Artigos de revistas sobre o tema "Hot spot prediction"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hot spot prediction".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhang, Sijia, Le Zhao, Chun-Hou Zheng e Junfeng Xia. "A feature-based approach to predict hot spots in protein–DNA binding interfaces". Briefings in Bioinformatics 21, n.º 3 (8 de abril de 2019): 1038–46. http://dx.doi.org/10.1093/bib/bbz037.
Texto completo da fonteKenneth Morrow, John, e Shuxing Zhang. "Computational Prediction of Protein Hot Spot Residues". Current Drug Metabolism 18, n.º 9 (1 de março de 2012): 1255–65. http://dx.doi.org/10.2174/138920012799362909.
Texto completo da fonteKenneth Morrow, John, e Shuxing Zhang. "Computational Prediction of Protein Hot Spot Residues". Current Pharmaceutical Design 18, n.º 9 (1 de março de 2012): 1255–65. http://dx.doi.org/10.2174/138161212799436412.
Texto completo da fonteNair B.J, Bipin, e Lijo Joy. "A hybrid approach for hot spot prediction and deep representation of hematological protein – drug interactions". International Journal of Engineering & Technology 7, n.º 1.9 (1 de março de 2018): 145. http://dx.doi.org/10.14419/ijet.v7i1.9.9752.
Texto completo da fonteTuncbag, N., O. Keskin e A. Gursoy. "HotPoint: hot spot prediction server for protein interfaces". Nucleic Acids Research 38, Web Server (5 de maio de 2010): W402—W406. http://dx.doi.org/10.1093/nar/gkq323.
Texto completo da fonteLiu, Siyu, Chuyao Liu e Lei Deng. "Machine Learning Approaches for Protein–Protein Interaction Hot Spot Prediction: Progress and Comparative Assessment". Molecules 23, n.º 10 (4 de outubro de 2018): 2535. http://dx.doi.org/10.3390/molecules23102535.
Texto completo da fonteRoll, Uri, Lewi Stone e Shai Meiri. "Hot-Spot Facts and Artifacts-Questioning Israel's Great Biodiversity". Israel Journal of Ecology and Evolution 55, n.º 3 (6 de maio de 2009): 263–79. http://dx.doi.org/10.1560/ijee.55.3.263.
Texto completo da fonteWang, Ao, e Yimin Xuan. "Multiscale prediction of localized hot-spot phenomena in solar cells". Renewable Energy 146 (fevereiro de 2020): 1292–300. http://dx.doi.org/10.1016/j.renene.2019.07.073.
Texto completo da fonteGrosdidier, Solene, e Juan Fernandez-Recio. "Protein-protein Docking and Hot-spot Prediction for Drug Discovery". Current Pharmaceutical Design 18, n.º 30 (23 de agosto de 2012): 4607–18. http://dx.doi.org/10.2174/138161212802651599.
Texto completo da fonteZhang, Ming, e Wei Chen. "Hot Spot Data Prediction Model Based on Wavelet Neural Network". Mathematical Problems in Engineering 2018 (30 de outubro de 2018): 1–10. http://dx.doi.org/10.1155/2018/3719564.
Texto completo da fonteRommel, D. P., D. Di Maio e T. Tinga. "Transformer hot spot temperature prediction based on basic operator information". International Journal of Electrical Power & Energy Systems 124 (janeiro de 2021): 106340. http://dx.doi.org/10.1016/j.ijepes.2020.106340.
Texto completo da fonteSkillen, Alex, Alistair Revell, Hector Iacovides e Wei Wu. "Numerical prediction of local hot-spot phenomena in transformer windings". Applied Thermal Engineering 36 (abril de 2012): 96–105. http://dx.doi.org/10.1016/j.applthermaleng.2011.11.054.
Texto completo da fonteZhang, Yue, Lianfei Shan, Jianming Yu e Hongwei Lv. "Transformer winding hot spot temperature prediction based on ε -fuzzy tree". IOP Conference Series: Earth and Environmental Science 300 (9 de agosto de 2019): 042034. http://dx.doi.org/10.1088/1755-1315/300/4/042034.
Texto completo da fonteDíaz-Valle, Armando, José Marcos Falcón-González e Mauricio Carrillo-Tripp. "Hot Spots and Their Contribution to the Self-Assembly of the Viral Capsid: In Silico Prediction and Analysis". International Journal of Molecular Sciences 20, n.º 23 (27 de novembro de 2019): 5966. http://dx.doi.org/10.3390/ijms20235966.
Texto completo da fonteJin, Jae Sik, e Joon Sik Lee. "Electron–Phonon Interaction Model and Prediction of Thermal Energy Transport in SOI Transistor". Journal of Nanoscience and Nanotechnology 7, n.º 11 (1 de novembro de 2007): 4094–100. http://dx.doi.org/10.1166/jnn.2007.010.
Texto completo da fonteJin, Jae Sik, e Joon Sik Lee. "Electron–Phonon Interaction Model and Prediction of Thermal Energy Transport in SOI Transistor". Journal of Nanoscience and Nanotechnology 7, n.º 11 (1 de novembro de 2007): 4094–100. http://dx.doi.org/10.1166/jnn.2007.18084.
Texto completo da fonteHiga, Roberto Hiroshi, e Clésio Luis Tozzi. "Prediction of binding hot spot residues by using structural and evolutionary parameters". Genetics and Molecular Biology 32, n.º 3 (2009): 626–33. http://dx.doi.org/10.1590/s1415-47572009000300029.
Texto completo da fonteDeng, Lei, Yuanchao Sui e Jingpu Zhang. "XGBPRH: Prediction of Binding Hot Spots at Protein–RNA Interfaces Utilizing Extreme Gradient Boosting". Genes 10, n.º 3 (21 de março de 2019): 242. http://dx.doi.org/10.3390/genes10030242.
Texto completo da fonteChen, Peng, Jinyan Li, Limsoon Wong, Hiroyuki Kuwahara, Jianhua Z. Huang e Xin Gao. "Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences". Proteins: Structure, Function, and Bioinformatics 81, n.º 8 (23 de julho de 2013): 1351–62. http://dx.doi.org/10.1002/prot.24278.
Texto completo da fonteShao, Yong-Bo, Zhi-Fu Du e Seng-Tjhen Lie. "Prediction of hot spot stress distribution for tubular K-joints under basic loadings". Journal of Constructional Steel Research 65, n.º 10-11 (outubro de 2009): 2011–26. http://dx.doi.org/10.1016/j.jcsr.2009.05.004.
Texto completo da fonteChen, Zixi, Fuqiang Liu, Bin Li, Xiaoqing Peng, Lin Fan e Aijing Luo. "Prediction of hot spot areas of hemorrhagic fever with renal syndrome in Hunan Province based on an information quantity model and logistical regression model". PLOS Neglected Tropical Diseases 14, n.º 12 (21 de dezembro de 2020): e0008939. http://dx.doi.org/10.1371/journal.pntd.0008939.
Texto completo da fonteDeng, Yongqing, Jiangjun Ruan, Yu Quan, Ruohan Gong, Daochun Huang, Cihan Duan e Yiming Xie. "A Method for Hot Spot Temperature Prediction of a 10 kV Oil-Immersed Transformer". IEEE Access 7 (2019): 107380–88. http://dx.doi.org/10.1109/access.2019.2924709.
Texto completo da fonteMohamadi, Bahaa, Timo Balz e Ali Younes. "Towards a PS-InSAR Based Prediction Model for Building Collapse: Spatiotemporal Patterns of Vertical Surface Motion in Collapsed Building Areas—Case Study of Alexandria, Egypt". Remote Sensing 12, n.º 20 (12 de outubro de 2020): 3307. http://dx.doi.org/10.3390/rs12203307.
Texto completo da fonteKim, Jeong Guk, Byeong Choon Goo, Sung Cheol Yoon e Sung Tae Kwon. "Thermographic Investigation of Hot Spots in Railway Brake Discs". Key Engineering Materials 385-387 (julho de 2008): 669–72. http://dx.doi.org/10.4028/www.scientific.net/kem.385-387.669.
Texto completo da fonteZhao, Yueyao, Jiawei Zhang e Haojie Li. "Deformation prediction analysis of vertical displacement of deep foundation pit based on LIBSVM". E3S Web of Conferences 206 (2020): 01021. http://dx.doi.org/10.1051/e3sconf/202020601021.
Texto completo da fonteXu, Yan, Kai Zhang, Hong Liang Zheng, Yu Cheng Sun e Xue Lei Tian. "An Improved Geometric Model to Predict Hot Spots of Castings". Materials Science Forum 689 (junho de 2011): 29–32. http://dx.doi.org/10.4028/www.scientific.net/msf.689.29.
Texto completo da fonteZhang, Yiyi, Xingxiao Wei, Xianhao Fan, Ke Wang, Ran Zhuo, Wei Zhang, Shuo Liang, Jian Hao e Jiefeng Liu. "A Prediction Model of Hot Spot Temperature for Split-Windings Traction Transformer Considering the Load Characteristics". IEEE Access 9 (2021): 22605–15. http://dx.doi.org/10.1109/access.2021.3056529.
Texto completo da fonteShabarek, Abdullah, Steven Chien e Soubhi Hadri. "Deep Learning Framework for Freeway Speed Prediction in Adverse Weather". Transportation Research Record: Journal of the Transportation Research Board 2674, n.º 10 (27 de agosto de 2020): 28–41. http://dx.doi.org/10.1177/0361198120947421.
Texto completo da fonteXia, Linyuan, Qiumei Huang e Dongjin Wu. "Decision Tree-Based Contextual Location Prediction from Mobile Device Logs". Mobile Information Systems 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/1852861.
Texto completo da fontePruncu, C. I., Z. Azari, C. Casavola e C. Pappalettere. "Characterization and Prediction of Cracks in Coated Materials: Direction and Length of Crack Propagation in Bimaterials". International Scholarly Research Notices 2015 (31 de janeiro de 2015): 1–13. http://dx.doi.org/10.1155/2015/594147.
Texto completo da fonteFreitas e Silva, Kleber Santiago, Raisa Melo Lima, Patrícia de Sousa Lima, Lilian Cristiane Baeza, Roosevelt Alves da Silva, Célia Maria de Almeida Soares e Maristela Pereira. "Interaction of Isocitrate Lyase with Proteins Involved in the Energetic Metabolism in Paracoccidioides lutzii". Journal of Fungi 6, n.º 4 (23 de novembro de 2020): 309. http://dx.doi.org/10.3390/jof6040309.
Texto completo da fonteMatijosaitiene, Irina, Peng Zhao, Sylvain Jaume e Joseph Gilkey Jr. "Prediction of Hourly Effect of Land Use on Crime". ISPRS International Journal of Geo-Information 8, n.º 1 (31 de dezembro de 2018): 16. http://dx.doi.org/10.3390/ijgi8010016.
Texto completo da fonteKim, Sung-Min, Yosoon Choi e Hyeong-Dong Park. "New Outlier Top-Cut Method for Mineral Resource Estimation via 3D Hot Spot Analysis of Borehole Data". Minerals 8, n.º 8 (11 de agosto de 2018): 348. http://dx.doi.org/10.3390/min8080348.
Texto completo da fonteKunicki, Borucki, Cichoń e Frymus. "Modeling of the Winding Hot-Spot Temperature in Power Transformers: Case Study of the Low-Loaded Fleet". Energies 12, n.º 18 (17 de setembro de 2019): 3561. http://dx.doi.org/10.3390/en12183561.
Texto completo da fonteGuan, Mingxiang, Le Wang e Liming Chen. "Channel allocation for hot spot areas in HAPS communication based on the prediction of mobile user characteristics". Intelligent Automation & Soft Computing 22, n.º 4 (7 de abril de 2016): 613–20. http://dx.doi.org/10.1080/10798587.2016.1152771.
Texto completo da fonteZhu, Xiaolei, e Julie C. Mitchell. "KFC2: A knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features". Proteins: Structure, Function, and Bioinformatics 79, n.º 9 (6 de julho de 2011): 2671–83. http://dx.doi.org/10.1002/prot.23094.
Texto completo da fonteAraújo, J. A., L. Susmel, D. Taylor, J. C. T. Ferro e J. L. A. Ferreira. "On the prediction of high-cycle fretting fatigue strength: Theory of critical distances vs. hot-spot approach". Engineering Fracture Mechanics 75, n.º 7 (maio de 2008): 1763–78. http://dx.doi.org/10.1016/j.engfracmech.2007.03.026.
Texto completo da fonteSun, Yuanyuan, Gongde Xu, Na Li, Kejun Li, Yongliang Liang, Hui Zhong, Lina Zhang e Ping Liu. "Hotspot Temperature Prediction of Dry-Type Transformers Based on Particle Filter Optimization with Support Vector Regression". Symmetry 13, n.º 8 (22 de julho de 2021): 1320. http://dx.doi.org/10.3390/sym13081320.
Texto completo da fonteSHI, GUANGLIN, LIN ZHU e DONGBIN WEI. "A NEW PREDICTION APPROACH FOR THE STRUCTURAL FATIGUE LIFE BASED ON MULTI-FACTOR CORRECTION". Surface Review and Letters 25, n.º 05 (julho de 2018): 1850095. http://dx.doi.org/10.1142/s0218625x18500956.
Texto completo da fonteMo, Shu Min, Ke Feng Zeng e Chao Liu. "Early Warning Mechanism of Huangshan World Geopark to Divert Passenger Traffic". Advanced Materials Research 1030-1032 (setembro de 2014): 2014–18. http://dx.doi.org/10.4028/www.scientific.net/amr.1030-1032.2014.
Texto completo da fonteSRINIVASAN, M., e A. KRISHNAN. "ASSESSING THE RELIABILITY OF TRANSFORMER TOP OIL TEMPERATURE MODEL". International Journal of Reliability, Quality and Safety Engineering 19, n.º 05 (outubro de 2012): 1250024. http://dx.doi.org/10.1142/s0218539312500246.
Texto completo da fonteRuzicka, Filip, e Tim Connallon. "Is the X chromosome a hot spot for sexually antagonistic polymorphisms? Biases in current empirical tests of classical theory". Proceedings of the Royal Society B: Biological Sciences 287, n.º 1937 (21 de outubro de 2020): 20201869. http://dx.doi.org/10.1098/rspb.2020.1869.
Texto completo da fonteMatijosaitiene, Irina, Anthony McDowald e Vishal Juneja. "Predicting Safe Parking Spaces: A Machine Learning Approach to Geospatial Urban and Crime Data". Sustainability 11, n.º 10 (19 de maio de 2019): 2848. http://dx.doi.org/10.3390/su11102848.
Texto completo da fonteLu, Jian Hui, Meng Bing Wei e Kai Yuan Zheng. "Multiaxial Fatigue Life Prediction of the CII Platform Leg Based on Critical Plane Energy Method". Applied Mechanics and Materials 624 (agosto de 2014): 255–61. http://dx.doi.org/10.4028/www.scientific.net/amm.624.255.
Texto completo da fonteFeuerstein, Stefanie, e Kerstin Schepanski. "Identification of Dust Sources in a Saharan Dust Hot-Spot and Their Implementation in a Dust-Emission Model". Remote Sensing 11, n.º 1 (20 de dezembro de 2018): 4. http://dx.doi.org/10.3390/rs11010004.
Texto completo da fonteOrozco, G. A., J. R. Gomez, O. F. Sanchez, I. D. Gil e A. Duran. "Effect of kinetic models on hot spot temperature prediction for phthalic anhydride production in a multitubular packed bed reactor". Canadian Journal of Chemical Engineering 88, n.º 2 (abril de 2010): 224–31. http://dx.doi.org/10.1002/cjce.20276.
Texto completo da fonteSchlee, Sandra, Kristina Straub, Thomas Schwab, Thomas Kinateder, Rainer Merkl e Reinhard Sterner. "Prediction of quaternary structure by analysis of hot spot residues in protein‐protein interfaces: the case of anthranilate phosphoribosyltransferases". Proteins: Structure, Function, and Bioinformatics 87, n.º 10 (10 de junho de 2019): 815–25. http://dx.doi.org/10.1002/prot.25744.
Texto completo da fonteChen, Ya Bo, Yue Sun, Xu Ri Sun, Ge Hao Sheng e Xiu Chen Jiang. "Real-Time Temperature On-Line Monitoring and Analysis System for Transformers". Applied Mechanics and Materials 521 (fevereiro de 2014): 409–13. http://dx.doi.org/10.4028/www.scientific.net/amm.521.409.
Texto completo da fonteDing, Guangyu, e Liangxi Qin. "Study on the prediction of stock price based on the associated network model of LSTM". International Journal of Machine Learning and Cybernetics 11, n.º 6 (30 de novembro de 2019): 1307–17. http://dx.doi.org/10.1007/s13042-019-01041-1.
Texto completo da fonteShi, H. L., e G. W. Lan. "A GREY MODEL FOR SHORT-TERM PREDICTION OF THE IONOSPHERIC TEC". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3/W10 (8 de fevereiro de 2020): 1161–67. http://dx.doi.org/10.5194/isprs-archives-xlii-3-w10-1161-2020.
Texto completo da fonte