Artigos de revistas sobre o tema "Human atrial cardiomyocyte"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Human atrial cardiomyocyte".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Schmid, Christina, Najah Abi-Gerges, Michael Leitner, Dietmar Zellner e Georg Rast. "Ion Channel Expression and Electrophysiology of Singular Human (Primary and Induced Pluripotent Stem Cell-Derived) Cardiomyocytes". Cells 10, n.º 12 (30 de novembro de 2021): 3370. http://dx.doi.org/10.3390/cells10123370.
Texto completo da fonteXie, Duanyang, Ke Xiong, Xuling Su, Guanghua Wang, Qiang Ji, Qicheng Zou, Lingling Wang et al. "Identification of an endogenous glutamatergic transmitter system controlling excitability and conductivity of atrial cardiomyocytes". Cell Research 31, n.º 9 (6 de abril de 2021): 951–64. http://dx.doi.org/10.1038/s41422-021-00499-5.
Texto completo da fonteFreundt, Johanna K., Gerrit Frommeyer, Fabian Wötzel, Andreas Huge, Andreas Hoffmeier, Sven Martens, Lars Eckardt e Philipp S. Lange. "The Transcription Factor ATF4 Promotes Expression of Cell Stress Genes and Cardiomyocyte Death in a Cellular Model of Atrial Fibrillation". BioMed Research International 2018 (29 de maio de 2018): 1–15. http://dx.doi.org/10.1155/2018/3694362.
Texto completo da fonteNesterova, Tatyana, Dmitry Shmarko, Konstantin Ushenin e Olga Solovyova. "In-silico analysis of aging mechanisms of action potential remodeling in human atrial cardiomyocites". BIO Web of Conferences 22 (2020): 01025. http://dx.doi.org/10.1051/bioconf/20202201025.
Texto completo da fonteLi, Jiuru, Alexandra Wiesinger, Lianne Fokkert, Bastiaan J. Boukens, Arie O. Verkerk, Vincent M. Christoffels, Gerard J. J. Boink e Harsha D. Devalla. "Molecular and electrophysiological evaluation of human cardiomyocyte subtypes to facilitate generation of composite cardiac models". Journal of Tissue Engineering 13 (janeiro de 2022): 204173142211279. http://dx.doi.org/10.1177/20417314221127908.
Texto completo da fonteRajala, Kristiina, Mari Pekkanen-Mattila e Katriina Aalto-Setälä. "Cardiac Differentiation of Pluripotent Stem Cells". Stem Cells International 2011 (2011): 1–12. http://dx.doi.org/10.4061/2011/383709.
Texto completo da fonteWells, Simon P., Helen M. Waddell, Choon Boon Sim, Shiang Y. Lim, Gabriel B. Bernasochi, Davor Pavlovic, Paulus Kirchhof, Enzo R. Porrello, Lea M. D. Delbridge e James R. Bell. "Cardiomyocyte functional screening: interrogating comparative electrophysiology of high-throughput model cell systems". American Journal of Physiology-Cell Physiology 317, n.º 6 (1 de dezembro de 2019): C1256—C1267. http://dx.doi.org/10.1152/ajpcell.00306.2019.
Texto completo da fonteHochman-Mendez, Camila, Dilza Balteiro Pereira de Campos, Rafael Serafim Pinto, Bernardo Jorge da Silva Mendes, Gustavo Miranda Rocha, Gustavo Monnerat, Gilberto Weissmuller et al. "Tissue-engineered human embryonic stem cell-containing cardiac patches: evaluating recellularization of decellularized matrix". Journal of Tissue Engineering 11 (janeiro de 2020): 204173142092148. http://dx.doi.org/10.1177/2041731420921482.
Texto completo da fonteDobrev, Dobromir, e Ursula Ravens. "Remodeling of cardiomyocyte ion channels in human atrial fibrillation". Basic Research in Cardiology 98, n.º 3 (maio de 2003): 137–48. http://dx.doi.org/10.1007/s00395-003-0409-8.
Texto completo da fonteBaena-Montes, Jara M., Tony O’Halloran, Cormac Clarke, Kevin Donaghey, Eoghan Dunne, Martin O’Halloran e Leo R. Quinlan. "Electroporation Parameters for Human Cardiomyocyte Ablation In Vitro". Journal of Cardiovascular Development and Disease 9, n.º 8 (28 de julho de 2022): 240. http://dx.doi.org/10.3390/jcdd9080240.
Texto completo da fonteTsai, Su-Yi, Zaniar Ghazizadeh, Hou-Jun Wang, Sadaf Amin, Francis A. Ortega, Zohreh Sadat Badieyan, Zi-Ting Hsu et al. "A human embryonic stem cell reporter line for monitoring chemical-induced cardiotoxicity". Cardiovascular Research 116, n.º 3 (7 de junho de 2019): 658–70. http://dx.doi.org/10.1093/cvr/cvz148.
Texto completo da fonteEisenberg, Leonard M., Keerat Kaur, John M. Castillo, John G. Edwards e Carol A. Eisenberg. "Dexamethasone Treatment Preserves the Structure of Adult Cardiac Explants and Supports Their Long-Term Contractility In Vitro". International Journal of Translational Medicine 3, n.º 3 (5 de setembro de 2023): 360–73. http://dx.doi.org/10.3390/ijtm3030025.
Texto completo da fonteMartin, Kendall E., e Joshua S. Waxman. "Atrial and Sinoatrial Node Development in the Zebrafish Heart". Journal of Cardiovascular Development and Disease 8, n.º 2 (9 de fevereiro de 2021): 15. http://dx.doi.org/10.3390/jcdd8020015.
Texto completo da fonteLiu, Yang, Shuang Li, Zhanqun Gao, Shuangjia Li, Qingyun Tan, Yanmei Li, Dongwei Wang e Qingdong Wang. "Indoleamine 2,3-Dioxygenase 1 (IDO1) Promotes Cardiac Hypertrophy via a PI3K-AKT-mTOR-Dependent Mechanism". Cardiovascular Toxicology 21, n.º 8 (21 de maio de 2021): 655–68. http://dx.doi.org/10.1007/s12012-021-09657-y.
Texto completo da fonteZang, Rongjia, Qingyun Tan, Fanrong Zeng, Dongwei Wang, Shuang Yu e Qingdong Wang. "JMJD1A Represses the Development of Cardiomyocyte Hypertrophy by Regulating the Expression of Catalase". BioMed Research International 2020 (13 de maio de 2020): 1–14. http://dx.doi.org/10.1155/2020/5081323.
Texto completo da fontevan Ouwerkerk, Antoinette F., Fernanda M. Bosada, Karel van Duijvenboden, Arjan C. Houweling, Koen T. Scholman, Vincent Wakker, Cornelis P. Allaart et al. "Patient-Specific TBX5-G125R Variant Induces Profound Transcriptional Deregulation and Atrial Dysfunction". Circulation 145, n.º 8 (22 de fevereiro de 2022): 606–19. http://dx.doi.org/10.1161/circulationaha.121.054347.
Texto completo da fonteMadsen, Alexandra, Grit Höppner, Julia Krause, Marc N. Hirt, Sandra D. Laufer, Michaela Schweizer, Wilson Lek Wen Tan et al. "An Important Role for DNMT3A-Mediated DNA Methylation in Cardiomyocyte Metabolism and Contractility". Circulation 142, n.º 16 (20 de outubro de 2020): 1562–78. http://dx.doi.org/10.1161/circulationaha.119.044444.
Texto completo da fonteLiu, Chuyu, e Ning-Yi Shao. "The Differences in the Developmental Stages of the Cardiomyocytes and Endothelial Cells in Human and Mouse Embryos at the Single-Cell Level". International Journal of Molecular Sciences 25, n.º 6 (13 de março de 2024): 3240. http://dx.doi.org/10.3390/ijms25063240.
Texto completo da fonteWang, Xiaoyu, Susan V. McLennan, Terri J. Allen, Tatiana Tsoutsman, Christopher Semsarian e Stephen M. Twigg. "Adverse effects of high glucose and free fatty acid on cardiomyocytes are mediated by connective tissue growth factor". American Journal of Physiology-Cell Physiology 297, n.º 6 (dezembro de 2009): C1490—C1500. http://dx.doi.org/10.1152/ajpcell.00049.2009.
Texto completo da fonteAbi-Gerges, Najah, Paul E. Miller e Andre Ghetti. "Human Heart Cardiomyocytes in Drug Discovery and Research: New Opportunities in Translational Sciences". Current Pharmaceutical Biotechnology 21, n.º 9 (9 de junho de 2020): 787–806. http://dx.doi.org/10.2174/1389201021666191210142023.
Texto completo da fonteDuelen, Robin, Guillaume Gilbert, Abdulsamie Patel, Nathalie de Schaetzen, Liesbeth De Waele, Llewelyn Roderick, Karin R. Sipido et al. "Activin A Modulates CRIPTO-1/HNF4α+ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells". Stem Cells International 2017 (2017): 1–17. http://dx.doi.org/10.1155/2017/4651238.
Texto completo da fonteLavall, Daniel, Pia Schuster, Nadine Jacobs, Andrey Kazakov, Michael Böhm e Ulrich Laufs. "Rac1 GTPase regulates 11β hydroxysteroid dehydrogenase type 2 and fibrotic remodeling". Journal of Biological Chemistry 292, n.º 18 (20 de março de 2017): 7542–53. http://dx.doi.org/10.1074/jbc.m116.764449.
Texto completo da fonteÇubukçuoğlu Deniz, Günseli, Serkan Durdu, Yeşim Doğan, Esra Erdemli, Hilal Özdağ e Ahmet Ruchan Akar. "Molecular Signatures of Human Chronic Atrial Fibrillation in Primary Mitral Regurgitation". Cardiovascular Therapeutics 2021 (15 de outubro de 2021): 1–12. http://dx.doi.org/10.1155/2021/5516185.
Texto completo da fonteGoruppi, Sandro, Richard D. Patten, Thomas Force e John M. Kyriakis. "Helix-Loop-Helix Protein p8, a Transcriptional Regulator Required for Cardiomyocyte Hypertrophy and Cardiac Fibroblast Matrix Metalloprotease Induction". Molecular and Cellular Biology 27, n.º 3 (20 de novembro de 2006): 993–1006. http://dx.doi.org/10.1128/mcb.00996-06.
Texto completo da fonteMoulin, Sophie, Amandine Thomas, Stefan Wagner, Michael Arzt, Hervé Dubouchaud, Frédéric Lamarche, Sophie Bouyon et al. "Intermittent Hypoxia-Induced Cardiomyocyte Death Is Mediated by HIF-1 Dependent MAM Disruption". Antioxidants 11, n.º 8 (27 de julho de 2022): 1462. http://dx.doi.org/10.3390/antiox11081462.
Texto completo da fonteMazhar, Fazeelat, Chiara Bartolucci, Francesco Regazzoni, Michelangelo Paci, Luca Dedè, Alfio Quarteroni, Cristiana Corsi e Stefano Severi. "A detailed mathematical model of the human atrial cardiomyocyte: Integration of electrophysiology and cardiomechanics". Vascular Pharmacology 155 (junho de 2024): 107330. http://dx.doi.org/10.1016/j.vph.2024.107330.
Texto completo da fonteRagulya, M. R., L. P. Goralskyi, I. M. Sokulskyi e N. L. Kolesnik. "Morphometric parameters of the heart of domestic sheep Ovis aries L., 1758". Ukrainian Journal of Veterinary and Agricultural Sciences 7, n.º 1 (26 de março de 2024): 94–101. http://dx.doi.org/10.32718/ujvas7-1.15.
Texto completo da fonteKuwana, Masataka, Hiroaki Kodama, Yuka Okazaki, Takashi Satoh, Takafumi Inoue, Yutaka Kawakami e Yasuo Ikeda. "Multi-Lineage Potential of Human Monocyte-Derived Mesenchymal Progenitors (MOMPs)." Blood 104, n.º 11 (16 de novembro de 2004): 3595. http://dx.doi.org/10.1182/blood.v104.11.3595.3595.
Texto completo da fonteSutanto, Henry. "Individual Contributions of Cardiac Ion Channels on Atrial Repolarization and Reentrant Waves: A Multiscale In-Silico Study". Journal of Cardiovascular Development and Disease 9, n.º 1 (14 de janeiro de 2022): 28. http://dx.doi.org/10.3390/jcdd9010028.
Texto completo da fonteWei, Chi-Ming, Margarita Bracamonte, Shi-Wen Jiang, Richard C. Daly, Christopher G. A. McGregor, Shaobo Zhang e Charles Y. F. Young. "Localization of endothelial nitric oxide synthase in the normal and failing human atrial myocardium". Proceedings, annual meeting, Electron Microscopy Society of America 54 (11 de agosto de 1996): 786–87. http://dx.doi.org/10.1017/s0424820100166397.
Texto completo da fonteS. Ramos, Kennedy, Lisa Pool, Mathijs S. van Schie, Leonoor F. J. M. Wijdeveld, Willemijn F. B. van der Does, Luciënne Baks, H. M. Danish Sultan et al. "Degree of Fibrosis in Human Atrial Tissue Is Not the Hallmark Driving AF". Cells 11, n.º 3 (26 de janeiro de 2022): 427. http://dx.doi.org/10.3390/cells11030427.
Texto completo da fonteGodoy-Marín, Héctor, Verónica Jiménez-Sábado, Carmen Tarifa, Antonino Ginel, Joana Larupa Dos Santos, Bo Hjorth Bentzen, Leif Hove-Madsen e Francisco Ciruela. "Increased Density of Endogenous Adenosine A2A Receptors in Atrial Fibrillation: From Cellular and Porcine Models to Human Patients". International Journal of Molecular Sciences 24, n.º 4 (11 de fevereiro de 2023): 3668. http://dx.doi.org/10.3390/ijms24043668.
Texto completo da fonteAnderson, Ethan J., Evelio Rodriguez, Curtis A. Anderson, Kathleen Thayne, W. Randolph Chitwood e Alan P. Kypson. "Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways". American Journal of Physiology-Heart and Circulatory Physiology 300, n.º 1 (janeiro de 2011): H118—H124. http://dx.doi.org/10.1152/ajpheart.00932.2010.
Texto completo da fonteAmin, Mohamed, Yoshihiro Kushida, Shohei Wakao, Masaaki Kitada, Kazuki Tatsumi e Mari Dezawa. "Cardiotrophic Growth Factor–Driven Induction of Human Muse Cells Into Cardiomyocyte-Like Phenotype". Cell Transplantation 27, n.º 2 (fevereiro de 2018): 285–98. http://dx.doi.org/10.1177/0963689717721514.
Texto completo da fonteIvashchenko, Christine Y., Gordon C. Pipes, Irina M. Lozinskaya, Zuojun Lin, Xu Xiaoping, Saul Needle, Eugene T. Grygielko et al. "Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype". American Journal of Physiology-Heart and Circulatory Physiology 305, n.º 6 (15 de setembro de 2013): H913—H922. http://dx.doi.org/10.1152/ajpheart.00819.2012.
Texto completo da fonteHan, Wei, Songbin Fu, Na Wei, Baodong Xie, Weimin Li, Shusen Yang, Yue Li, Zijun Liang e Hong Huo. "Nitric oxide overproduction derived from inducible nitric oxide synthase increases cardiomyocyte apoptosis in human atrial fibrillation". International Journal of Cardiology 130, n.º 2 (novembro de 2008): 165–73. http://dx.doi.org/10.1016/j.ijcard.2008.02.026.
Texto completo da fonteZhao, Guo-Jun, Chang-Ling Zhao, Shan Ouyang, Ke-Qiong Deng, Lihua Zhu, Augusto C. Montezano, Changjiang Zhang et al. "Ca 2+ -Dependent NOX5 (NADPH Oxidase 5) Exaggerates Cardiac Hypertrophy Through Reactive Oxygen Species Production". Hypertension 76, n.º 3 (setembro de 2020): 827–38. http://dx.doi.org/10.1161/hypertensionaha.120.15558.
Texto completo da fonteRicher, Romain, Sandrine Lemoine, Jean-Luc Hanouz, Benoît Bernay, Marie Nowoczyn, Stéphane Allouche e Laurent Coulbault. "0485 : Subsarcolemmal and interfibrillar mitochondria in human atrial cardiomyocyte: an enzymatic and proteomic study in diabetic patients". Archives of Cardiovascular Diseases Supplements 8, n.º 3 (abril de 2016): 208. http://dx.doi.org/10.1016/s1878-6480(16)30377-9.
Texto completo da fonteGündel, Daniel, Thu Hang Lai, Sladjana Dukic-Stefanovic, Rodrigo Teodoro, Winnie Deuther-Conrad, Magali Toussaint, Klaus Kopka et al. "Non-Invasive Assessment of Locally Overexpressed Human Adenosine 2A Receptors in the Heart of Transgenic Mice". International Journal of Molecular Sciences 23, n.º 3 (18 de janeiro de 2022): 1025. http://dx.doi.org/10.3390/ijms23031025.
Texto completo da fonteNakano, Austin, Yasuhiro Nakashima, Diana A. Yanez, Marlin Touma, Haruko Nakano, Artur Jarodzewicz, Maria C. Jordan, Matteo Pellegrini, Kenneth P. Roos e Kenneth P. Roos. "Abstract 13: Nkx2-5-notch Signaling Axis Regulates The Proliferation Of The Atrial Myocytes And Conduction System". Circulation Research 115, suppl_1 (18 de julho de 2014). http://dx.doi.org/10.1161/res.115.suppl_1.13.
Texto completo da fonteGuo, Huixin, Chengwen Hang, Bowen Lin, Zheyi Lin, Hui Xiong, Mingshuai Zhang, Renhong Lu et al. "HAND factors regulate cardiac lineage commitment and differentiation from human pluripotent stem cells". Stem Cell Research & Therapy 15, n.º 1 (5 de fevereiro de 2024). http://dx.doi.org/10.1186/s13287-024-03649-9.
Texto completo da fonteQuaranta, Roberto, Jakob Fell, Frank Rühle, Jyoti Rao, Ilaria Piccini, Marcos J. Araúzo-Bravo, Arie O. Verkerk, Monika Stoll e Boris Greber. "Revised roles of ISL1 in a hES cell-based model of human heart chamber specification". eLife 7 (16 de janeiro de 2018). http://dx.doi.org/10.7554/elife.31706.
Texto completo da fonteChurko, Jared, Barbara Treutlein, Priyanka Garg, Meenakshi Venkatasubramanian, Haodi Wu, Shih-Yu Chen, Wen-Yi Chen et al. "Abstract 13841: Transcriptomic Signatures of Atrial- And Ventricular-like Human Induced Pluripotent Stem Cell Derived Cardiomyocytes". Circulation 134, suppl_1 (11 de novembro de 2016). http://dx.doi.org/10.1161/circ.134.suppl_1.13841.
Texto completo da fonteE Molina, C., L. Sommerfeld, T. Zeller, J. Obergassel, H. Wieboldt, L. Conradi, H. Reichenspurner, V. O. Nikolaev, P. Kirchhof e L. Fabritz. "From cells to circulating biomarker: BMP10 is a myocyte-secreted peptide with potential to detect atrial fibrillation". European Heart Journal 44, Supplement_2 (novembro de 2023). http://dx.doi.org/10.1093/eurheartj/ehad655.3140.
Texto completo da fonteYe, Shiqiao, Cankun Wang, Zhaohui Xu, Hui Lin, Xiaoping Wan, Yang Yu, Subhodip Adhicary et al. "Impaired Human Cardiac Cell Development due to NOTCH1 Deficiency". Circulation Research, 30 de dezembro de 2022. http://dx.doi.org/10.1161/circresaha.122.321398.
Texto completo da fonteBroman, Michael T., Rangarajan D. Nadadur, Carlos Perez-Cervantes, Ozanna Burnicka-Turek, Sonja Lazarevic, Anna Gams, Brigitte Laforest et al. "A Genomic Link From Heart Failure to Atrial Fibrillation Risk: FOG2 Modulates a TBX5/GATA4-Dependent Atrial Gene Regulatory Network". Circulation, 8 de janeiro de 2024. http://dx.doi.org/10.1161/circulationaha.123.066804.
Texto completo da fonteHendrickson, Troy, William Perez, Abigail Giese e Francisco Altamirano. "Abstract P1088: Polycystin-1 Protects Against Experimental Atrial Fibrillation". Circulation Research 131, Suppl_1 (5 de agosto de 2022). http://dx.doi.org/10.1161/res.131.suppl_1.p1088.
Texto completo da fonteDai, Wenli, Brigitte Laforest, Leonid Tyan, Kaitlyn M. Shen, Rangarajan D. Nadadur, Francisco J. Alvarado, Stefan R. Mazurek et al. "A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice". eLife 8 (21 de março de 2019). http://dx.doi.org/10.7554/elife.41814.
Texto completo da fonteMunro, Michelle L., Isabelle van Hout, Hamish M. Aitken-Buck, Ramanen Sugunesegran, Krishna Bhagwat, Philip J. Davis, Regis R. Lamberts, Sean Coffey, Christian Soeller e Peter P. Jones. "Human Atrial Fibrillation Is Not Associated With Remodeling of Ryanodine Receptor Clusters". Frontiers in Cell and Developmental Biology 9 (25 de fevereiro de 2021). http://dx.doi.org/10.3389/fcell.2021.633704.
Texto completo da fonteThorpe, Jordan, Matthew D. Perry, Osvaldo Contreras, Emily Hurley, George Parker, Richard P. Harvey, Adam P. Hill e Jamie I. Vandenberg. "Development of a robust induced pluripotent stem cell atrial cardiomyocyte differentiation protocol to model atrial arrhythmia". Stem Cell Research & Therapy 14, n.º 1 (27 de julho de 2023). http://dx.doi.org/10.1186/s13287-023-03405-5.
Texto completo da fonte