Artigos de revistas sobre o tema "HLA knockout"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "HLA knockout".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
McCarty, Todd M., Zhiwei Yu, Xiping Liu, Don J. Diamond e Joshua D. I. Ellenhorn. "An HLA-restricted, p53 specific immune response from HLA transgenic p53 knockout mice". Annals of Surgical Oncology 5, n.º 1 (janeiro de 1998): 93–99. http://dx.doi.org/10.1007/bf02303770.
Texto completo da fonteSuzuki, Daisuke, Naoshi Sugimoto, Norihide Yoshikawa, Hiroshi Endo, Sou Nakamura, Akitsu Hotta e Koji Eto. "Natural Killer Cell Activities Against iPSCs-Derived HLA-Knockout Platelets and Megakaryocytes Reveal Perfect Rejection Profiles for Allotransfusion". Blood 128, n.º 22 (2 de dezembro de 2016): 3841. http://dx.doi.org/10.1182/blood.v128.22.3841.3841.
Texto completo da fonteKwon, Yoo-Wook, Hyo-Suk Ahn, Jin-Woo Lee, Han-Mo Yang, Hyun-Jai Cho, Seok Joong Kim, Shin-Hyae Lee et al. "HLA DR Genome Editing with TALENs in Human iPSCs Produced Immune-Tolerant Dendritic Cells". Stem Cells International 2021 (20 de maio de 2021): 1–14. http://dx.doi.org/10.1155/2021/8873383.
Texto completo da fonteZha, Shijun, Johan Chin-Kang Tay, Sumin Zhu, Zhendong Li, Zhicheng Du e Shu Wang. "Generation of Mesenchymal Stromal Cells with Low Immunogenicity from Human PBMC-Derived β2 Microglobulin Knockout Induced Pluripotent Stem Cells". Cell Transplantation 29 (1 de janeiro de 2020): 096368972096552. http://dx.doi.org/10.1177/0963689720965529.
Texto completo da fonteKarkischenko, V. N., A. G. Berzina, I. A. Pomytkin, E. S. Glotova, M. A. Savina, D. V. Petrov, L. A. Taboyakova, L. А. Bolotskih e I. A. Vasil’eva. "Immune Response in HLA-A*02:01 Transgenic Humanized Mice to the Introduction of Horse IgG Antigen". Journal Biomed 20, n.º 2 (23 de julho de 2024): 45–52. http://dx.doi.org/10.33647/2074-5982-20-2-45-52.
Texto completo da fonteRivera González, Lorena, Yaritza Inostroza-Nieves, Alexandra Lozano, Pablo J. López, Jamie Rosado Alicea, Gregory N. Prado, Jose R. Romero e Alicia Rivera. "Endothelin-1 Regulates Molecules of the Major Histocompatibility Complex: Role in Sickle Cell Disease". Blood 128, n.º 22 (2 de dezembro de 2016): 3638. http://dx.doi.org/10.1182/blood.v128.22.3638.3638.
Texto completo da fonteVeldman, Johanna, Lydia Visser, Magdalena Huberts-Kregel, Natasja Muller, Bouke Hepkema, Anke van den Berg e Arjan Diepstra. "Rosetting T cells in Hodgkin lymphoma are activated by immunological synapse components HLA class II and CD58". Blood 136, n.º 21 (19 de novembro de 2020): 2437–41. http://dx.doi.org/10.1182/blood.2020005546.
Texto completo da fonteChen, Liye, Hui Shi, Jack Yuan e Paul Bowness. "Position 97 of HLA-B, a residue implicated in pathogenesis of ankylosing spondylitis, plays a key role in cell surface free heavy chain expression". Annals of the Rheumatic Diseases 76, n.º 3 (11 de agosto de 2016): 593–601. http://dx.doi.org/10.1136/annrheumdis-2016-209512.
Texto completo da fonteTorikai, Hiroki, Andreas Reik, Carrie Yuen, Yuanyue Zhou, Denise Kellar, Helen Huls, Edus H. Warren et al. "HLA and TCR Knockout by Zinc Finger Nucleases: Toward “off-the-Shelf” Allogeneic T-Cell Therapy for CD19+ Malignancies." Blood 116, n.º 21 (19 de novembro de 2010): 3766. http://dx.doi.org/10.1182/blood.v116.21.3766.3766.
Texto completo da fonteLegut, Mateusz, Garry Dolton, Afsar Ali Mian, Oliver G. Ottmann e Andrew K. Sewell. "CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells". Blood 131, n.º 3 (18 de janeiro de 2018): 311–22. http://dx.doi.org/10.1182/blood-2017-05-787598.
Texto completo da fonteCroom-Perez, Tayler J., Liza D. Robles-Carrillo, Md Faqrul Hasan e Alicja J. Copik. "Abstract 2910: NKG2A suppression enhances the function of primary human Natural Killer cells". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 2910. http://dx.doi.org/10.1158/1538-7445.am2023-2910.
Texto completo da fonteKrco, Christopher J., Shohei Watanabe, Jerry Harders, Marie M. Griffths, Harvinder Luthra e Chella S. David. "Identification of T Cell Determinants on Human Type II Collagen Recognized by HLA-DQ8 and HLA-DQ6 Transgenic Mice". Journal of Immunology 163, n.º 3 (1 de agosto de 1999): 1661–65. http://dx.doi.org/10.4049/jimmunol.163.3.1661.
Texto completo da fonteNeeno, T., C. J. Krco, J. Harders, J. Baisch, S. Cheng e C. S. David. "HLA-DQ8 transgenic mice lacking endogenous class II molecules respond to house dust allergens: identification of antigenic epitopes." Journal of Immunology 156, n.º 9 (1 de maio de 1996): 3191–95. http://dx.doi.org/10.4049/jimmunol.156.9.3191.
Texto completo da fonteKarkischenko, V. N., V. A. Ezerskiy, E. M. Koloskova e M. S. Nesterov. "Preparation of Differentiated Recombinant Human β2-Microglobulin and Mouse β2-Microglobulin Proteins for its Detection in Class I HLA Chimeric Molecules". Journal Biomed 20, n.º 2 (23 de julho de 2024): 21–31. http://dx.doi.org/10.33647/2074-5982-20-2-21-31.
Texto completo da fonteUreta-Vidal, Abel, Hüseyin Firat, Béatrice Pérarnau e François A. Lemonnier. "Phenotypical and Functional Characterization of the CD8+ T Cell Repertoire of HLA-A2.1 Transgenic, H-2K b °D b ° Double Knockout Mice". Journal of Immunology 163, n.º 5 (1 de setembro de 1999): 2555–60. http://dx.doi.org/10.4049/jimmunol.163.5.2555.
Texto completo da fonteNalawade, Saisha A., Niannian Ji, Ellen Kraig e Thomas Forsthuber. "Aire is not essential for regulating autoimmune pathology in mice transgenic for human autoimmune-disease associated MHC class II genes HLA-DR2b and HLA-DR4." Journal of Immunology 200, n.º 1_Supplement (1 de maio de 2018): 167.8. http://dx.doi.org/10.4049/jimmunol.200.supp.167.8.
Texto completo da fonteSantos, M., M. W. Schilham, L. H. Rademakers, J. J. Marx, M. de Sousa e H. Clevers. "Defective iron homeostasis in beta 2-microglobulin knockout mice recapitulates hereditary hemochromatosis in man." Journal of Experimental Medicine 184, n.º 5 (1 de novembro de 1996): 1975–85. http://dx.doi.org/10.1084/jem.184.5.1975.
Texto completo da fontePascolo, Steve, Nathalie Bervas, Jan M. Ure, Austin G. Smith, François A. Lemonnier e Béatrice Pérarnau. "HLA-A2.1–restricted Education and Cytolytic Activity of CD8+ T Lymphocytes from β2 Microglobulin (β2m) HLA-A2.1 Monochain Transgenic H-2Db β2m Double Knockout Mice". Journal of Experimental Medicine 185, n.º 12 (16 de junho de 1997): 2043–51. http://dx.doi.org/10.1084/jem.185.12.2043.
Texto completo da fonteKushniarova, Lizaveta V., Alexandr A. Migas, Hanna V. Klych, Yauheni A. Lasiukov e Alexander N. Meleshko. "Knockout of the T-cell receptor and HLA class I genes in human cells using the CRISPR /Cas9 system". Experimental Biology and Biotechnology, n.º 2 (6 de julho de 2022): 19–26. http://dx.doi.org/10.33581/2957-5060-2022-2-19-26.
Texto completo da fonteRajagopalan, Govindarajan, Ashenafi Tilahun e Vaidehi Chowdhary. "Chronic activation with a staphylococcal superantigen drives the expansion of CD4, CD8 double negative T cells and promotes multiorgan inflammation mimicking systemic lupus erythematosus in HLA class II transgenic mice. (HUM7P.306)". Journal of Immunology 192, n.º 1_Supplement (1 de maio de 2014): 184.15. http://dx.doi.org/10.4049/jimmunol.192.supp.184.15.
Texto completo da fonteElliott, J. F., J. Liu, Z. N. Yuan, N. Bautista-Lopez, S. L. Wallbank, K. Suzuki, D. Rayner et al. "Autoimmune cardiomyopathy and heart block develop spontaneously in HLA-DQ8 transgenic IA knockout NOD mice". Proceedings of the National Academy of Sciences 100, n.º 23 (21 de outubro de 2003): 13447–52. http://dx.doi.org/10.1073/pnas.2235552100.
Texto completo da fonteChen, Liye, Hui Shi, Danai Koftori, Takuya Sekine, Annalisa Nicastri, Nicola Ternette e Paul Bowness. "Identification of an Unconventional Subpeptidome Bound to the Behçet's Disease-associated HLA-B*51:01 that is Regulated by Endoplasmic Reticulum Aminopeptidase 1 (ERAP1)". Molecular & Cellular Proteomics 19, n.º 5 (11 de março de 2020): 871–83. http://dx.doi.org/10.1074/mcp.ra119.001617.
Texto completo da fonteVenkatasubramaniam, Arundhathi, Tulasikumari Kanipakala, Nader Ganjbaksh, Rana Mehr, Ipsita Mukherjee, Subramaniam Krishnan, Taeok Bae, M. Aman e Rajan Adhikari. "A Critical Role for HlgA in Staphylococcus aureus Pathogenesis Revealed by A Switch in the SaeRS Two-Component Regulatory System". Toxins 10, n.º 9 (18 de setembro de 2018): 377. http://dx.doi.org/10.3390/toxins10090377.
Texto completo da fonteKarkischenko, N. N., V. N. Lazarev, V. A. Manuvera, P. A. Bobrovsky, N. V. Petrova, E. M. Koloskova e E. S. Glotova. "Principles of Creation of a Genetic Engineering Construction for Obtaining Humanized Transgenic Mice with <i>HLA-C*07:02:01:01</i>, as a Promote of Innovative Transgenic and Knockout Biomodels". Journal Biomed 20, n.º 1 (5 de abril de 2024): 8–20. http://dx.doi.org/10.33647/2074-5982-20-1-8-20.
Texto completo da fonteChapoval, Svetlana P., Teresa Neeno, Christopher J. Krco, Eric V. Marietta, Jerry Harders e Chella S. David. "HLA-DQ6 and HLA-DQ8 Transgenic Mice Respond to Ragweed Allergens and Recognize a Distinct Set of Epitopes on Short and Giant Ragweed Group 5 Antigens". Journal of Immunology 161, n.º 4 (15 de agosto de 1998): 2032–37. http://dx.doi.org/10.4049/jimmunol.161.4.2032.
Texto completo da fonteCatelli, Lucas Ferioli, Marcus Alexandre Finzi Corat, Nádia Ghinelli Amôr, Irene Santos, Fernanda Soares Niemann, Adriana da Silva Santos Duarte e Sara Teresinha Olalla Saad. "Knockout of the Beta-2 Microglobulin Gene in Adipose Tissue-Derived Cells Using CRISPR/CAS9 System for the Generation of Universal HLA Class I Platelets". Blood 144, Supplement 1 (5 de novembro de 2024): 1266. https://doi.org/10.1182/blood-2024-205233.
Texto completo da fonteDufva, Olli, Jay Klievink, Khalid Saeed, Matti Kankainen, Mette Ilander, Tiina Hannunen, Sonja Lagström, Pekka Ellonen, Dean Anthony Lee e Satu Mustjoki. "Genome-Scale CRISPR Screens Identify Essential Genes for Sensitivity to Natural Killer Cells in Hematological Malignancies". Blood 132, Supplement 1 (29 de novembro de 2018): 732. http://dx.doi.org/10.1182/blood-2018-99-117985.
Texto completo da fonteZaia, John A., Xiuli Li, Anne E. Franck, Xiwei Wu, Lia Thao e Ghislaine Gallez-Hawkins. "Biologic and Immunologic Effects of Knockout of Human Cytomegalovirus pp65 Nuclear Localization Signal". Clinical and Vaccine Immunology 16, n.º 6 (15 de abril de 2009): 935–43. http://dx.doi.org/10.1128/cvi.00011-09.
Texto completo da fonteChandrasekaran, Siddarth, Vignesh Janardhanam, Ian Cardle, Justin Yoo, Yue Zhang-Wong, Julia Bershadsky, Elisa Martinez et al. "A Layered Cloaking Strategy to Generate Allogeneic iPSC-Derived CD8 T-Cells That Evade NK Clearance". Blood 144, Supplement 1 (5 de novembro de 2024): 2045. https://doi.org/10.1182/blood-2024-210003.
Texto completo da fonteFirat, H. "Comparative analysis of the CD8+ T cell repertoires of H-2 class I wild-type/HLA-A2.1 and H-2 class I knockout/HLA-A2.1 transgenic mice". International Immunology 14, n.º 8 (1 de agosto de 2002): 925–34. http://dx.doi.org/10.1093/intimm/dxf056.
Texto completo da fonteSteinitz, Katharina N., Pauline M. van Helden, Brigitte Binder, David C. Wraith, Sabine Unterthurner, Corinna Hermann, Maria Schuster et al. "CD4+ T-cell epitopes associated with antibody responses after intravenously and subcutaneously applied human FVIII in humanized hemophilic E17 HLA-DRB1*1501 mice". Blood 119, n.º 17 (26 de abril de 2012): 4073–82. http://dx.doi.org/10.1182/blood-2011-08-374645.
Texto completo da fonteRohrlich, P. S. "HLA-B*0702 transgenic, H-2KbDb double-knockout mice: phenotypical and functional characterization in response to influenza virus". International Immunology 15, n.º 6 (1 de junho de 2003): 765–72. http://dx.doi.org/10.1093/intimm/dxg073.
Texto completo da fonteBlack, Kay E., Joseph A. Murray e Chella S. David. "HLA-DQ Determines the Response to Exogenous Wheat Proteins: A Model of Gluten Sensitivity in Transgenic Knockout Mice". Journal of Immunology 169, n.º 10 (15 de novembro de 2002): 5595–600. http://dx.doi.org/10.4049/jimmunol.169.10.5595.
Texto completo da fonteGuo, Chao, Yanying Fan, Alexander Aronov, Luxuan Buren, Ming-Hong Xie, Ivan Chan, Sasha Lazetic e James Trager. "113 CISH gene-knockout anti-CD70-CAR NK cells demonstrate potent anti-tumor activity against solid tumor cell lines and provide partial resistance to tumor microenvironment inhibition". Journal for ImmunoTherapy of Cancer 9, Suppl 2 (novembro de 2021): A123. http://dx.doi.org/10.1136/jitc-2021-sitc2021.113.
Texto completo da fonteGu, Xiaorong, Songa Bae, Yahan Zhang, Nakisha D. Williams, Dongxu Jiang, Simon Schlanger, Valeria Visconte, Jaroslaw Maciejewski e Babal K. Jha. "Loss of TET2 Increases MHC Class I Expression in Acute Myeloid Leukemia". Blood 144, Supplement 1 (5 de novembro de 2024): 4159. https://doi.org/10.1182/blood-2024-208348.
Texto completo da fonteGarner, Elizabeth, Erin Kelly, Sai Namburi, Cian Colgan, Tristan Fowler, Devin Mutha, Art Aviles et al. "Abstract 3201: CB-012, an allogeneic anti-CLL-1 CAR-T cell therapy engineered with next-generation CRISPR technology to resist both the immunosuppressive tumor microenvironment and immune cell-mediated rejection, for patients with relapsed or refractory acute myeloid leukemia". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 3201. http://dx.doi.org/10.1158/1538-7445.am2023-3201.
Texto completo da fontePajot, Anthony, Marie-Louise Michel, Nicolas Fazilleau, Véronique Pancré, Claude Auriault, David M Ojcius, François A. Lemonnier e Yu-Chun Lone. "A mouse model of human adaptive immune functions:HLA-A2.1-/HLA-DR1-transgenicH-2 class I-/class II-knockout mice". European Journal of Immunology 34, n.º 11 (30 de setembro de 2004): 3060–69. http://dx.doi.org/10.1002/eji.200425463.
Texto completo da fonteDufva, Olli, Khalid Saeed, Sara Gandolfi, Michal Sheffer, Jay Klievink, Petri Pölönen, Tiina Hannunen et al. "CRISPR Screens Identify Mechanisms of Natural Killer Cell Evasion across Blood Cancers". Blood 134, Supplement_1 (13 de novembro de 2019): 3597. http://dx.doi.org/10.1182/blood-2019-129837.
Texto completo da fonteTriolo, Taylor M., J. Quinn Matuschek, Roberto Castro-Gutierrez, Ali H. Shilleh, Shane P. M. Williams, Maria S. Hansen, Kristen McDaniel, Jessie M. Barra, Aaron Michels e Holger A. Russ. "Stem-Cell-Derived β-Like Cells with a Functional PTPN2 Knockout Display Increased Immunogenicity". Cells 11, n.º 23 (30 de novembro de 2022): 3845. http://dx.doi.org/10.3390/cells11233845.
Texto completo da fonteKarkischenko, N. N., V. A. Ezerskiy, O. B. Zhukova, E. M. Koloskova e N. V. Petrova. "Increasing, the Specificity of Polyclonal Antibodies to Human and Mouse β2-Microglobulin as an Alternative to the Use of Monoclonal Antibodies in Immunological Analysis". Journal Biomed 20, n.º 2 (23 de julho de 2024): 53–65. http://dx.doi.org/10.33647/2074-5982-20-2-53-65.
Texto completo da fonteKhare, Sanjay D., Michael J. Bull, Julie Hanson, Harvinder S. Luthra e Chella S. David. "Spontaneous Inflammatory Disease in HLA-B27 Transgenic Mice Is Independent of MHC Class II Molecules: A Direct Role for B27 Heavy Chains and Not B27-Derived Peptides". Journal of Immunology 160, n.º 1 (1 de janeiro de 1998): 101–6. http://dx.doi.org/10.4049/jimmunol.160.1.101.
Texto completo da fonteCrivello, Pietro, Müberra Ahci, Fabienne Maaßen, Natalie Wossidlo, Esteban Arrieta-Bolaños, Andreas Heinold, Vinzenz Lange et al. "Multiple Knockout of Classical HLA Class II β-Chains by CRISPR/Cas9 Genome Editing Driven by a Single Guide RNA". Journal of Immunology 202, n.º 6 (30 de janeiro de 2019): 1895–903. http://dx.doi.org/10.4049/jimmunol.1800257.
Texto completo da fonteRobinson, Philip C., Eugene Lau, Patricia Keith, Max C. Lau, Gethin P. Thomas, Linda A. Bradbury, Matthew A. Brown e Tony J. Kenna. "ERAP2functional knockout in humans does not alter surface heavy chains or HLA-B27, inflammatory cytokines or endoplasmic reticulum stress markers". Annals of the Rheumatic Diseases 74, n.º 11 (18 de junho de 2015): 2092–95. http://dx.doi.org/10.1136/annrheumdis-2015-207467.
Texto completo da fonteFirat, Hüseyin, Francisco Garcia-Pons, Sophie Tourdot, Steve Pascolo, Antonio Scardino, Zacarias Garcia, Marie-Louise Michel et al. "H-2 class I knockout, HLA-A2.1-transgenic mice: a versatile animal model for preclinical evaluation of antitumor immunotherapeutic strategies". European Journal of Immunology 29, n.º 10 (outubro de 1999): 3112–21. http://dx.doi.org/10.1002/(sici)1521-4141(199910)29:10<3112::aid-immu3112>3.0.co;2-q.
Texto completo da fonteYang, Hongyun, Wen Jiang, Emma E. Furth, Xiaoming Wen, Jonathan P. Katz, Rance K. Sellon, Debra G. Silberg, Toni M. Antalis, Clifford W. Schweinfest e Gary D. Wu. "Intestinal inflammation reduces expression of DRA, a transporter responsible for congenital chloride diarrhea". American Journal of Physiology-Gastrointestinal and Liver Physiology 275, n.º 6 (1 de dezembro de 1998): G1445—G1453. http://dx.doi.org/10.1152/ajpgi.1998.275.6.g1445.
Texto completo da fonteHahn, Cynthia K., Gavin E. Hooper, Alexandra Forman, Gabriela Brunsting Hoffmann, Sam Sadigh, Kun Huang, Erin M. Parry et al. "SEC62 Regulates HLA-E Expression in Diffuse Large B-Cell Lymphoma to Function As a Mechanism of Immune Evasion". Blood 144, Supplement 1 (5 de novembro de 2024): 335. https://doi.org/10.1182/blood-2024-210613.
Texto completo da fonteMoise, Leonard, Jonathan Skupsky, Ryan Tassone, Julie A. McMurry, William D. Martin, Anne S. De Groot e David W. Scott. "De-Immunization of Human Factor VIII: Identification of Epitopes in the C2 Domain". Blood 112, n.º 11 (16 de novembro de 2008): 1030. http://dx.doi.org/10.1182/blood.v112.11.1030.1030.
Texto completo da fonteSong, Nianbin, Yuri Poluektov, Robin Welsh e Scheherazade Sadegh-Nasseri. "MHC class II antigen-processing chaperone H2-O shapes CD4 T cell receptor repertoire". Journal of Immunology 196, n.º 1_Supplement (1 de maio de 2016): 46.11. http://dx.doi.org/10.4049/jimmunol.196.supp.46.11.
Texto completo da fonteChen, Huanhuan, Keqing Yang, Lingxiao Pang, Jing Fei, Yongliang Zhu e Jianwei Zhou. "ANKRD22 is a potential novel target for reversing the immunosuppressive effects of PMN-MDSCs in ovarian cancer". Journal for ImmunoTherapy of Cancer 11, n.º 2 (fevereiro de 2023): e005527. http://dx.doi.org/10.1136/jitc-2022-005527.
Texto completo da fonteLiu, Fuguo, Mubin Tarannum, Yingjie Zhao, Yiming J. Zhang, James Dongjoo Ham, Kewen Lei, Yuhao Qiang et al. "One-Step Construction of Allogeneic CAR-NK Cells Preventing Rejection and Mediating Enhanced Anti-Tumor Responses". Blood 144, Supplement 1 (5 de novembro de 2024): 915. https://doi.org/10.1182/blood-2024-198167.
Texto completo da fonte