Literatura científica selecionada sobre o tema "Human activity"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Human activity".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Human activity"
Patel, Mayur A. "Combating Human Diseases through Physical Activity". Indian Journal of Applied Research 3, n.º 2 (1 de outubro de 2011): 312–13. http://dx.doi.org/10.15373/2249555x/feb2013/106.
Texto completo da fonteL, Latha, Cynthia J, G. Seetha Lakshmi, Raajshre B, Senthil J e Vikashini S. "Human Activity Recognition Using Smartphone Sensors". Webology 18, n.º 04 (28 de setembro de 2021): 1499–511. http://dx.doi.org/10.14704/web/v18si04/web18294.
Texto completo da fonteZhang, Tongda, Xiao Sun, Yueting Chai e Hamid Aghajan. "Human Computer Interaction Activity Based User Identification". International Journal of Machine Learning and Computing 4, n.º 4 (2014): 354–58. http://dx.doi.org/10.7763/ijmlc.2014.v4.436.
Texto completo da fonteP. Ambiga, P. Ambiga, R. Bhavani R. Bhavani, P. Sivamani P. Sivamani e R. R. Thanighai arassu. "Comparative Analysis of Microbial and Human Amylase Activity". Indian Journal of Applied Research 3, n.º 3 (1 de outubro de 2011): 380–84. http://dx.doi.org/10.15373/2249555x/mar2013/130.
Texto completo da fonteGuda, B. B., V. V. Pushkarev, O. V. Zhuravel, A. Ye Kovalenko, V. M. Pushkarev, Y. M. Taraschenko e M. D. Tronko. "Protein kinase Akt activity in human thyroid tumors". Ukrainian Biochemical Journal 88, n.º 5 (31 de outubro de 2016): 90–95. http://dx.doi.org/10.15407/ubj88.05.090.
Texto completo da fonteXu-Nan Tan, Xu-Nan Tan. "Human Activity Recognition Based on CNN and LSTM". 電腦學刊 34, n.º 3 (junho de 2023): 221–35. http://dx.doi.org/10.53106/199115992023063403016.
Texto completo da fonteKhupavtseva, Nataliia, e Liana Onufriieva. "Facilitative Interaction as a Multi-Level Human Activity". Collection of Research Papers "Problems of Modern Psychology" 59 (30 de março de 2023): 73–95. http://dx.doi.org/10.32626/2227-6246.2023-59.73-95.
Texto completo da fonteChun-Mei Ma, Chun-Mei Ma, Hui Zhao Chun-Mei Ma, Ying Li Hui Zhao, Pan-Pan Wu Ying Li, Tao Zhang Pan-Pan Wu e Bo-Jue Wang Tao Zhang. "Human Activity Recognition with Multimodal Sensing of Wearable Sensors". 電腦學刊 32, n.º 6 (dezembro de 2021): 024–37. http://dx.doi.org/10.53106/199115992021123206003.
Texto completo da fonteBobrovnik, S. A., M. A. Demchenko e S. V. Komisarenko. "Age changes of human serum polyreactive immunoglobulins (PRIG) activity". Ukrainian Biochemical Journal 86, n.º 5 (27 de outubro de 2014): 151–55. http://dx.doi.org/10.15407/ubj86.05.151.
Texto completo da fonteDönmez, İlknur. "Human Activity Analysis and Prediction Using Google n-Grams". International Journal of Future Computer and Communication 7, n.º 2 (junho de 2018): 32–36. http://dx.doi.org/10.18178/ijfcc.2018.7.2.516.
Texto completo da fonteTeses / dissertações sobre o assunto "Human activity"
Albinali, Fahd. "Activity-Aware Computing: Modeling of Human Activity and Behavior". Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/195382.
Texto completo da fonteReyes, Ortiz Jorge Luis. "Smartphone-based human activity recognition". Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/284725.
Texto completo da fonteEl Reconocimiento de Actividades Humanas (RAH) es un campo de investigación multidisciplinario que busca recopilar información sobre el comportamiento de las personas y su interacción con el entorno con el propósito de ofrecer información contextual de alta significancia sobre las acciones que ellas realizan. Recientemente, el RAH ha contribuido en el desarrollo de áreas de estudio enfocadas a la mejora de la calidad de vida del hombre tales como: la inteligència ambiental (Ambient Intelligence) y la vida cotidiana asistida por el entorno para personas dependientes (Ambient Assisted Living). El primer paso para conseguir el RAH consiste en realizar observaciones mediante el uso de sensores fijos localizados en el ambiente, o bien portátiles incorporados de forma vestible en el cuerpo humano. Sin embargo, para el segundo caso, aún se dificulta encontrar dispositivos poco invasivos, de bajo consumo energético, que permitan ser llevados a cualquier lugar, y de bajo costo. En esta tesis, nosotros exploramos el uso de teléfonos móviles inteligentes (Smartphones) como una alternativa para el RAH. Estos dispositivos, de uso cotidiano y fácilmente asequibles en el mercado, están dotados de sensores embebidos, potentes capacidades de cómputo y diversas tecnologías de comunicación inalámbrica que los hacen apropiados para esta aplicación. Nuestro trabajo presenta una serie de contribuciones en relación al desarrollo de sistemas para el RAH con Smartphones. En primera instancia proponemos un sistema que permite la detección de seis actividades físicas en tiempo real y que, además, tiene en cuenta las transiciones posturales que puedan ocurrir entre ellas. Con este fin, hemos contribuido en distintos ámbitos que van desde el procesamiento de señales y la selección de características, hasta algoritmos de Aprendizaje Automático (AA). Nosotros utilizamos dos sensores inerciales (el acelerómetro y el giroscopio) para la captura de las señales de movimiento de los usuarios. Estas han de ser procesadas a través de técnicas de filtrado para la reducción de ruido, segmentación y obtención de características relevantes en la detección de actividad. También hacemos énfasis en el estudio de Máquinas de soporte vectorial (MSV) que son uno de los algoritmos de AA más usados en la actualidad. Para ello reformulamos varios de sus métodos estándar (lineales y no lineales) con el propósito de encontrar la mejor combinación de variables que garanticen un buen desempeño del sistema en cuanto a precisión, coste computacional y requerimientos de energía, los cuales son aspectos esenciales en dispositivos portátiles con suministro de energía mediante baterías. En concreto, proponemos dos MSV multiclase para la clasificación de actividad: un algoritmo lineal que permite el balance entre la reducción de la dimensionalidad y la precisión del sistema; y asimismo presentamos un algoritmo no lineal conveniente para dispositivos con limitaciones de hardware que solo utiliza aritmética de punto fijo en la fase de predicción y que permite reducir la complejidad del modelo de aprendizaje mientras mantiene el rendimiento del sistema. La eficacia del sistema propuesto es verificada a través de una experimentación extensiva sobre la base de datos RAH que hemos generado y hecho pública en la red. Esta contiene la información inercial obtenida de un grupo de 30 participantes que realizaron una serie de actividades de la vida cotidiana en un ambiente controlado mientras tenían sujeto a su cintura un smartphone que capturaba su movimiento. Los resultados obtenidos en esta investigación demuestran que es posible realizar el RAH en tiempo real con una precisión cercana al 97%. De esta manera, podemos emplear la metodología propuesta en aplicaciones de alto nivel que requieran el RAH tales como monitorizaciones ambulatorias para personas dependientes (ej. ancianos o discapacitados) durante periodos mayores a cinco días sin la necesidad de recarga de baterías.
Outten, Alan Gerard. "Analysis of human muscle activity". Thesis, Imperial College London, 1997. http://hdl.handle.net/10044/1/7958.
Texto completo da fonteTOKALA, SAI SUJIT, e RANADEEP ROKALA. "HUMAN ACTIVITY MONITORING USING SMARTPHONE". Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2566.
Texto completo da fonteI denna modell har vi utvecklat en algoritm för aktivitetsklassificeringoch energiförbrukning uppskattning , vilket hjälper oss i övervakningen daglig mänsklig aktivitet med större noggrannhet . Resultaten valideras med standard energiförbrukning teknik och aktivitetsklassificeringsvideoobservationer. Vi vill att denna modell ska integreras i smarta mobiltelefoner för att ge slutanvändaren en vänlig atmosfär utan att lägga några komplicerade funktioner för hantering av utrustningen . Denna modell är mycket användbart i klinisk uppföljning av patienterna , kommer det att hjälpa oss att övervaka gamla , sjuka och utvecklingsstörda personens aktivitetsidentifiering och hjälper oss i nära övervakning av patienterna men fysiskt att vara borta från dem . Våra bärbara MEMS baserade treaxlig accelerometer system baserat smartphone kompatibel algoritm tillsammans med andra fysiologiska övervakningsparametrarkommer att ge korrekt övervakning rörelse och energiförbrukning uppskattning för klinisk analys . Denna modell är användbar för analys och övervakning av grupp -och enskilda individer , vilket kommer att leda till att spåra deras rörelser och en framgångsrik räddningsaktion för att rädda dem från dödliga sjukdomar och förebygga risker när de är skadade . Framtida arbete kommer att vara kontinuerlig övervakning av ämnen enskild aktivitet tillsammans med gruppaktivitet . Identifiera hållning övergång av olika aktiviteter i en kort tid som att springa till sittande , sittande till stående , står att krypa etc.
0091-7660885577
Ameri-Daragheh, Alireza. "Wearable human activity recognition systems". Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1595755.
Texto completo da fonteIn this thesis, we focused on designing wearable human activity recognition (WHAR) systems. As the first step, we conducted a thorough research over the publications during the recent ten years in this area. Then, we proposed an all-purpose architecture for designing the software of WHAR systems. Afterwards, among various applications of these wearable systems, we decided to work on wearable virtual fitness coach device which can recognize various types and intensities of warm-up exercises that an athlete performs. We first proposed a basic hardware platform for implementing the WHAR software. Afterwards, the software design was done in two phases. In the first phase, we focused on four simple activities to be recognized by the wearable device. We used Weka machine learning tool to build a mathematical model which could recognize the four activities with the accuracy of 99.32%. Moreover, we proposed an algorithm to measure the intensity of the activities with the accuracy of 93%. In the second phase, we focused on eight complex warm-up exercises. After building the mathematical model, the WHAR system could recognize the eight activities with the accuracy of 95.60%.
Kepenekci, Burcu. "Human Activity Recognition By Gait Analysis". Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613089/index.pdf.
Texto completo da fonteAkpinar, Kutalmis. "Human Activity Classification Using Spatio-temporal". Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614587/index.pdf.
Texto completo da fontehowever, the feature relation histogram has the ability to represent the locational information of the features. Our extension defines a new set of relations between the features, which makes the method more effective for action description. Classifications are performed and results are compared using feature histogram, Ryoo&rsquo
s feature relation histogram and our feature relation histogram using the same datasets and the feature type. Our experiments show that feature relation histogram performs slightly better than the feature histogram, our feature relation histogram is even better than both of the two. Although the difference is not clearly observable in the datasets containing periodic actions, a 12% improvement is observed for the non-periodic action datasets. Our work shows that the spatio-temporal relation represented by our new set of relations is a better way to represent the activity for classification.
Qi, Lin. "Autonomous Identification of Human Activity Regions". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212052.
Texto completo da fonteMänskliga aktivitetsregioner, HARs (Human Activity Regions) är människocentreraderegioner som ger en semantisk partitionering av inomhusmiljöer. HARs är användbara för att uppnå väl fungerande människarobot- interaktioner. I denna avhandling utformas ett system för att generera HARs automatiskt baserat på data från robotar. Detta görs genom att klustra observationer av människor för att på så vis få fram de områden som är associerade med frekvent mänsklig närvaro. Experiment visar att systemet kan hantera data som registrerats av olika sensorer i olika inomhusmiljöer och att det är robust. Framförallt genererar systemet en pålitlig partitionering av miljön.
Lakins, Johnathon N. "Structure and activity of human clusterin". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0021/NQ45178.pdf.
Texto completo da fonteDevaraj, Revathy. "Validation of the Human Activity Profile". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ52893.pdf.
Texto completo da fonteLivros sobre o assunto "Human activity"
Kawaguchi, Nobuo, Nobuhiko Nishio, Daniel Roggen, Sozo Inoue, Susanna Pirttikangas e Kristof Van Laerhoven, eds. Human Activity Sensing. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5.
Texto completo da fontePike, Graham. Human rights: Activity file. London: Thornes, 1990.
Encontre o texto completo da fonteAhad, Md Atiqur Rahman, Upal Mahbub e Tauhidur Rahman, eds. Contactless Human Activity Analysis. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68590-4.
Texto completo da fonteAhad, Md Atiqur Rahman, Paula Lago e Sozo Inoue, eds. Human Activity Recognition Challenge. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8269-1.
Texto completo da fonteNaur, Peter. Computing, a human activity. New York: ACM Press, 1992.
Encontre o texto completo da fontePike, Graham. Human rights: Activity file. Leckhampton, Eng: Stanley Thornes (Publishers) Ltd., 1991.
Encontre o texto completo da fontePike, Graham. Human rights: Activity file. London: Mary Glasgow, 1988.
Encontre o texto completo da fonteHodakov, Viktor. Natural environment and human activity. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1194879.
Texto completo da fonteHu, Zhongxu, e Chen Lv. Vision-Based Human Activity Recognition. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2290-9.
Texto completo da fonteReyes Ortiz, Jorge Luis. Smartphone-Based Human Activity Recognition. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14274-6.
Texto completo da fonteCapítulos de livros sobre o assunto "Human activity"
Welle, Stephen. "Physical Activity". In Human Protein Metabolism, 177–95. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1458-8_8.
Texto completo da fonteKomukai, Kohei, e Ren Ohmura. "Optimizing of the Number and Placements of Wearable IMUs for Automatic Rehabilitation Recording". In Human Activity Sensing, 3–15. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_1.
Texto completo da fonteLago, Paula, Shingo Takeda, Tsuyoshi Okita e Sozo Inoue. "MEASURed: Evaluating Sensor-Based Activity Recognition Scenarios by Simulating Accelerometer Measures from Motion Capture". In Human Activity Sensing, 135–49. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_10.
Texto completo da fonteWang, Lin, Hristijan Gjoreski, Mathias Ciliberto, Sami Mekki, Stefan Valentin e Daniel Roggen. "Benchmark Performance for the Sussex-Huawei Locomotion and Transportation Recognition Challenge 2018". In Human Activity Sensing, 153–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_11.
Texto completo da fonteOsmani, Aomar, e Massinissa Hamidi. "Bayesian Optimization of Neural Architectures for Human Activity Recognition". In Human Activity Sensing, 171–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_12.
Texto completo da fonteWidhalm, Peter, Maximilian Leodolter e Norbert Brändle. "Into the Wild—Avoiding Pitfalls in the Evaluation of Travel Activity Classifiers". In Human Activity Sensing, 197–211. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_13.
Texto completo da fonteSloma, Michael, Makan Arastuie e Kevin S. Xu. "Effects of Activity Recognition Window Size and Time Stabilization in the SHL Recognition Challenge". In Human Activity Sensing, 213–31. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_14.
Texto completo da fonteJanko, Vito, Martin Gjoreski, Gašper Slapničar, Miha Mlakar, Nina Reščič, Jani Bizjak, Vid Drobnič et al. "Winning the Sussex-Huawei Locomotion-Transportation Recognition Challenge". In Human Activity Sensing, 233–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_15.
Texto completo da fonteScholl, Philipp M., e Kristof Van Laerhoven. "Identifying Sensors via Statistical Analysis of Body-Worn Inertial Sensor Data". In Human Activity Sensing, 17–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_2.
Texto completo da fonteNozaki, Junto, Kei Hiroi, Katsuhiko Kaji e Nobuo Kawaguchi. "Compensation Scheme for PDR Using Component-Wise Error Models". In Human Activity Sensing, 29–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13001-5_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Human activity"
Damarla, Thyagaraju, Lance Kaplan e Alex Chan. "Human infrastructure & human activity detection". In 2007 10th International Conference on Information Fusion. IEEE, 2007. http://dx.doi.org/10.1109/icif.2007.4408122.
Texto completo da fonteParmar, Divaksh, Mitanshu Bhardwaj, Aayush Garg, Anjali Kapoor e Anju Mishra. "Human activity recognition system". In 2023 International Conference on Computational Intelligence, Communication Technology and Networking (CICTN). IEEE, 2023. http://dx.doi.org/10.1109/cictn57981.2023.10141250.
Texto completo da fonteReid, Shane, Sonya Coleman, Dermot Kerr, Philip Vance e Siobhan O’Neill. "Fast Human Activity Recognition". In International Conference on Image Processing and Vision Engineering. SCITEPRESS - Science and Technology Publications, 2021. http://dx.doi.org/10.5220/0010420300910098.
Texto completo da fonteHung, Tzu-Yi, Jiwen Lu, Junlin Hu, Yap-Peng Tan e Yongxin Ge. "Activity-based human identification". In ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638077.
Texto completo da fonteGioanni, Luis, Christel Dartigues-Pallez, Stéphane Lavirotte e Jean-Yves Tigli. "Opportunistic Human Activity Recognition". In MOBIQUITOUS 2016: Computing, Networking and Services. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2994374.3004075.
Texto completo da fonteNair, Nitin, Chinchu Thomas e Dinesh Babu Jayagopi. "Human Activity Recognition Using Temporal Convolutional Network". In iWOAR '18: 5th international Workshop on Sensor-based Activity Recognition and Interaction. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3266157.3266221.
Texto completo da fonte"Ayllu: Agent-Inspired Cooperative Services for Human Interaction". In The 3rd International Workshop on Computer Supported Activity Coordination. SciTePress - Science and and Technology Publications, 2006. http://dx.doi.org/10.5220/0002480600550064.
Texto completo da fonteZhdanova, Marina, Viacheslav V. Voronin, Evgeny Semenishchev, Yurii V. Ilyukhin e Aleksandr Zelensky. "Human activity recognition for efficient human-robot collaboration". In Artificial Intelligence and Machine Learning in Defense Applications II, editado por Judith Dijk. SPIE, 2020. http://dx.doi.org/10.1117/12.2574133.
Texto completo da fonteCheng, Zhiqing, Stephen Mosher, Huaining Cheng e Timothy Webb. "Human activity recognition based on human shape dynamics". In SPIE Defense, Security, and Sensing, editado por Ivan Kadar. SPIE, 2013. http://dx.doi.org/10.1117/12.2015487.
Texto completo da fonteSaroja, M. N., K. R. Baskaran e P. Priyanka. "Human pose estimation approaches for human activity recognition". In 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA). IEEE, 2021. http://dx.doi.org/10.1109/icaeca52838.2021.9675787.
Texto completo da fonteRelatórios de organizações sobre o assunto "Human activity"
Griffith, J. Telomerase activity in human cancer. Office of Scientific and Technical Information (OSTI), outubro de 2000. http://dx.doi.org/10.2172/766184.
Texto completo da fonteAli, Anjum, e J. K. Aggarwal. Segmentation and Recognition of Continuous Human Activity. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2001. http://dx.doi.org/10.21236/ada396147.
Texto completo da fonteFlater, David, Philippe A. Martin e Michelle L. Crane. Rendering UML activity diagrams as human-readable text. Gaithersburg, MD: National Institute of Standards and Technology, 2007. http://dx.doi.org/10.6028/nist.ir.7469.
Texto completo da fonteCheng, Zhiqing, Steve Mosher, Jeanne Smith, Isiah Davenport, John Camp e Darrell Lochtefeld. Human Activity Modeling and Simulation with High Biofidelity. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2013. http://dx.doi.org/10.21236/ada584135.
Texto completo da fonteCamp, John, Darrell Lochtefeld, Zhiqing Cheng, Isiah Davenport, Tim MtCastle, Steve Mosher, Jeanne Smith e Max Grattan. Biofidelic Human Activity Modeling and Simulation with Large Variability. Fort Belvoir, VA: Defense Technical Information Center, novembro de 2014. http://dx.doi.org/10.21236/ada618197.
Texto completo da fonteAllen, Melissa R., H. M. Abdul Aziz, Mark A. Coletti, Joseph H. Kennedy, Sujithkumar S. Nair e Olufemi A. Omitaomu. Workshop on Human Activity at Scale in Earth System Models. Office of Scientific and Technical Information (OSTI), janeiro de 2017. http://dx.doi.org/10.2172/1343540.
Texto completo da fonteMocan, H. Naci, Stephen Billups e Jody Overland. A Dynamic Model of Differential Human Capital and Criminal Activity. Cambridge, MA: National Bureau of Economic Research, março de 2000. http://dx.doi.org/10.3386/w7584.
Texto completo da fonteHristova, Marina, Plamen Todorov, Nadya Petrova, Diana Gulenova, Ibryam Ibryam e Elena Hristova. Clonogenic Activity of Human Haematopoietic Stem Cells Cultured under Micro-vibrations. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, maio de 2018. http://dx.doi.org/10.7546/crabs.2018.04.08.
Texto completo da fonteMatzen, Laura E., Michael Joseph Haass, Michael Christopher Stefan Trumbo, Austin Ray Silva, Susan Marie Stevens-Adams, Jennifer Taylor White, Anna Ho e David Eugene Peercy. Using recordings of brain activity to predict and improve human performance. Office of Scientific and Technical Information (OSTI), setembro de 2012. http://dx.doi.org/10.2172/1055638.
Texto completo da fonteManfredi, James. Regulation of the Tumor Suppressor Activity of p53 in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2000. http://dx.doi.org/10.21236/ada395583.
Texto completo da fonte