º 1-2 (22 de novembro de 2020): 589–600. http://dx.doi.org/10.1007/s00170-020-06370-y.
Texto completo da fonteMouallem, Carlos, Wilson Trigueiro de Sousa, Ivo Eyer Cabral e Adilson Curi. "Perspectives for use of hydraulic fracturing in oil and gas production". Rem: Revista Escola de Minas 67, n.º 4 (dezembro de 2014): 373–78. http://dx.doi.org/10.1590/0370-44672014670168.
Texto completo da fonteMartínez-Sánchez, Dilan Arturo, e Giovanny Jiménez Díaz. "Hydraulic fracturing considerations: Insights from analogue models, and its viability in Colombia". Earth Sciences Research Journal 23, n.º 1 (1 de janeiro de 2019): 5–15. http://dx.doi.org/10.15446/esrj.v23n1.69760.
Texto completo da fonteDakheel Almaliki, Alaa J., Mohammed J. K. Bashir e Juan F. Llamas Borrajo. "Appraisal of groundwater contamination from surface spills of fluids associated with hydraulic fracturing operations". Science of The Total Environment 815 (abril de 2022): 152949. http://dx.doi.org/10.1016/j.scitotenv.2022.152949.
Texto completo da fontePichtel, John. "Oil and Gas Production Wastewater: Soil Contamination and Pollution Prevention". Applied and Environmental Soil Science 2016 (2016): 1–24. http://dx.doi.org/10.1155/2016/2707989.
Texto completo da fonteNegrini, Daniela, Alberto Passi, Katia Bertin, Federica Bosi e Helge Wiig. "Isolation of pulmonary interstitial fluid in rabbits by a modified wick technique". American Journal of Physiology-Lung Cellular and Molecular Physiology 280, n.º 5 (1 de maio de 2001): L1057—L1065. http://dx.doi.org/10.1152/ajplung.2001.280.5.l1057.
Texto completo da fonteLlewellyn, Garth T., Frank Dorman, J. L. Westland, D. Yoxtheimer, Paul Grieve, Todd Sowers, E. Humston-Fulmer e Susan L. Brantley. "Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development". Proceedings of the National Academy of Sciences 112, n.º 20 (4 de maio de 2015): 6325–30. http://dx.doi.org/10.1073/pnas.1420279112.
Texto completo da fonteMáchal, Pavel, Radoslav Majdan, Zdenko Tkáč, Bohuslav Stančík, Rudolf Abrahám, Ivan Štulajter, Peter Ševčík e Milan Rášo. "Design and verification of additional filtration for the application of ecological transmission and hydraulic fluids in tractorc". Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 61, n.º 5 (2013): 1305–11. http://dx.doi.org/10.11118/actaun201361051305.
Texto completo da fonteAlmaliki, Alaa Jasim Dakheel, Mohammed J. K. Bashir e Juan F. Llamas Borrajo. "The Impact of Climate Change and Soil Classification on Benzene Concentration in Groundwater Due to Surface Spills of Hydraulic Fracturing Fluids". Water 14, n.º 8 (8 de abril de 2022): 1202. http://dx.doi.org/10.3390/w14081202.
Texto completo da fontePochi, Daniele, Renato Grilli, Laura Fornaciari, Monica Betto, Stefano Benigni e Roberto Fanigliulo. "Bench Testing of Sensors Utilized for In-Line Monitoring of Lubricants and Hydraulic Fluids Properties". Sensors 21, n.º 24 (8 de dezembro de 2021): 8201. http://dx.doi.org/10.3390/s21248201.
Texto completo da fonteZhang, Lifu, Michael Tice e Berna Hascakir. "A Laboratory Study of the Impact of Reinjecting Flowback Fluids on Formation Damage in the Marcellus Shale". SPE Journal 25, n.º 02 (21 de janeiro de 2020): 788–99. http://dx.doi.org/10.2118/195336-pa.
Texto completo da fonteAhmed, Amna, Teresa Zhu e Amna Majeed. "Taking the hydro out of hydrofracturing: Application of ultra-light weight proppants to cryogenic liquid nitrogen as a fracturing fluid". University of Ottawa Science Undergraduate Research Journal 1 (23 de agosto de 2018): 57. http://dx.doi.org/10.18192/osurj.v1i1.3711.
Texto completo da fonteSong, Charles C. S., e Mingshun Yuan. "A Weakly Compressible Flow Model and Rapid Convergence Methods". Journal of Fluids Engineering 110, n.º 4 (1 de dezembro de 1988): 441–45. http://dx.doi.org/10.1115/1.3243575.
Texto completo da fontePeng, Weihong, Menglin Du, Feng Gao, Xuan Dong e Hongmei Cheng. "A New Analysis Model for Potential Contamination of a Shallow Aquifer from a Hydraulically-Fractured Shale". Energies 11, n.º 11 (1 de novembro de 2018): 3010. http://dx.doi.org/10.3390/en11113010.
Texto completo da fonteOsenbrück, Karsten, Eva Blendinger, Carsten Leven, Hermann Rügner, Michael Finkel, Natalia Jakus, Hartmut Schulz e Peter Grathwohl. "Nitrate reduction potential of a fractured Middle Triassic carbonate aquifer in Southwest Germany". Hydrogeology Journal 30, n.º 1 (7 de dezembro de 2021): 163–80. http://dx.doi.org/10.1007/s10040-021-02418-9.
Texto completo da fonteUłanowicz, Leszek, Grzegorz Jastrzębski, Michał Jóźko, Ryszard Sabak e Paweł Szczepaniak. "Hydraulic plunger pump contamination sensitivity evaluation". Journal of KONBiN 48, n.º 1 (1 de dezembro de 2018): 371–83. http://dx.doi.org/10.2478/jok-2018-0061.
Texto completo da fonteCozzens, D. A., P. D. Rao, W. W. Olson, J. W. Sutherland e J. Mark Panetta. "An Experimental Investigation into the Effect of Cutting Fluid Conditions on the Boring of Aluminum Alloys". Journal of Manufacturing Science and Engineering 121, n.º 3 (1 de agosto de 1999): 434–39. http://dx.doi.org/10.1115/1.2832700.
Texto completo da fonteDusa, Petru, Eugen Purice, Radu Lupascu, Iustina Ripanu e Gabriel Fandarac. "Configuring a system for hydraulic oil contamination management". MATEC Web of Conferences 178 (2018): 04008. http://dx.doi.org/10.1051/matecconf/201817804008.
Texto completo da fonteJozef Krilek, Jozef, Jan Kovach, Tomash Kuvik e Lucia Dobrotova. "Analysis of the hydraulic oil to drive band sawmill". Scientific Bulletin of UNFU 29, n.º 10 (26 de dezembro de 2019): 89–92. http://dx.doi.org/10.36930/40291018.
Texto completo da fonteElshahawi, Hani, Mohamed Naguib Hashem, Daniel McKinney, Mario Ardila e Cosan Ayan. "The Power of Real-Time Monitoring and Interpretation in Wireline Formation Testing-Case Studies". SPE Reservoir Evaluation & Engineering 10, n.º 03 (1 de junho de 2007): 241–50. http://dx.doi.org/10.2118/94708-pa.
Texto completo da fonteGunko, Iryna, Mykola Stadnik, Serhiy Shargorodskiy e Volodymyr Rutkevych. "COMPREHENSIVE FILTRATION SYSTEM FOR CLOSED HYDROSYSTEMS OF AGRICULTURAL EQUIPMENT". ENGINEERING, ENERGY, TRANSPORT AIC, n.º 1(112) (23 de março de 2021): 113–25. http://dx.doi.org/10.37128/2520-6168-2021-1-13.
Texto completo da fonteHui, Ji, Nie Song-Lin e Bai Xiao-Rong. "Simulation on mechanism of contamination mitigation through Higee and hydrocyclone techniques in fluid power system". Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 232, n.º 1 (13 de dezembro de 2016): 77–93. http://dx.doi.org/10.1177/0954408916684161.
Texto completo da fonteKosiba, J., Z. Tkáč, Ľ. Hujo, B. Stančík e I. Štulajter. "The operation of agricultural tractor with universal ecological oil". Research in Agricultural Engineering 59, Special Issue (13 de dezembro de 2013): S27—S33. http://dx.doi.org/10.17221/48/2012-rae.
Texto completo da fonteAngelaki, Anastasia, Alkiviadis Dionysidis, Parveen Sihag e Evangelia E. Golia. "Assessment of Contamination Management Caused by Copper and Zinc Cations Leaching and Their Impact on the Hydraulic Properties of a Sandy and a Loamy Clay Soil". Land 11, n.º 2 (14 de fevereiro de 2022): 290. http://dx.doi.org/10.3390/land11020290.
Texto completo da fonteDomagała, Mariusz, Hassan Momeni, Joanna Fabiś-Domagała, Grzegorz Filo e Paweł Lempa. "Simulations of Safety Vales for Fluid Power Systems". System Safety: Human - Technical Facility - Environment 1, n.º 1 (1 de março de 2019): 670–77. http://dx.doi.org/10.2478/czoto-2019-0085.
Texto completo da fonteHujo, Lubomir, Jozef Nosian, Marcin Zastempowski, Jan Kosiba, Jerzy Kaszkowiak e Matej Michalides. "Laboratory tests of the hydraulic pump operating load with monitoring of changes in the physical properties". Measurement and Control 54, n.º 3-4 (2 de fevereiro de 2021): 243–51. http://dx.doi.org/10.1177/0020294020983385.
Texto completo da fonteBaryshev, V. I., e V. V. Panov. "Key deterioration factors of hydrostatic bearings of the axial-piston hydraulic machines". Traktory i sel hozmashiny 80, n.º 1 (15 de janeiro de 2013): 34–37. http://dx.doi.org/10.17816/0321-4443-65912.
Texto completo da fontePimonov, Igor, Igor Pohorilyi e Maksim Fedyuchkov. "Establishment of rational parameters of temperature of working liquid in the hydraulic drive of the excavator of the fourth dimensional group at different equipment". Bulletin of Kharkov National Automobile and Highway University, n.º 95 (16 de dezembro de 2021): 98. http://dx.doi.org/10.30977/bul.2219-5548.2021.95.0.98.
Texto completo da fonteBarbour, S. L., e N. Yang. "A review of the influence of clay–brine interactions on the geotechnical properties of Ca-montmorillonitic clayey soils from western Canada". Canadian Geotechnical Journal 30, n.º 6 (1 de dezembro de 1993): 920–34. http://dx.doi.org/10.1139/t93-090.
Texto completo da fonteHay, Nicola. "Because looks aren't everything. A meter for contamination testing of hydraulic fluid". Electronics Education 1994, n.º 2 (1994): 25–27. http://dx.doi.org/10.1049/ee.1994.0051.
Texto completo da fontePark, Gun, Hyungchul Yoon e Ki-Nam Hong. "Proposed Equations for Calculating Dynamic Hydraulic Pressure in a Rectangular Structure". Applied Sciences 10, n.º 23 (26 de novembro de 2020): 8406. http://dx.doi.org/10.3390/app10238406.
Texto completo da fonteHe, Zhenghui, Mingqi Cheng e Xiaoping Ji. "AN ANALYSIS OF THE PARTICULATE CONTAMINATION IN HYDRAULIC FLUID USING PATTERN RECOGNITION TECHNIQUES". Proceedings of the JFPS International Symposium on Fluid Power 1989, n.º 1 (1989): 595–99. http://dx.doi.org/10.5739/isfp.1989.595.
Texto completo da fonteShanbhag, Vignesh V., Thomas J. J. Meyer, Leo W. Caspers e Rune Schlanbusch. "Defining acoustic emission-based condition monitoring indicators for monitoring piston rod seal and bearing wear in hydraulic cylinders". International Journal of Advanced Manufacturing Technology 115, n.º 9-10 (28 de maio de 2021): 2729–46. http://dx.doi.org/10.1007/s00170-021-07340-8.
Texto completo da fonteFang, Sheng, e Xian Lin Gen. "Managing Varnish of Turbine Oil". Advanced Materials Research 842 (novembro de 2013): 341–44. http://dx.doi.org/10.4028/www.scientific.net/amr.842.341.
Texto completo da fonteOtto, Christopher, Svenja Steding, Morgan Tranter, Torsten Gorka, Mária Hámor-Vidó, Wioleta Basa, Krzysztof Kapusta, István Kalmár e Thomas Kempka. "Numerical Analysis of Potential Contaminant Migration from Abandoned In Situ Coal Conversion Reactors". Advances in Geosciences 58 (21 de novembro de 2022): 55–66. http://dx.doi.org/10.5194/adgeo-58-55-2022.
Texto completo da fonteQuigley, R. M., F. Fernandez, E. Yanful, T. Helgason, A. Margaritis e J. L. Whitby. "Hydraulic conductivity of contaminated natural clay directly below a domestic landfill". Canadian Geotechnical Journal 24, n.º 3 (1 de agosto de 1987): 377–83. http://dx.doi.org/10.1139/t87-048.
Texto completo da fonteYılmaz, Özgür, Murat Aksoy e Zehan Kesilmiş. "Investigation of the Relationship between Vibration Signals Due to Oil Impurity and Cavitation Bubbles in Hydraulic Pumps". Electronics 11, n.º 10 (12 de maio de 2022): 1549. http://dx.doi.org/10.3390/electronics11101549.
Texto completo da fonteYuan, Chenggang, Vinrea Lim Mao Lung, Andrew Plummer e Min Pan. "Theoretical and Experimental Studies of a Digital Flow Booster Operating at High Pressures and Flow Rates". Processes 8, n.º 2 (10 de fevereiro de 2020): 211. http://dx.doi.org/10.3390/pr8020211.
Texto completo da fonteTaherdangkoo, Reza, Alexandru Tatomir, Mohammad Taherdangkoo, Pengxiang Qiu e Martin Sauter. "Nonlinear Autoregressive Neural Networks to Predict Hydraulic Fracturing Fluid Leakage into Shallow Groundwater". Water 12, n.º 3 (17 de março de 2020): 841. http://dx.doi.org/10.3390/w12030841.
Texto completo da fonte