Artigos de revistas sobre o tema "Human Activity Prediction"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Human Activity Prediction".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Dönmez, İlknur. "Human Activity Analysis and Prediction Using Google n-Grams". International Journal of Future Computer and Communication 7, n.º 2 (junho de 2018): 32–36. http://dx.doi.org/10.18178/ijfcc.2018.7.2.516.
Texto completo da fonteYan, Aixia, Zhi Wang, Jiaxuan Li e Meng Meng. "Human Oral Bioavailability Prediction of Four Kinds of Drugs". International Journal of Computational Models and Algorithms in Medicine 3, n.º 4 (outubro de 2012): 29–42. http://dx.doi.org/10.4018/ijcmam.2012100104.
Texto completo da fonteD., Manju, e Radha V. "A survey on human activity prediction techniques". International Journal of Advanced Technology and Engineering Exploration 5, n.º 47 (21 de outubro de 2018): 400–406. http://dx.doi.org/10.19101/ijatee.2018.547006.
Texto completo da fonteKeshinro, Babatunde, Younho Seong e Sun Yi. "Deep Learning-based human activity recognition using RGB images in Human-robot collaboration". Proceedings of the Human Factors and Ergonomics Society Annual Meeting 66, n.º 1 (setembro de 2022): 1548–53. http://dx.doi.org/10.1177/1071181322661186.
Texto completo da fonteBragança, Hendrio, Juan G. Colonna, Horácio A. B. F. Oliveira e Eduardo Souto. "How Validation Methodology Influences Human Activity Recognition Mobile Systems". Sensors 22, n.º 6 (18 de março de 2022): 2360. http://dx.doi.org/10.3390/s22062360.
Texto completo da fonteGiri, Pranit. "Human Activity Recognition System". International Journal for Research in Applied Science and Engineering Technology 11, n.º 5 (31 de maio de 2023): 6671–73. http://dx.doi.org/10.22214/ijraset.2023.53135.
Texto completo da fonteBhambri, Pankaj, Sachin Bagga, Dhanuka Priya, Harnoor Singh e Harleen Kaur Dhiman. "Suspicious Human Activity Detection System". December 2020 2, n.º 4 (31 de outubro de 2020): 216–21. http://dx.doi.org/10.36548/jismac.2020.4.005.
Texto completo da fonteXu-Nan Tan, Xu-Nan Tan. "Human Activity Recognition Based on CNN and LSTM". 電腦學刊 34, n.º 3 (junho de 2023): 221–35. http://dx.doi.org/10.53106/199115992023063403016.
Texto completo da fonteEsther, Ekemeyong, e Teresa Zielińska. "Predicting Human Activity – State of the Art". Pomiary Automatyka Robotyka 27, n.º 2 (16 de junho de 2023): 31–46. http://dx.doi.org/10.14313/par_248/31.
Texto completo da fonteLiu, Zhenguang, Kedi Lyu, Shuang Wu, Haipeng Chen, Yanbin Hao e Shouling Ji. "Aggregated Multi-GANs for Controlled 3D Human Motion Prediction". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 3 (18 de maio de 2021): 2225–32. http://dx.doi.org/10.1609/aaai.v35i3.16321.
Texto completo da fonteTamaki, Toru, Tsubasa Hirakawa, Takayoshi Yamashita e Hironobu Fujiyoshi. "Human Trajectory Analysis and Activity Prediction in Videos". Journal of the Robotics Society of Japan 35, n.º 8 (2017): 610–15. http://dx.doi.org/10.7210/jrsj.35.610.
Texto completo da fonteSeptiadi, Jaka, Budi Warsito e Adi Wibowo. "Human Activity Prediction using Long Short Term Memory". E3S Web of Conferences 202 (2020): 15008. http://dx.doi.org/10.1051/e3sconf/202020215008.
Texto completo da fonteAl-juaifari, Mohammad Khalaf Rahim, e Alih Ali Athari. "Future Human Activity Prediction Using Wavelet And Lstm". Journal of Duhok University 26, n.º 2 (21 de dezembro de 2023): 541–50. http://dx.doi.org/10.26682/csjuod.2023.26.2.49.
Texto completo da fonteLiu, Xiaoli, e Jianqin Yin. "Multi-Head TrajectoryCNN: A New Multi-Task Framework for Action Prediction". Applied Sciences 12, n.º 11 (26 de maio de 2022): 5381. http://dx.doi.org/10.3390/app12115381.
Texto completo da fonteKumari, Sweta, Syed Shahid Raza, Gopal Arora e Shambhu Bharadwaj. "Exploring machine learning in the context of environmental usage prediction". Multidisciplinary Science Journal 6 (26 de julho de 2024): 2024ss0503. http://dx.doi.org/10.31893/multiscience.2024ss0503.
Texto completo da fonteZanchettin, Andrea Maria, Andrea Casalino, Luigi Piroddi e Paolo Rocco. "Prediction of Human Activity Patterns for Human–Robot Collaborative Assembly Tasks". IEEE Transactions on Industrial Informatics 15, n.º 7 (julho de 2019): 3934–42. http://dx.doi.org/10.1109/tii.2018.2882741.
Texto completo da fonteHmamouche, Youssef, Magalie Ochs, Laurent Prévot e Thierry Chaminade. "Interpretable prediction of brain activity during conversations from multimodal behavioral signals". PLOS ONE 19, n.º 3 (21 de março de 2024): e0284342. http://dx.doi.org/10.1371/journal.pone.0284342.
Texto completo da fonteLuo, Heng, Hao Ye, Hui Wen Ng, Lemming Shi, Weida Tong, Donna L. Mendrick e Huixiao Hong. "Machine Learning Methods for Predicting HLA-Peptide Binding Activity". Bioinformatics and Biology Insights 9s3 (janeiro de 2015): BBI.S29466. http://dx.doi.org/10.4137/bbi.s29466.
Texto completo da fontePark, Jinsoo, Chiyou Song, Mingi Kim e Sungroul Kim. "Activity Prediction Based on Deep Learning Techniques". Applied Sciences 13, n.º 9 (5 de maio de 2023): 5684. http://dx.doi.org/10.3390/app13095684.
Texto completo da fonteDe Bock, Yannick, Andres Auquilla, Ann Nowé e Joost R. Duflou. "Nonparametric user activity modelling and prediction". User Modeling and User-Adapted Interaction 30, n.º 5 (14 de março de 2020): 803–31. http://dx.doi.org/10.1007/s11257-020-09259-3.
Texto completo da fonteSairam, B. V. V. S. "Human Activity Pattern Prediction System for Smart Home Appliances". International Journal for Research in Applied Science and Engineering Technology 9, n.º 12 (31 de dezembro de 2021): 1811–14. http://dx.doi.org/10.22214/ijraset.2021.39628.
Texto completo da fonteLi, Kang, e Yun Fu. "Prediction of Human Activity by Discovering Temporal Sequence Patterns". IEEE Transactions on Pattern Analysis and Machine Intelligence 36, n.º 8 (agosto de 2014): 1644–57. http://dx.doi.org/10.1109/tpami.2013.2297321.
Texto completo da fonteDing, Wenwen, Kai Liu, Fei Cheng e Jin Zhang. "Learning hierarchical spatio-temporal pattern for human activity prediction". Journal of Visual Communication and Image Representation 35 (fevereiro de 2016): 103–11. http://dx.doi.org/10.1016/j.jvcir.2015.12.006.
Texto completo da fonteWang, Haoran, Wankou Yang, Chunfeng Yuan, Haibin Ling e Weiming Hu. "Human activity prediction using temporally-weighted generalized time warping". Neurocomputing 225 (fevereiro de 2017): 139–47. http://dx.doi.org/10.1016/j.neucom.2016.11.004.
Texto completo da fonteKondor, Dániel, Sebastian Grauwin, Zsófia Kallus, István Gódor, Stanislav Sobolevsky e Carlo Ratti. "Prediction limits of mobile phone activity modelling". Royal Society Open Science 4, n.º 2 (fevereiro de 2017): 160900. http://dx.doi.org/10.1098/rsos.160900.
Texto completo da fonteJaramillo, Ismael Espinoza, Channabasava Chola, Jin-Gyun Jeong, Ji-Heon Oh, Hwanseok Jung, Jin-Hyuk Lee, Won Hee Lee e Tae-Seong Kim. "Human Activity Prediction Based on Forecasted IMU Activity Signals by Sequence-to-Sequence Deep Neural Networks". Sensors 23, n.º 14 (18 de julho de 2023): 6491. http://dx.doi.org/10.3390/s23146491.
Texto completo da fonteShakerian, Ali, Victor Douet, Amirhossein Shoaraye Nejati e René Landry. "Real-Time Sensor-Embedded Neural Network for Human Activity Recognition". Sensors 23, n.º 19 (28 de setembro de 2023): 8127. http://dx.doi.org/10.3390/s23198127.
Texto completo da fonteReily, Brian, Fei Han, Lynne E. Parker e Hao Zhang. "Skeleton-based bio-inspired human activity prediction for real-time human–robot interaction". Autonomous Robots 42, n.º 6 (27 de dezembro de 2017): 1281–98. http://dx.doi.org/10.1007/s10514-017-9692-3.
Texto completo da fonteSalomón, Sergio, e Cristina Tîrnăucă. "Human Activity Recognition through Weighted Finite Automata". Proceedings 2, n.º 19 (25 de outubro de 2018): 1263. http://dx.doi.org/10.3390/proceedings2191263.
Texto completo da fonteMakkouk, Al H., Isaac B. Bersuker e James E. Boggs. "Quantitative Drug Activity Prediction for Inhibitors of Human Breast Carcinoma". International Journal of Pharmaceutical Medicine 18, n.º 2 (2004): 81–89. http://dx.doi.org/10.2165/00124363-200418020-00002.
Texto completo da fonteYamada, Yohei, Katsuyuki Sakai e Yukiyasu Kamitani. "Prediction of future perceptual alternation timing from human brain activity". Neuroscience Research 65 (janeiro de 2009): S133—S134. http://dx.doi.org/10.1016/j.neures.2009.09.653.
Texto completo da fonteSharma, Divya, e Usha Chauhan. "Human Activity Prediction Studies Using Wearable Sensors and Machine Learning". Journal of Computer Science 20, n.º 4 (1 de abril de 2024): 431–41. http://dx.doi.org/10.3844/jcssp.2024.431.441.
Texto completo da fonteDas, Shuvojit. "Human Activity Recognition using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 10, n.º 6 (30 de junho de 2022): 4188–93. http://dx.doi.org/10.22214/ijraset.2022.44722.
Texto completo da fonteRamos, Raúl Gómez, Jaime Duque Domingo, Eduardo Zalama e Jaime Gómez-García-Bermejo. "Daily Human Activity Recognition Using Non-Intrusive Sensors". Sensors 21, n.º 16 (4 de agosto de 2021): 5270. http://dx.doi.org/10.3390/s21165270.
Texto completo da fonteXu, Li, e Mei‐Po Kwan. "Mining sequential activity–travel patterns for individual‐level human activity prediction using Bayesian networks". Transactions in GIS 24, n.º 5 (30 de maio de 2020): 1341–58. http://dx.doi.org/10.1111/tgis.12635.
Texto completo da fonteWang, Chia-Chi, Pinpin Lin, Che-Yu Chou, Shan-Shan Wang e Chun-Wei Tung. "Prediction of human fetal–maternal blood concentration ratio of chemicals". PeerJ 8 (21 de julho de 2020): e9562. http://dx.doi.org/10.7717/peerj.9562.
Texto completo da fonteКосяков, А. В., e А. Д. Ишков. "Neurophysiological bases for predicting the success of professional activity". Экономика и предпринимательство, n.º 10(147) (21 de fevereiro de 2023): 948–51. http://dx.doi.org/10.34925/eip.2022.147.10.188.
Texto completo da fonteMogk, Jeremy P. M., e Peter J. Keir. "Prediction of forearm muscle activity during gripping". Ergonomics 49, n.º 11 (15 de setembro de 2006): 1121–30. http://dx.doi.org/10.1080/00140130600777433.
Texto completo da fonteRamakrishnan, R., e P. Angarika. "SMART WATCH DATA ANALYSIS USING PYTHON AND HUMAN HEALTH PREDICTION". International Scientific Journal of Engineering and Management 03, n.º 12 (14 de dezembro de 2024): 1–5. https://doi.org/10.55041/isjem02154.
Texto completo da fonteNing, Lixin, Changxiu Cheng, Xu Lu, Shi Shen, Liang Zhang, Shaomin Mu e Yunsheng Song. "Improving the Prediction of Soil Organic Matter in Arable Land Using Human Activity Factors". Water 14, n.º 10 (23 de maio de 2022): 1668. http://dx.doi.org/10.3390/w14101668.
Texto completo da fonteKumar, Kambala Vijaya, e Jonnadula Harikiran. "Privacy preserving human activity recognition framework using an optimized prediction algorithm". IAES International Journal of Artificial Intelligence (IJ-AI) 11, n.º 1 (1 de março de 2022): 254. http://dx.doi.org/10.11591/ijai.v11.i1.pp254-264.
Texto completo da fontePagnoni, Giuseppe, Caroline F. Zink, P. Read Montague e Gregory S. Berns. "Activity in human ventral striatum locked to errors of reward prediction". Nature Neuroscience 5, n.º 2 (22 de janeiro de 2002): 97–98. http://dx.doi.org/10.1038/nn802.
Texto completo da fonteZafar, Raheel, Sarat C. Dass, Aamir Saeed Malik, Nidal Kamel, M. Javvad Ur Rehman, Rana Fayyaz Ahmad, Jafri Malin Abdullah e Faruque Reza. "Prediction of Human Brain Activity Using Likelihood Ratio Based Score Fusion". IEEE Access 5 (2017): 13010–19. http://dx.doi.org/10.1109/access.2017.2698068.
Texto completo da fonteWang, Haoran, Chunfeng Yuan, Jifeng Shen, Wankou Yang e Haibin Ling. "Action unit detection and key frame selection for human activity prediction". Neurocomputing 318 (novembro de 2018): 109–19. http://dx.doi.org/10.1016/j.neucom.2018.08.037.
Texto completo da fonteSun, Qianru, Hong Liu, Mengyuan Liu e Tianwei Zhang. "Human activity prediction by mapping grouplets to recurrent Self-Organizing Map". Neurocomputing 177 (fevereiro de 2016): 427–40. http://dx.doi.org/10.1016/j.neucom.2015.11.061.
Texto completo da fonteWang, Lei, Xu Zhao, Yunfei Si, Liangliang Cao e Yuncai Liu. "Context-Associative Hierarchical Memory Model for Human Activity Recognition and Prediction". IEEE Transactions on Multimedia 19, n.º 3 (março de 2017): 646–59. http://dx.doi.org/10.1109/tmm.2016.2617079.
Texto completo da fonteNoor, Shaheena, e Vali Uddin. "First Person Vision for Activity Prediction Using Probabilistic Modeling". October 2018 37, n.º 4 (1 de outubro de 2018): 545–58. http://dx.doi.org/10.22581/muet1982.1804.09.
Texto completo da fonteRamnani, N., I. Toni, O. Josephs, J. Ashburner e R. E. Passingham. "Learning- and Expectation-Related Changes in the Human Brain During Motor Learning". Journal of Neurophysiology 84, n.º 6 (1 de dezembro de 2000): 3026–35. http://dx.doi.org/10.1152/jn.2000.84.6.3026.
Texto completo da fonteBreska, Assaf, e Richard B. Ivry. "Context-specific control over the neural dynamics of temporal attention by the human cerebellum". Science Advances 6, n.º 49 (dezembro de 2020): eabb1141. http://dx.doi.org/10.1126/sciadv.abb1141.
Texto completo da fonteSingh, Suruchi, Dr C. S. Raghuvanshi e Dr Hari Om Sharan. "Advancements and Future Directions in Human Activity Recognition". International Journal for Research in Applied Science and Engineering Technology 11, n.º 6 (30 de junho de 2023): 4097–102. http://dx.doi.org/10.22214/ijraset.2023.54400.
Texto completo da fonte