Artigos de revistas sobre o tema "Human cerebral organoides"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Human cerebral organoides".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Logan, Sarah, Thiago Arzua, Yasheng Yan, Congshan Jiang, Xiaojie Liu, Lai-Kang Yu, Qing-Song Liu e Xiaowen Bai. "Dynamic Characterization of Structural, Molecular, and Electrophysiological Phenotypes of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids, and Comparison with Fetal and Adult Gene Profiles". Cells 9, n.º 5 (23 de maio de 2020): 1301. http://dx.doi.org/10.3390/cells9051301.
Texto completo da fonteEstridge, R. Chris, Jennifer E. O’Neill e Albert J. Keung. "Matrigel Tunes H9 Stem Cell-Derived Human Cerebral Organoid Development". Organoids 2, n.º 4 (5 de outubro de 2023): 165–76. http://dx.doi.org/10.3390/organoids2040013.
Texto completo da fonteHe, Zhisong, Ashley Maynard, Akanksha Jain, Tobias Gerber, Rebecca Petri, Hsiu-Chuan Lin, Malgorzata Santel et al. "Lineage recording in human cerebral organoids". Nature Methods 19, n.º 1 (30 de dezembro de 2021): 90–99. http://dx.doi.org/10.1038/s41592-021-01344-8.
Texto completo da fonteGomez-Jones, Tashaé, e Robert M. Kao. "Ethical Dimensions of Human Organoids Research". American Biology Teacher 83, n.º 9 (novembro de 2021): 575–78. http://dx.doi.org/10.1525/abt.2021.83.9.575.
Texto completo da fonteBao, Zhongyuan, Kaiheng Fang, Zong Miao, Chong Li, Chaojuan Yang, Qiang Yu, Chen Zhang, Zengli Miao, Yan Liu e Jing Ji. "Human Cerebral Organoid Implantation Alleviated the Neurological Deficits of Traumatic Brain Injury in Mice". Oxidative Medicine and Cellular Longevity 2021 (22 de novembro de 2021): 1–16. http://dx.doi.org/10.1155/2021/6338722.
Texto completo da fonteCamp, J. Gray, Farhath Badsha, Marta Florio, Sabina Kanton, Tobias Gerber, Michaela Wilsch-Bräuninger, Eric Lewitus et al. "Human cerebral organoids recapitulate gene expression programs of fetal neocortex development". Proceedings of the National Academy of Sciences 112, n.º 51 (7 de dezembro de 2015): 15672–77. http://dx.doi.org/10.1073/pnas.1520760112.
Texto completo da fonteYakoub, Abraam M., e Mark Sadek. "Development and Characterization of Human Cerebral Organoids". Cell Transplantation 27, n.º 3 (março de 2018): 393–406. http://dx.doi.org/10.1177/0963689717752946.
Texto completo da fonteBerdenis van Berlekom, Amber, Raphael Kübler, Jeske W. Hoogeboom, Daniëlle Vonk, Jacqueline A. Sluijs, R. Jeroen Pasterkamp, Jinte Middeldorp et al. "Exposure to the Amino Acids Histidine, Lysine, and Threonine Reduces mTOR Activity and Affects Neurodevelopment in a Human Cerebral Organoid Model". Nutrients 14, n.º 10 (23 de maio de 2022): 2175. http://dx.doi.org/10.3390/nu14102175.
Texto completo da fonteShnaider, T. A. "Cerebral organoids: a promising model in cellular technologies". Vavilov Journal of Genetics and Breeding 22, n.º 2 (8 de abril de 2018): 168–78. http://dx.doi.org/10.18699/vj18.344.
Texto completo da fontePeng, Xiyao, Lei Wu, Qiushi Li, Yuqing Ge, Tiegang Xu e Jianlong Zhao. "An Easy-to-Use Arrayed Brain–Heart Chip". Biosensors 14, n.º 11 (22 de outubro de 2024): 517. http://dx.doi.org/10.3390/bios14110517.
Texto completo da fonteSantos, Alexandra C., George Nader, Dana El Soufi El Sabbagh, Karolina Urban, Liliana Attisano e Peter L. Carlen. "Treating Hyperexcitability in Human Cerebral Organoids Resulting from Oxygen-Glucose Deprivation". Cells 12, n.º 15 (27 de julho de 2023): 1949. http://dx.doi.org/10.3390/cells12151949.
Texto completo da fonteHarary, Paul M., Rachel Blue, Mackenzie Castellanos, Mehek Dedhia, Sarah Hamimi, Dennis Jgamadze, Benjamin Rees et al. "Human brain organoid transplantation: ethical implications of enhancing specific cerebral functions in small-animal models". Molecular Psychology: Brain, Behavior, and Society 2 (6 de junho de 2023): 14. http://dx.doi.org/10.12688/molpsychol.17544.1.
Texto completo da fonteTanaka, Yoshiaki, e In-Hyun Park. "Regional specification and complementation with non-neuroectodermal cells in human brain organoids". Journal of Molecular Medicine 99, n.º 4 (2 de março de 2021): 489–500. http://dx.doi.org/10.1007/s00109-021-02051-9.
Texto completo da fonteSchultz, Emily M., TyAnthony J. Jones, Sibei Xu, Dana D. Dean, Bernd Zechmann e Kelli L. Barr. "Cerebral Organoids Derived from a Parkinson’s Patient Exhibit Unique Pathogenesis from Chikungunya Virus Infection When Compared to a Non-Parkinson’s Patient". Pathogens 10, n.º 7 (20 de julho de 2021): 913. http://dx.doi.org/10.3390/pathogens10070913.
Texto completo da fonteSimsa, Robin, Theresa Rothenbücher, Hakan Gürbüz, Nidal Ghosheh, Jenny Emneus, Lachmi Jenndahl, David L. Kaplan, Niklas Bergh, Alberto Martinez Serrano e Per Fogelstrand. "Brain organoid formation on decellularized porcine brain ECM hydrogels". PLOS ONE 16, n.º 1 (28 de janeiro de 2021): e0245685. http://dx.doi.org/10.1371/journal.pone.0245685.
Texto completo da fonteDelepine, Chloe, Vincent A. Pham, Hayley W. S. Tsang e Mriganka Sur. "GSK3ß inhibitor CHIR 99021 modulates cerebral organoid development through dose-dependent regulation of apoptosis, proliferation, differentiation and migration". PLOS ONE 16, n.º 5 (5 de maio de 2021): e0251173. http://dx.doi.org/10.1371/journal.pone.0251173.
Texto completo da fonteWong, HakKei. "The importance of cerebral organoid technology in medicine". Highlights in Science, Engineering and Technology 2 (22 de junho de 2022): 179–85. http://dx.doi.org/10.54097/hset.v2i.572.
Texto completo da fonteChen, Juan, Haihua Ma, Zhiyu Deng, Qingming Luo, Hui Gong, Ben Long e Xiangning Li. "Cerebral Organoid Arrays for Batch Phenotypic Analysis in Sections and Three Dimensions". International Journal of Molecular Sciences 24, n.º 18 (9 de setembro de 2023): 13903. http://dx.doi.org/10.3390/ijms241813903.
Texto completo da fonteSivitilli, Adam A., Jessica T. Gosio, Bibaswan Ghoshal, Alesya Evstratova, Daniel Trcka, Parisa Ghiasi, J. Javier Hernandez, Jean Martin Beaulieu, Jeffrey L. Wrana e Liliana Attisano. "Robust production of uniform human cerebral organoids from pluripotent stem cells". Life Science Alliance 3, n.º 5 (17 de abril de 2020): e202000707. http://dx.doi.org/10.26508/lsa.202000707.
Texto completo da fonteLi, Xiaodong, Abdullah Shopit e Jingmin Wang. "A Comprehensive Update of Cerebral Organoids between Applications and Challenges". Oxidative Medicine and Cellular Longevity 2022 (5 de dezembro de 2022): 1–10. http://dx.doi.org/10.1155/2022/7264649.
Texto completo da fonteQiao, Haowen, Wen Zhao, Moujian Guo, Lili Zhu, Tao Chen, Jibo Wang, Xiaodong Xu, Zhentao Zhang, Ying Wu e Pu Chen. "Cerebral Organoids for Modeling of HSV-1-Induced-Amyloid β Associated Neuropathology and Phenotypic Rescue". International Journal of Molecular Sciences 23, n.º 11 (26 de maio de 2022): 5981. http://dx.doi.org/10.3390/ijms23115981.
Texto completo da fonteRoosen, Mieke, Chris Meulenbroeks, Phylicia Stathi, Joris Maas, Julie Morscio, Jens Bunt e Marcel Kool. "BIOL-11. PRECLINICAL MODELLING OF PEDIATRIC BRAIN TUMORS USING ORGANOID TECHNOLOGY". Neuro-Oncology 25, Supplement_1 (1 de junho de 2023): i8. http://dx.doi.org/10.1093/neuonc/noad073.030.
Texto completo da fonteLi, Chong, Jonas Simon Fleck, Catarina Martins-Costa, Thomas R. Burkard, Jan Themann, Marlene Stuempflen, Angela Maria Peer et al. "Single-cell brain organoid screening identifies developmental defects in autism". Nature 621, n.º 7978 (13 de setembro de 2023): 373–80. http://dx.doi.org/10.1038/s41586-023-06473-y.
Texto completo da fonteYakoub, Abraam M., e Mark Sadek. "Analysis of Synapses in Cerebral Organoids". Cell Transplantation 28, n.º 9-10 (4 de junho de 2019): 1173–82. http://dx.doi.org/10.1177/0963689718822811.
Texto completo da fonteFerreira, Rodolfo Sanches, Bruno H. S. Araujo e Oswaldo Okamoto. "MODL-06. ASSESSMENT OF ONCOLYTIC VIRUS SPECIFICITY AND CYTOTOXICITY IN A HYBRID GLIOBLASTOMA-CEREBRAL ORGANOID MODEL". Neuro-Oncology 24, Supplement_7 (1 de novembro de 2022): vii292. http://dx.doi.org/10.1093/neuonc/noac209.1134.
Texto completo da fonteda Silva, Bárbara, Ryan K. Mathew, Euan S. Polson, Jennifer Williams e Heiko Wurdak. "Spontaneous Glioblastoma Spheroid Infiltration of Early-Stage Cerebral Organoids Models Brain Tumor Invasion". SLAS DISCOVERY: Advancing the Science of Drug Discovery 23, n.º 8 (15 de março de 2018): 862–68. http://dx.doi.org/10.1177/2472555218764623.
Texto completo da fonteSapir, Gal, Daniel J. Steinberg, Rami I. Aqeilan e Rachel Katz-Brull. "Real-Time Non-Invasive and Direct Determination of Lactate Dehydrogenase Activity in Cerebral Organoids—A New Method to Characterize the Metabolism of Brain Organoids?" Pharmaceuticals 14, n.º 9 (30 de agosto de 2021): 878. http://dx.doi.org/10.3390/ph14090878.
Texto completo da fonteBunt, Jens, Mieke Roosen, Evie Egelmeers, Joris Maas, Zelda Ode e Marcel Kool. "TMOD-02. GEBTO: GENETICALLY ENGINEERED BRAIN TUMOR ORGANOIDS AS A NOVEL PRECLINICAL MODEL". Neuro-Oncology 23, Supplement_1 (1 de junho de 2021): i35—i36. http://dx.doi.org/10.1093/neuonc/noab090.143.
Texto completo da fonteKrieger, Teresa G., Stephan M. Tirier, Jeongbin Park, Katharina Jechow, Tanja Eisemann, Heike Peterziel, Peter Angel, Roland Eils e Christian Conrad. "Modeling glioblastoma invasion using human brain organoids and single-cell transcriptomics". Neuro-Oncology 22, n.º 8 (16 de abril de 2020): 1138–49. http://dx.doi.org/10.1093/neuonc/noaa091.
Texto completo da fonteRoosen, Mieke, Julie Morscio, Phylicia Stathi, Norman Mack, Benjamin Schwalm, Panagiotis A. Polychronopoulos, Mariëtte E. G. Kranendonk, Eelco Hoving, Jens Bunt e Marcel Kool. "EPEN-17.IN VITRO MODELLING OF PEDIATRIC SUPRATENTORIAL EPENDYMOMAS USING CEREBRAL ORGANOIDS". Neuro-Oncology 26, Supplement_4 (18 de junho de 2024): 0. http://dx.doi.org/10.1093/neuonc/noae064.219.
Texto completo da fonteAhn, Yujin, Ju-Hyun An, Hae-Jun Yang, Dong Gil Lee, Jieun Kim, Hyebin Koh, Young-Ho Park et al. "Human Blood Vessel Organoids Penetrate Human Cerebral Organoids and Form a Vessel-Like System". Cells 10, n.º 8 (9 de agosto de 2021): 2036. http://dx.doi.org/10.3390/cells10082036.
Texto completo da fonteTongkrajang, Nongnat, Porntida Kobpornchai, Pratima Dubey, Urai Chaisri e Kasem Kulkeaw. "Modelling amoebic brain infection caused by Balamuthia mandrillaris using a human cerebral organoid". PLOS Neglected Tropical Diseases 18, n.º 6 (20 de junho de 2024): e0012274. http://dx.doi.org/10.1371/journal.pntd.0012274.
Texto completo da fonteGumbs, Stephanie B. H., Amber Berdenis van Berlekom, Raphael Kübler, Pauline J. Schipper, Lavina Gharu, Marco P. Boks, Paul R. Ormel, Annemarie M. J. Wensing, Lot D. de Witte e Monique Nijhuis. "Characterization of HIV-1 Infection in Microglia-Containing Human Cerebral Organoids". Viruses 14, n.º 4 (16 de abril de 2022): 829. http://dx.doi.org/10.3390/v14040829.
Texto completo da fonteRobles, Denise, Andrew Boreland, Zhiping Pang e Jeffrey Zahn. "A Cerebral Organoid Connectivity Apparatus to Model Neuronal Tract Circuitry". Micromachines 12, n.º 12 (17 de dezembro de 2021): 1574. http://dx.doi.org/10.3390/mi12121574.
Texto completo da fonteOgawa, Junko, Gerald M. Pao, Maxim N. Shokhirev e Inder M. Verma. "Glioblastoma Model Using Human Cerebral Organoids". Cell Reports 23, n.º 4 (abril de 2018): 1220–29. http://dx.doi.org/10.1016/j.celrep.2018.03.105.
Texto completo da fonteBrowning, Heather, e Walter Veit. "Regulating Possibly Sentient Human Cerebral Organoids". AJOB Neuroscience 14, n.º 2 (3 de abril de 2023): 197–99. http://dx.doi.org/10.1080/21507740.2023.2188293.
Texto completo da fonteFagerlund, Ilkka, Antonios Dougalis, Anastasia Shakirzyanova, Mireia Gómez-Budia, Anssi Pelkonen, Henna Konttinen, Sohvi Ohtonen et al. "Microglia-like Cells Promote Neuronal Functions in Cerebral Organoids". Cells 11, n.º 1 (30 de dezembro de 2021): 124. http://dx.doi.org/10.3390/cells11010124.
Texto completo da fonteYin, He. "Human brain organoids combined with CRISPR technology to gain insight into neurological diseases". Highlights in Science, Engineering and Technology 102 (11 de julho de 2024): 75–79. http://dx.doi.org/10.54097/m3grdg15.
Texto completo da fonteGebing, Philip, Stefanos Loizou, Sebastian Hänsch, Julian Schliehe-Diecks, Lea Spory, Pawel Stachura, Aleksandra Pandyra et al. "CNS Invasion of TCF3::PBX1+ Leukemia Cells Requires Upregulation of AP-1 Signaling As Revealed By Brain Organoid Model". Blood 142, Supplement 1 (28 de novembro de 2023): 1407. http://dx.doi.org/10.1182/blood-2023-178613.
Texto completo da fonteFu, Yingying, Zhen Qi, Zhanguan Zuo, Spencer Chiang, An Ouyang, Glory Gao, Shuge Guan, Jin-Qiu (Jessie) Chen, Rosanna Zhang e Cheng Wang. "Abstract 4245: Selection of AAV capsids by evaluating transgene delivery using human organoid models". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 4245. http://dx.doi.org/10.1158/1538-7445.am2024-4245.
Texto completo da fonteNowakowski, Tomasz J., e Sofie R. Salama. "Cerebral Organoids as an Experimental Platform for Human Neurogenomics". Cells 11, n.º 18 (8 de setembro de 2022): 2803. http://dx.doi.org/10.3390/cells11182803.
Texto completo da fonteAmiri, Anahita, Gianfilippo Coppola, Soraya Scuderi, Feinan Wu, Tanmoy Roychowdhury, Fuchen Liu, Sirisha Pochareddy et al. "Transcriptome and epigenome landscape of human cortical development modeled in organoids". Science 362, n.º 6420 (13 de dezembro de 2018): eaat6720. http://dx.doi.org/10.1126/science.aat6720.
Texto completo da fonteGraham, Maya, Paolo Codega, Carl Campos, Subhiksha Nandakumar, Marc Rosenblum, Cristina Antonescu, Meaghan Grogan et al. "MODL-37. MODELING REVERSIBLE TUMORIGENESIS IN CEREBRAL ORGANOIDS". Neuro-Oncology 25, Supplement_5 (1 de novembro de 2023): v307. http://dx.doi.org/10.1093/neuonc/noad179.1188.
Texto completo da fonteLavazza, Andrea, e Marcello Massimini. "Cerebral organoids: ethical issues and consciousness assessment". Journal of Medical Ethics 44, n.º 9 (28 de fevereiro de 2018): 606–10. http://dx.doi.org/10.1136/medethics-2017-104555.
Texto completo da fonteBiunno, Ida, Emanuela Paiola e Pasquale De Blasio. "The Application of the Tissue Microarray (TMA) Technology to Analyze Cerebral Organoids". Journal of Histochemistry & Cytochemistry 69, n.º 7 (18 de junho de 2021): 451–60. http://dx.doi.org/10.1369/00221554211025327.
Texto completo da fonteSilva-Pedrosa, Rita, Jonas Campos, Aline Marie Fernandes, Miguel Silva, Carla Calçada, Ana Marote, Olga Martinho et al. "Cerebral Malaria Model Applying Human Brain Organoids". Cells 12, n.º 7 (23 de março de 2023): 984. http://dx.doi.org/10.3390/cells12070984.
Texto completo da fonteAlbanese, Alexandre, Justin M. Swaney, Dae Hee Yun, Nicholas B. Evans, Jenna M. Antonucci, Silvia Velasco, Chang Ho Sohn, Paola Arlotta, Lee Gehrke e Kwanghun Chung. "Multiscale 3D phenotyping of human cerebral organoids". Scientific Reports 10, n.º 1 (dezembro de 2020). http://dx.doi.org/10.1038/s41598-020-78130-7.
Texto completo da fonteSingh, Sanjay K., Yan Wang, Ahmed Habib, Mamindla Priyadarshini, Chowdari V. Kodavali, Apeng Chen, Wencai Ma et al. "TP53-PTEN-NF1 depletion in human brain organoids produces a glioma phenotype in vitro". Frontiers in Oncology 13 (10 de outubro de 2023). http://dx.doi.org/10.3389/fonc.2023.1279806.
Texto completo da fonteDong, Xin, Shi-Bo Xu, Xin Chen, Mengdan Tao, Xiao-Yan Tang, Kai-Heng Fang, Min Xu et al. "Human cerebral organoids establish subcortical projections in the mouse brain after transplantation". Molecular Psychiatry, 13 de outubro de 2020. http://dx.doi.org/10.1038/s41380-020-00910-4.
Texto completo da fonteSozzi, Edoardo, Janko Kajtez, Andreas Bruzelius, Milan Finn Wesseler, Fredrik Nilsson, Marcella Birtele, Niels B. Larsen et al. "Silk scaffolding drives self-assembly of functional and mature human brain organoids". Frontiers in Cell and Developmental Biology 10 (14 de outubro de 2022). http://dx.doi.org/10.3389/fcell.2022.1023279.
Texto completo da fonte