Artigos de revistas sobre o tema "Hybrid solid electrolyte"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hybrid solid electrolyte".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kanai, Yamato, Koji Hiraoka, Mutsuhiro Matsuyama e Shiro Seki. "Chemically and Physically Cross-Linked Inorganic–Polymer Hybrid Solvent-Free Electrolytes". Batteries 9, n.º 10 (26 de setembro de 2023): 492. http://dx.doi.org/10.3390/batteries9100492.
Texto completo da fonteLv, Wenjing, Kaidong Zhan, Xuecheng Ren, Lu Chen e Fan Wu. "Comparing Charge Dynamics in Organo-Inorganic Halide Perovskite: Solid-State versus Solid-Liquid Junctions". Journal of Nanoelectronics and Optoelectronics 19, n.º 2 (1 de fevereiro de 2024): 121–28. http://dx.doi.org/10.1166/jno.2024.3556.
Texto completo da fonteChoi, Kyoung Hwan, Eunjeong Yi, Kyeong Joon Kim, Seunghwan Lee, Myung-Soo Park, Hansol Lee e Pilwon Heo. "(Invited) Pragmatic Approach and Challenges of All Solid State Batteries: Hybrid Solid Electrolyte for Technical Innovation". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 988. http://dx.doi.org/10.1149/ma2023-016988mtgabs.
Texto completo da fonteLiao, Cheng Hung, Chia-Chin Chen, Ru-Jong Jeng e Nae-Lih (Nick) Wu. "Application of Artificial Interphase on Ni-Rich Cathode Materials Via Hybrid Ceramic-Polymer Electrolyte in All Solid State Batteries". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 1050. http://dx.doi.org/10.1149/ma2023-0161050mtgabs.
Texto completo da fonteLI, X. D., X. J. YIN, C. F. LIN, D. W. ZHANG, Z. A. WANG, Z. SUN e S. M. HUANG. "INFLUENCE OF I2 CONCENTRATION AND CATIONS ON THE PERFORMANCE OF QUASI-SOLID-STATE DYE-SENSITIZED SOLAR CELLS WITH THERMOSETTING POLYMER GEL ELECTROLYTE". International Journal of Nanoscience 09, n.º 04 (agosto de 2010): 295–99. http://dx.doi.org/10.1142/s0219581x10006831.
Texto completo da fonteZahiri, Beniamin, Chadd Kiggins, Dijo Damien, Michael Caple, Arghya Patra, Carlos Juarez Yescaz, John B. Cook e Paul V. Braun. "Hybrid Halide Solid Electrolytes and Bottom-up Cell Assembly Enable High Voltage Solid-State Lithium Batteries". ECS Meeting Abstracts MA2022-01, n.º 2 (7 de julho de 2022): 327. http://dx.doi.org/10.1149/ma2022-012327mtgabs.
Texto completo da fonteZhai, Yanfang, Wangshu Hou, Zongyuan Chen, Zhong Zeng, Yongmin Wu, Wensheng Tian, Xiao Liang et al. "A hybrid solid electrolyte for high-energy solid-state sodium metal batteries". Applied Physics Letters 120, n.º 25 (20 de junho de 2022): 253902. http://dx.doi.org/10.1063/5.0095923.
Texto completo da fonteVargas-Barbosa, Nella Marie, Sebastian Puls e Henry Michael Woolley. "Hybrid Material Concepts for Thiophosphate-Based Solid-State Batteries". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 984. http://dx.doi.org/10.1149/ma2023-016984mtgabs.
Texto completo da fonteZaman, Wahid, Nicholas Hortance, Marm B. Dixit, Vincent De Andrade e Kelsey B. Hatzell. "Visualizing percolation and ion transport in hybrid solid electrolytes for Li–metal batteries". Journal of Materials Chemistry A 7, n.º 41 (2019): 23914–21. http://dx.doi.org/10.1039/c9ta05118j.
Texto completo da fonteMohanty, Debabrata, Shu-Yu Chen e I.-Ming Hung. "Effect of Lithium Salt Concentration on Materials Characteristics and Electrochemical Performance of Hybrid Inorganic/Polymer Solid Electrolyte for Solid-State Lithium-Ion Batteries". Batteries 8, n.º 10 (9 de outubro de 2022): 173. http://dx.doi.org/10.3390/batteries8100173.
Texto completo da fonteSpencer Jolly, Dominic, Dominic L. R. Melvin, Isabella D. R. Stephens, Rowena H. Brugge, Shengda D. Pu, Junfu Bu, Ziyang Ning et al. "Interfaces between Ceramic and Polymer Electrolytes: A Comparison of Oxide and Sulfide Solid Electrolytes for Hybrid Solid-State Batteries". Inorganics 10, n.º 5 (26 de abril de 2022): 60. http://dx.doi.org/10.3390/inorganics10050060.
Texto completo da fonteSpencer Jolly, Dominic, Dominic L. R. Melvin, Isabella D. R. Stephens, Rowena H. Brugge, Shengda D. Pu, Junfu Bu, Ziyang Ning et al. "Interfaces between Ceramic and Polymer Electrolytes: A Comparison of Oxide and Sulfide Solid Electrolytes for Hybrid Solid-State Batteries". Inorganics 10, n.º 5 (26 de abril de 2022): 60. http://dx.doi.org/10.3390/inorganics10050060.
Texto completo da fonteGu, Sui, Xiao Huang, Qing Wang, Jun Jin, Qingsong Wang, Zhaoyin Wen e Rong Qian. "A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries". Journal of Materials Chemistry A 5, n.º 27 (2017): 13971–75. http://dx.doi.org/10.1039/c7ta04017b.
Texto completo da fonteVillaluenga, Irune, Kevin H. Wujcik, Wei Tong, Didier Devaux, Dominica H. C. Wong, Joseph M. DeSimone e Nitash P. Balsara. "Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries". Proceedings of the National Academy of Sciences 113, n.º 1 (22 de dezembro de 2015): 52–57. http://dx.doi.org/10.1073/pnas.1520394112.
Texto completo da fonteWoolley, Henry Michael, e Nella Vargas-Barbosa. "Electrochemical Characterization of Thiophosphate- Ionic Liquid Hybrid Lithium Electrolytes Against Li Metal". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 986. http://dx.doi.org/10.1149/ma2023-016986mtgabs.
Texto completo da fonteLim, Seung, Juyoung Moon, Uoon Baek, Jae Lee, Youngjin Chae e Jung Park. "Shape-Controlled TiO2 Nanomaterials-Based Hybrid Solid-State Electrolytes for Solar Energy Conversion with a Mesoporous Carbon Electrocatalyst". Nanomaterials 11, n.º 4 (3 de abril de 2021): 913. http://dx.doi.org/10.3390/nano11040913.
Texto completo da fonteSong, Shufeng, Masashi Kotobuki, Feng Zheng, Qibin Li, Chaohe Xu, Yu Wang, Wei Dong Z. Li, Ning Hu e Li Lu. "Al conductive hybrid solid polymer electrolyte". Solid State Ionics 300 (fevereiro de 2017): 165–68. http://dx.doi.org/10.1016/j.ssi.2016.12.023.
Texto completo da fonteCHENG, Xiong, Man LI, Yang Li, Seunghyun Song, Sowjanya Vallem e Joonho Bae. "Novel DNA-Based Polymer Solid Electrolytes for Lithium-Ion Batteries". ECS Meeting Abstracts MA2024-01, n.º 2 (9 de agosto de 2024): 350. http://dx.doi.org/10.1149/ma2024-012350mtgabs.
Texto completo da fonteKim, Jae-Kwang, Young Jun Lim, Hyojin Kim, Gyu-Bong Cho e Youngsik Kim. "A hybrid solid electrolyte for flexible solid-state sodium batteries". Energy & Environmental Science 8, n.º 12 (2015): 3589–96. http://dx.doi.org/10.1039/c5ee01941a.
Texto completo da fonteMéry, Adrien, Steeve Rousselot, David Lepage, David Aymé-Perrot e Mickael Dollé. "Limiting Factors Affecting the Ionic Conductivities of LATP/Polymer Hybrid Electrolytes". Batteries 9, n.º 2 (28 de janeiro de 2023): 87. http://dx.doi.org/10.3390/batteries9020087.
Texto completo da fonteShah, Rajesh, Vikram Mittal e Angelina Mae Precilla. "Challenges and Advancements in All-Solid-State Battery Technology for Electric Vehicles". J 7, n.º 3 (27 de junho de 2024): 204–17. http://dx.doi.org/10.3390/j7030012.
Texto completo da fonteThangadurai, Venkataraman. "(Invited) Garnet Solid Electrolytes for Advanced All-Solid-State Li Metal Batteries". ECS Meeting Abstracts MA2022-02, n.º 47 (9 de outubro de 2022): 1759. http://dx.doi.org/10.1149/ma2022-02471759mtgabs.
Texto completo da fonteRyu, Kun, Kyungbin Lee, Hyun Ju, Jinho Park, Ilan Stern e Seung Woo Lee. "Ceramic/Polymer Hybrid Electrolyte with Enhanced Interfacial Contact for All-Solid-State Lithium Batteries". ECS Meeting Abstracts MA2022-02, n.º 7 (9 de outubro de 2022): 2621. http://dx.doi.org/10.1149/ma2022-0272621mtgabs.
Texto completo da fonteSHIMANO, Satoshi, e Itaru HONMA. "Organic-Inorganic Nano-Hybrid Solid-State-Electrolyte". Kobunshi 56, n.º 3 (2007): 141. http://dx.doi.org/10.1295/kobunshi.56.141.
Texto completo da fonteGiffin, Guinevere A., Mara Goettlinger, Hendrik Bohn, Simone Peters, Mario Weller, Alexander Naßmacher, Timo Brändel e Alex Friesen. "Development of a Polymer-Based Silicon-NMC Solid-State Cell". ECS Meeting Abstracts MA2023-02, n.º 2 (22 de dezembro de 2023): 373. http://dx.doi.org/10.1149/ma2023-022373mtgabs.
Texto completo da fonteKim, Ji Sook, Sun Hwa Lee e Dong Wook Shin. "Fabrication of Hybrid Solid Electrolyte by LiPF6 Liquid Electrolyte Infiltration into Nano-Porous Na2O-SiO2-B2O3 Glass Membrane". Solid State Phenomena 124-126 (junho de 2007): 1027–30. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1027.
Texto completo da fonteThangadurai, Venkataraman. "(Invited) Lithium – Sulfur Batteries". ECS Meeting Abstracts MA2022-02, n.º 4 (9 de outubro de 2022): 545. http://dx.doi.org/10.1149/ma2022-024545mtgabs.
Texto completo da fonteJi, Xiaoyu, Yiruo Zhang, Mengxue Cao, Quanchao Gu, Honglei Wang, Jinshan Yu, Zi-Hao Guo e Xingui Zhou. "Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries". Journal of Advanced Ceramics 11, n.º 6 (13 de maio de 2022): 835–61. http://dx.doi.org/10.1007/s40145-022-0580-8.
Texto completo da fonteJiang, Wen, Lingling Dong, Shuanghui Liu, Bing Ai, Shuangshuang Zhao, Weimin Zhang, Kefeng Pan e Lipeng Zhang. "Improvement of the Interface between the Lithium Anode and a Garnet-Type Solid Electrolyte of Lithium Batteries Using an Aluminum-Nitride Layer". Nanomaterials 12, n.º 12 (12 de junho de 2022): 2023. http://dx.doi.org/10.3390/nano12122023.
Texto completo da fonteTeshima, Katsuya, Hajime Wagata e Shuji Oishi. "All-Crystal-State Lithium-Ion Batteries: Innovation Inspired by Novel Flux Coating Method." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2013, CICMT (1 de setembro de 2013): 000187–91. http://dx.doi.org/10.4071/cicmt-wp41.
Texto completo da fonteKirchberger, Anna Maria, Patrick Walke e Tom Nilges. "Effect of Nanostructured Inorganic Ceramic Filler on Poly(ethylene oxide)-Based Solid Polymer Electrolytes". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 991. http://dx.doi.org/10.1149/ma2023-016991mtgabs.
Texto completo da fontePeng, Shihao, Jiakun Luo, Wenwen Liu, Xiaolong He e Fang Xie. "Enhanced Capacity Retention of Li3V2(PO4)3-Cathode-Based Lithium Metal Battery Using SiO2-Scaffold-Confined Ionic Liquid as Hybrid Solid-State Electrolyte". Molecules 28, n.º 13 (21 de junho de 2023): 4896. http://dx.doi.org/10.3390/molecules28134896.
Texto completo da fonteMuñoz, Bianca K., Jorge Lozano, María Sánchez e Alejandro Ureña. "Hybrid Solid Polymer Electrolytes Based on Epoxy Resins, Ionic Liquid, and Ceramic Nanoparticles for Structural Applications". Polymers 16, n.º 14 (18 de julho de 2024): 2048. http://dx.doi.org/10.3390/polym16142048.
Texto completo da fonteWang, Linsheng. "Development of Novel High Li-Ion Conductivity Hybrid Electrolytes of Li10GeP2S12 (LGPS) and Li6.6La3Zr1.6Sb0.4O12 (LLZSO) for Advanced All-Solid-State Batteries". Oxygen 1, n.º 1 (15 de julho de 2021): 16–21. http://dx.doi.org/10.3390/oxygen1010003.
Texto completo da fonteGerstenberg, Jessica, Dominik Steckermeier, Arno Kwade e Peter Michalowski. "Effect of Mixing Intensity on Electrochemical Performance of Oxide/Sulfide Composite Electrolytes". Batteries 10, n.º 3 (7 de março de 2024): 95. http://dx.doi.org/10.3390/batteries10030095.
Texto completo da fonteZhang, L. X., Y. Z. Li, L. W. Shi, R. J. Yao, S. S. Xia, Y. Wang e Y. P. Yang. "Electrospun Polyethylene Oxide (PEO)-Based Composite polymeric nanofiber electrolyte for Li-Metal Battery". Journal of Physics: Conference Series 2353, n.º 1 (1 de outubro de 2022): 012004. http://dx.doi.org/10.1088/1742-6596/2353/1/012004.
Texto completo da fonteZhang, Mi, A.-Man Zhang, Yifa Chen, Jin Xie, Zhi-Feng Xin, Yong-Jun Chen, Yu-He Kan, Shun-Li Li, Ya-Qian Lan e Qiang Zhang. "Polyoxovanadate-polymer hybrid electrolyte in solid state batteries". Energy Storage Materials 29 (agosto de 2020): 172–81. http://dx.doi.org/10.1016/j.ensm.2020.04.017.
Texto completo da fonteYan, Shuo, Chae-Ho Yim, Ali Merati, Elena A. Baranova, Yaser Abu-Lebdeh e Arnaud Weck. "Interfacial Challenge for Solid-State Lithium Batteries- Liquid Addition". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 1010. http://dx.doi.org/10.1149/ma2023-0161010mtgabs.
Texto completo da fonteLee, Yan Ying, e Andre Weber. "Harmonization of Testing Procedures for All Solid State Batteries". ECS Meeting Abstracts MA2023-02, n.º 2 (22 de dezembro de 2023): 340. http://dx.doi.org/10.1149/ma2023-022340mtgabs.
Texto completo da fonteShah, Vaidik, e Yong Lak Joo. "Rationally Designed in-Situ Gelled Polymer-Ceramic Hybrid Electrolyte Enables Superior Performance and Stability in Quasi-Solid-State Lithium-Sulfur Batteries". ECS Meeting Abstracts MA2023-02, n.º 4 (22 de dezembro de 2023): 535. http://dx.doi.org/10.1149/ma2023-024535mtgabs.
Texto completo da fonteKim, Jae-Kwang, Johan Scheers, Tae Joo Park e Youngsik Kim. "Superior Ion-Conducting Hybrid Solid Electrolyte for All-Solid-State Batteries". ChemSusChem 8, n.º 4 (13 de novembro de 2014): 636–41. http://dx.doi.org/10.1002/cssc.201402969.
Texto completo da fonteForan, Gabrielle, Nina Verdier, David Lepage, Cédric Malveau, Nicolas Dupré e Mickaël Dollé. "Use of Solid-State NMR Spectroscopy for the Characterization of Molecular Structure and Dynamics in Solid Polymer and Hybrid Electrolytes". Polymers 13, n.º 8 (8 de abril de 2021): 1207. http://dx.doi.org/10.3390/polym13081207.
Texto completo da fonteOkos, Alexandru, Cristina Florentina Ciobota, Adrian Mihail Motoc e Radu-Robert Piticescu. "Review on Synthesis and Properties of Lithium Lanthanum Titanate". Materials 16, n.º 22 (8 de novembro de 2023): 7088. http://dx.doi.org/10.3390/ma16227088.
Texto completo da fonteTang, Jiantao, Leidanyang Wang, Longzhen You, Xiang Chen, Tao Huang, Lan Zhou, Zhen Geng e Aishui Yu. "Effect of Organic Electrolyte on the Performance of Solid Electrolyte for Solid–Liquid Hybrid Lithium Batteries". ACS Applied Materials & Interfaces 13, n.º 2 (8 de janeiro de 2021): 2685–93. http://dx.doi.org/10.1021/acsami.0c19671.
Texto completo da fonteTsurumaki, Akiko, Rossella Rettaroli, Lucia Mazzapioda e Maria Assunta Navarra. "Inorganic–Organic Hybrid Electrolytes Based on Al-Doped Li7La3Zr2O12 and Ionic Liquids". Applied Sciences 12, n.º 14 (21 de julho de 2022): 7318. http://dx.doi.org/10.3390/app12147318.
Texto completo da fonteLin, Ruifan, Yingmin Jin, Yumeng Li, Xuebai Zhang e Yueping Xiong. "Recent Advances in Ionic Liquids—MOF Hybrid Electrolytes for Solid-State Electrolyte of Lithium Battery". Batteries 9, n.º 6 (6 de junho de 2023): 314. http://dx.doi.org/10.3390/batteries9060314.
Texto completo da fonteKim, Hyun Woo, Palanisamy Manikandan, Young Jun Lim, Jin Hong Kim, Sang-cheol Nam e Youngsik Kim. "Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries". Journal of Materials Chemistry A 4, n.º 43 (2016): 17025–32. http://dx.doi.org/10.1039/c6ta07268b.
Texto completo da fonteLuo, Wen-Bin, Shu-Lei Chou, Jia-Zhao Wang, Yong-Mook Kang, Yu-Chun Zhai e Hua-Kun Liu. "A hybrid gel–solid-state polymer electrolyte for long-life lithium oxygen batteries". Chemical Communications 51, n.º 39 (2015): 8269–72. http://dx.doi.org/10.1039/c5cc01857a.
Texto completo da fonteBi, Jiaying, Daobin Mu, Borong Wu, Jiale Fu, Hao Yang, Ge Mu, Ling Zhang e Feng Wu. "A hybrid solid electrolyte Li0.33La0.557TiO3/poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries". Journal of Materials Chemistry A 8, n.º 2 (2020): 706–13. http://dx.doi.org/10.1039/c9ta08601c.
Texto completo da fonteBabkova, Tatiana, Rudolf Kiefer e Quoc Bao Le. "Hybrid Electrolyte Based on PEO and Ionic Liquid with In Situ Produced and Dispersed Silica for Sustainable Solid-State Battery". Sustainability 16, n.º 4 (19 de fevereiro de 2024): 1683. http://dx.doi.org/10.3390/su16041683.
Texto completo da fonte