Siga este link para ver outros tipos de publicações sobre o tema: Hilbert spaces.

Artigos de revistas sobre o tema "Hilbert spaces"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hilbert spaces".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Sharma, Sumit Kumar, e Shashank Goel. "Frames in Quaternionic Hilbert Spaces". Zurnal matematiceskoj fiziki, analiza, geometrii 15, n.º 3 (25 de junho de 2019): 395–411. http://dx.doi.org/10.15407/mag15.03.395.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Bellomonte, Giorgia, e Camillo Trapani. "Rigged Hilbert spaces and contractive families of Hilbert spaces". Monatshefte für Mathematik 164, n.º 3 (8 de outubro de 2010): 271–85. http://dx.doi.org/10.1007/s00605-010-0249-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Sánchez, Félix Cabello. "Twisted Hilbert spaces". Bulletin of the Australian Mathematical Society 59, n.º 2 (abril de 1999): 177–80. http://dx.doi.org/10.1017/s0004972700032792.

Texto completo da fonte
Resumo:
A Banach space X is called a twisted sum of the Banach spaces Y and Z if it has a subspace isomorphic to Y such that the corresponding quotient is isomorphic to Z. A twisted Hilbert space is a twisted sum of Hilbert spaces. We prove the following tongue-twister: there exists a twisted sum of two subspaces of a twisted Hilbert space that is not isomorphic to a subspace of a twisted Hilbert space. In other words, being a subspace of a twisted Hilbert space is not a three-space property.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

CHITESCU, ION, RAZVAN-CORNEL SFETCU e OANA COJOCARU. "Kothe-Bochner spaces that are Hilbert spaces". Carpathian Journal of Mathematics 33, n.º 2 (2017): 161–68. http://dx.doi.org/10.37193/cjm.2017.02.03.

Texto completo da fonte
Resumo:
We are concerned with Kothe-Bochner spaces that are Hilbert spaces (resp. hilbertable spaces). It is shown that ¨ this is equivalent to the fact that, separately, Lρ and X are Hilbert spaces (resp. hilbertable spaces). The complete characterization of the Lρ spaces that are Hilbert spaces, given by the first-author, is used.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Pisier, Gilles. "Weak Hilbert Spaces". Proceedings of the London Mathematical Society s3-56, n.º 3 (maio de 1988): 547–79. http://dx.doi.org/10.1112/plms/s3-56.3.547.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fabian, M., G. Godefroy, P. Hájek e V. Zizler. "Hilbert-generated spaces". Journal of Functional Analysis 200, n.º 2 (junho de 2003): 301–23. http://dx.doi.org/10.1016/s0022-1236(03)00044-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Rudolph, Oliver. "Super Hilbert Spaces". Communications in Mathematical Physics 214, n.º 2 (novembro de 2000): 449–67. http://dx.doi.org/10.1007/s002200000281.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Ng, Chi-Keung. "Topologized Hilbert spaces". Journal of Mathematical Analysis and Applications 418, n.º 1 (outubro de 2014): 108–20. http://dx.doi.org/10.1016/j.jmaa.2014.03.073.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

van den Boogaart, Karl Gerald, Juan José Egozcue e Vera Pawlowsky-Glahn. "Bayes Hilbert Spaces". Australian & New Zealand Journal of Statistics 56, n.º 2 (junho de 2014): 171–94. http://dx.doi.org/10.1111/anzs.12074.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Schmitt, L. M. "Semidiscrete Hilbert spaces". Acta Mathematica Hungarica 53, n.º 1-2 (março de 1989): 103–7. http://dx.doi.org/10.1007/bf02170059.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Hollstein, Ralf. "Generalized Hilbert spaces". Results in Mathematics 8, n.º 2 (maio de 1985): 95–116. http://dx.doi.org/10.1007/bf03322662.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Mikhailets, Vladimir A., e Aleksandr A. Murach. "Interpolation Hilbert Spaces Between Sobolev Spaces". Results in Mathematics 67, n.º 1-2 (11 de julho de 2014): 135–52. http://dx.doi.org/10.1007/s00025-014-0399-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Ismagilov, R. S. "Ultrametric spaces and related Hilbert spaces". Mathematical Notes 62, n.º 2 (agosto de 1997): 186–97. http://dx.doi.org/10.1007/bf02355907.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Ciurdariu, Loredana. "Inequalities for selfadjoint operators on Hilbert spaces and pseudo-Hilbert spaces". Applied Mathematical Sciences 9 (2015): 5573–82. http://dx.doi.org/10.12988/ams.2015.56459.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Narita, Keiko, Noboru Endou e Yasunari Shidama. "The Orthogonal Projection and the Riesz Representation Theorem". Formalized Mathematics 23, n.º 3 (1 de setembro de 2015): 243–52. http://dx.doi.org/10.1515/forma-2015-0020.

Texto completo da fonte
Resumo:
Abstract In this article, the orthogonal projection and the Riesz representation theorem are mainly formalized. In the first section, we defined the norm of elements on real Hilbert spaces, and defined Mizar functor RUSp2RNSp, real normed spaces as real Hilbert spaces. By this definition, we regarded sequences of real Hilbert spaces as sequences of real normed spaces, and proved some properties of real Hilbert spaces. Furthermore, we defined the continuity and the Lipschitz the continuity of functionals on real Hilbert spaces. Referring to the article [15], we also defined some definitions on real Hilbert spaces and proved some theorems for defining dual spaces of real Hilbert spaces. As to the properties of all definitions, we proved that they are equivalent properties of functionals on real normed spaces. In Sec. 2, by the definitions [11], we showed properties of the orthogonal complement. Then we proved theorems on the orthogonal decomposition of elements of real Hilbert spaces. They are the last two theorems of existence and uniqueness. In the third and final section, we defined the kernel of linear functionals on real Hilbert spaces. By the last three theorems, we showed the Riesz representation theorem, existence, uniqueness, and the property of the norm of bounded linear functionals on real Hilbert spaces. We referred to [36], [9], [24] and [3] in the formalization.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Larionov, Evgeny. "ON STABILITY OF BASES IN HILBERT SPACES". Eurasian Mathematical Journal 11, n.º 2 (2020): 65–71. http://dx.doi.org/10.32523/2077-9879-2020-11-2-65-71.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Drahovský, Štefan, e Michal Zajac. "Hyperreflexive operators on finite dimensional Hilbert spaces". Mathematica Bohemica 118, n.º 3 (1993): 249–54. http://dx.doi.org/10.21136/mb.1993.125929.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Faried, Nashat, Mohamed S.S. Ali e Hanan H. Sakr. "Fuzzy soft Hilbert spaces". Journal of Mathematics and Computer Science 22, n.º 02 (18 de julho de 2020): 142–57. http://dx.doi.org/10.22436/jmcs.022.02.06.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Marmo, G., A. Simoni e F. Ventriglia. "Tomography in Hilbert spaces". Journal of Physics: Conference Series 87 (1 de novembro de 2007): 012013. http://dx.doi.org/10.1088/1742-6596/87/1/012013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Preiss, David. "TILINGS OF HILBERT SPACES". Mathematika 56, n.º 2 (29 de abril de 2010): 217–30. http://dx.doi.org/10.1112/s0025579310000562.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Hausenblas, Erika, e Markus Riedle. "Copulas in Hilbert spaces". Stochastics 89, n.º 1 (16 de março de 2016): 222–39. http://dx.doi.org/10.1080/17442508.2016.1158821.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Robertson, A. Guyan. "Injective matricial Hilbert spaces". Mathematical Proceedings of the Cambridge Philosophical Society 110, n.º 1 (julho de 1991): 183–90. http://dx.doi.org/10.1017/s0305004100070237.

Texto completo da fonte
Resumo:
Injective matricial operator spaces have been classified up to Banach space isomorphism in [20]. The result is that every such space is isomorphic to l∞, l2, B(l2), or a direct sum of such spaces. A more natural project, given the matricial nature of the definitions involved, would be the classification of such spaces up to completely bounded isomorphism. This was done for injective von Neumann algebras in [6] and for injective operator systems (i.e. unital injective operator spaces) in [19]. It turns out that the spaces l∞ and B(l2) are in a natural way uniquely characterized up to completely bounded isomorphism. However, as shown in [20], a problem arises in the case of l2. For there are two injective operator spaces which are each isometrically isomorphic to l2 but not completely boundedly isomorphic to each other. We shall resolve this problem by showing that these are the only two possibilities, in the sense that any injective operator space which is isometric to l2 is completely isometric to one of them. (See Corollary 3 below.) The Hilbert spaces in von Neumann algebras investigated in [17], [13] turn out to be injective matricial operator spaces and are therefore completely isometric to one of our two examples. Another Hilbert space in B(l2) which has been much studied in operator theory, complex analysis and physics is the Cartan factor of type IV [10]. This is the complex linear span of a spin system and generates the Fermion C*-algebra ([3], §5·2). We show that a Cartan factor of type IV is not even completely boundedly isomorphic to an injective matricial operator space. One curious property of all the aforementioned Hilbert spaces is that every bounded operator on them is actually completely bounded, a fact that is crucial in our proofs.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Bestvina, Mladen. "Stabilizing fake Hilbert spaces". Topology and its Applications 26, n.º 3 (agosto de 1987): 293–305. http://dx.doi.org/10.1016/0166-8641(87)90050-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Dobrowolski, Tadeusz, e Janusz Grabowski. "Subgroups of Hilbert spaces". Mathematische Zeitschrift 211, n.º 1 (dezembro de 1992): 657–69. http://dx.doi.org/10.1007/bf02571453.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Ben-Yaacov, Itay, e Alexander Berenstein. "Imaginaries in Hilbert spaces". Archive for Mathematical Logic 43, n.º 4 (1 de maio de 2004): 459–66. http://dx.doi.org/10.1007/s00153-003-0200-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Zerakidze, Z. S. "Hilbert spaces of measures". Ukrainian Mathematical Journal 38, n.º 2 (1986): 131–35. http://dx.doi.org/10.1007/bf01058467.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Gheondea, Aurelian. "On locally Hilbert spaces". Opuscula Mathematica 36, n.º 6 (2016): 735. http://dx.doi.org/10.7494/opmath.2016.36.6.735.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Sultanic, Saida. "Sub-Bergman Hilbert spaces". Journal of Mathematical Analysis and Applications 324, n.º 1 (dezembro de 2006): 639–49. http://dx.doi.org/10.1016/j.jmaa.2005.12.035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Terekhin, P. A. "Multishifts in Hilbert spaces". Functional Analysis and Its Applications 39, n.º 1 (janeiro de 2005): 57–67. http://dx.doi.org/10.1007/s10688-005-0017-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Ghosh, Prasenjit. "Construction of fusion frame in Cartesian product of two Hilbert spaces". Gulf Journal of Mathematics 11, n.º 2 (12 de setembro de 2021): 53–64. http://dx.doi.org/10.56947/gjom.v11i2.539.

Texto completo da fonte
Resumo:
We study the concept of fusion frame in Cartesian product of two Hilbert spaces as Cartesian product of two Hilbert spaces is again a Hilbert space and see that the Cartesian product of two fusion frames is also a fusion frame. The concept of fusion frame operator on Cartesian product of two Hilbert spaces is being given and results of it are being presented.A perturbation result on fusion frame in Cartesian product of two Hilbert spaces is being discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Solèr, M. P. "Characterization of hilbert spaces by orthomodular spaces". Communications in Algebra 23, n.º 1 (janeiro de 1995): 219–43. http://dx.doi.org/10.1080/00927879508825218.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Kryukov, Alexey A. "Linear algebra and differential geometry on abstract Hilbert space". International Journal of Mathematics and Mathematical Sciences 2005, n.º 14 (2005): 2241–75. http://dx.doi.org/10.1155/ijmms.2005.2241.

Texto completo da fonte
Resumo:
Isomorphisms of separable Hilbert spaces are analogous to isomorphisms ofn-dimensional vector spaces. However, whilen-dimensional spaces in applications are always realized as the Euclidean spaceRn, Hilbert spaces admit various useful realizations as spaces of functions. In the paper this simple observation is used to construct a fruitful formalism of local coordinates on Hilbert manifolds. Images of charts on manifolds in the formalism are allowed to belong to arbitrary Hilbert spaces of functions including spaces of generalized functions. Tensor equations then describe families of functional equations on various spaces of functions. The formalism itself and its applications in linear algebra, differential equations, and differential geometry are carefully analyzed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Hong, Guoqing, e Pengtong Li. "Some Properties of Operator Valued Frames in Quaternionic Hilbert Spaces". Mathematics 11, n.º 1 (29 de dezembro de 2022): 188. http://dx.doi.org/10.3390/math11010188.

Texto completo da fonte
Resumo:
Quaternionic Hilbert spaces play an important role in applied physical sciences especially in quantum physics. In this paper, the operator valued frames on quaternionic Hilbert spaces are introduced and studied. In terms of a class of partial isometries in the quaternionic Hilbert spaces, a parametrization of Parseval operator valued frames is obtained. We extend to operator valued frames many of the properties of vector frames on quaternionic Hilbert spaces in the process. Moreover, we show that all the operator valued frames can be obtained from a single operator valued frame. Finally, several results for operator valued frames concerning duality, similarity of such frames on quaternionic Hilbert spaces are presented.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Hua, Dingli, e Yongdong Huang. "The Characterization and Stability of g-Riesz Frames for Super Hilbert Space". Journal of Function Spaces 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/465094.

Texto completo da fonte
Resumo:
G-frames and g-Riesz frames as generalized frames in Hilbert spaces have been studied by many authors in recent years. The super Hilbert space has a certain advantage compared with the Hilbert space in the field of studying quantum mechanics. In this paper, for super Hilbert spaceH⊕K, the definitions of a g-Riesz frame and minimal g-complete are put forward; also a characterization of g-Riesz frames is obtained. In particular, we generalize them to general super Hilbert spaceL1⊕L2⊕⋯⊕Ln. Finally, a conclusion of the stability of a g-Riesz frame for the super Hilbert space is given.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

HACIOGLU, EMIRHAN, e VATAN KARAKAYA. "Existence and convergence for a new multivalued hybrid mapping in CAT(κ) spaces". Carpathian Journal of Mathematics 33, n.º 3 (2017): 319–26. http://dx.doi.org/10.37193/cjm.2017.03.06.

Texto completo da fonte
Resumo:
Most of the studies about hybrid mappings are carried out for single-valued mappings in Hilbert spaces. We define a new class of multivalued mappings in CAT (k) spaces which contains the multivalued generalization of (α, β) - hybrid mappings defined on Hilbert spaces. In this paper, we prove existence and convergence results for a new class of multivalued hybrid mappings on CAT(κ) spaces which are more general than Hilbert spaces and CAT(0) spaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Guo, Xunxiang. "g-Bases in Hilbert Spaces". Abstract and Applied Analysis 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/923729.

Texto completo da fonte
Resumo:
The concept ofg-basis in Hilbert spaces is introduced, which generalizes Schauder basis in Hilbert spaces. Some results aboutg-bases are proved. In particular, we characterize theg-bases andg-orthonormal bases. And the dualg-bases are also discussed. We also consider the equivalent relations ofg-bases andg-orthonormal bases. And the property ofg-minimal ofg-bases is studied as well. Our results show that, in some cases,g-bases share many useful properties of Schauder bases in Hilbert spaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

F. Al-Mayahi, Noori, e Abbas M. Abbas. "Some Properties of Spectral Theory in Fuzzy Hilbert Spaces". Journal of Al-Qadisiyah for computer science and mathematics 8, n.º 2 (7 de agosto de 2017): 1–7. http://dx.doi.org/10.29304/jqcm.2016.8.2.27.

Texto completo da fonte
Resumo:
In this paper we give some definitions and properties of spectral theory in fuzzy Hilbert spaces also we introduce definitions Invariant under a linear operator on fuzzy normed spaces and reduced linear operator on fuzzy Hilbert spaces and we prove theorms related to eigenvalue and eigenvectors ,eigenspace in fuzzy normed , Invariant and reduced in fuzzy Hilbert spaces and show relationship between them.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

García-Pacheco, Francisco Javier, e Justin R. Hill. "Geometric Characterizations of Hilbert Spaces". Canadian Mathematical Bulletin 59, n.º 4 (1 de dezembro de 2016): 769–75. http://dx.doi.org/10.4153/cmb-2016-019-8.

Texto completo da fonte
Resumo:
AbstractWe study some geometric properties related to the setobtaining two characterizations of Hilbert spaces in the category of Banach spaces. We also compute the distance of a generic element (h, k) ∊ for H a Hilbert space.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Jafari, F., e R. Raposa. "On cyclicity in weighted Dirichlet spaces". International Journal of Mathematics and Mathematical Sciences 22, n.º 4 (1999): 739–44. http://dx.doi.org/10.1155/s0161171299227391.

Texto completo da fonte
Resumo:
We extend some results of Brown and Shields on cyclicity to weighted Dirichlet spaces0<α<1. We prove a comparison theorem for cyclicity in these spaces and provide a result on the geometry of the family of cyclic vectors in general functional Hilbert spaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Bayaz, Daraby, Delzendeh Fataneh e Rahimi Asghar. "Parseval's equality in fuzzy normed linear spaces". MATHEMATICA 63 (86), n.º 1 (20 de maio de 2021): 47–57. http://dx.doi.org/10.24193/mathcluj.2021.1.05.

Texto completo da fonte
Resumo:
We investigate Parseval's equality and define the fuzzy frame on Felbin fuzzy Hilbert spaces. We prove that C(Omega) (the vector space of all continuous functions on Omega) is normable in a Felbin fuzzy Hilbert space and so defining fuzzy frame on C(Omega) is possible. The consequences for the category of fuzzy frames in Felbin fuzzy Hilbert spaces are wider than for the category of the frames in the classical Hilbert spaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

NG, CHI-KEUNG. "On quaternionic functional analysis". Mathematical Proceedings of the Cambridge Philosophical Society 143, n.º 2 (setembro de 2007): 391–406. http://dx.doi.org/10.1017/s0305004107000187.

Texto completo da fonte
Resumo:
AbstractIn this paper, we will show that the category of quaternion vector spaces, the category of (both one-sided and two sided) quaternion Hilbert spaces and the category of quaternion B*-algebras are equivalent to the category of real vector spaces, the category of real Hilbert spaces and the category of real C*-algebras respectively. We will also give a Riesz representation theorem for quaternion Hilbert spaces and will extend the main results in [12] (namely, we will give the full versions of the Gelfand–Naimark theorem and the Gelfand theorem for quaternion B*-algebras). On our way to these results, we compare, clarify and unify the term ‘quaternion Hilbert spaces’ in the literatures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Parsian, A., e A. Shafei Deh Abad. "Dirac structures on Hilbert spaces". International Journal of Mathematics and Mathematical Sciences 22, n.º 1 (1999): 97–108. http://dx.doi.org/10.1155/s0161171299220972.

Texto completo da fonte
Resumo:
For a real Hilbert space(H,〈,〉), a subspaceL⊂H⊕His said to be a Dirac structure onHif it is maximally isotropic with respect to the pairing〈(x,y),(x′,y′)〉+=(1/2)(〈x,y′〉+〈x′,y〉). By investigating some basic properties of these structures, it is shown that Dirac structures onHare in one-to-one correspondence with isometries onH, and, any two Dirac structures are isometric. It is, also, proved that any Dirac structure on a smooth manifold in the sense of [1] yields a Dirac structure on some Hilbert space. The graph of any densely defined skew symmetric linear operator on a Hilbert space is, also, shown to be a Dirac structure. For a Dirac structureLonH, everyz∈His uniquely decomposed asz=p1(l)+p2(l)for somel∈L, wherep1andp2are projections. Whenp1(L)is closed, for any Hilbert subspaceW⊂H, an induced Dirac structure onWis introduced. The latter concept has also been generalized.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Gao, Wen Hua, e Pei Xin Ye. "Estimates for Multilinear Hilbert Operators on Morrey Spaces and the Best Constants". Applied Mechanics and Materials 433-435 (outubro de 2013): 531–34. http://dx.doi.org/10.4028/www.scientific.net/amm.433-435.531.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Picard, Rainer H. "Hilbert spaces of tempered distributions, Hermite expansions and sequence spaces". Proceedings of the Edinburgh Mathematical Society 34, n.º 2 (junho de 1991): 271–93. http://dx.doi.org/10.1017/s0013091500007173.

Texto completo da fonte
Resumo:
Although it is well-known that tempered distributions on ℝn can be expanded into series of Herrnite functions, it does not seem to be known, however, that expansions of this type are accessible through the elementary concept of orthonorma! expansions in Hilbert space. This approach is developed here complementing previous work on a Hilbert space approach to distributions. The basis of the development is the observation that the Hermite functions are a complete orthogonal set in each space of a certain scale of Sobolev type Hilbert spaces associated with the family of differential operators defined byHere Ф denotes a smooth function with compact support. The setting is first developed in the one-dimensional case. By use of the usual multi-index notation this can be extended to the higher-dimensional case. As applications various imbedding results are derived. The paper concludes with a characterization of tempered distributions by convergent Hermite expansions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Ferrer, Osmin, Luis Lazaro e Jorge Rodriguez. "Successions of J-bessel in Spaces with Indefinite Metric". WSEAS TRANSACTIONS ON MATHEMATICS 20 (6 de abril de 2021): 144–51. http://dx.doi.org/10.37394/23206.2021.20.15.

Texto completo da fonte
Resumo:
A definition of Bessel’s sequences in spaces with an indefinite metric is introduced as a generalization of Bessel’s sequences in Hilbert spaces. Moreover, a complete characterization of Bessel’s sequences in the Hilbert space associated to a space with an indefinite metric is given. The fundamental tools of Bessel’s sequences theory are described in the formalism of spaces with an indefinite metric. It is shown how to construct a Bessel’s sequences in spaces with an indefinite metric starting from a pair of Hilbert spaces, a condition is given to decompose a Bessel’s sequences into in spaces with an indefinite metric so that this decomposition generates a pair of Bessel’s sequences for the Hilbert spaces corresponding to the fundamental decomposition. In spaces where there was no norm, it seemed impossible to construct Bessel’s sequences. The fact that in [1] frame were constructed for Krein spaces motivated us to construct Bessel’s sequences for spaces of indefinite metric.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Kapustin, Vladimir. "Commutators on l2-spaces". Publications de l'Institut Math?matique (Belgrade) 97, n.º 111 (2015): 125–37. http://dx.doi.org/10.2298/pim140205001k.

Texto completo da fonte
Resumo:
Given a normal operator N on a Hilbert space and an operator X for which the commutator K = XN ?NX belongs to the Hilbert-Schmidt class, we discuss the possibility to represent X as a sum of a Cauchy transform corresponding to K in the spectral representation of N and an operator commuting with N.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Bozkurt, Hacer, Sümeyye Çakan e Yılmaz Yılmaz. "Quasilinear Inner Product Spaces and Hilbert Quasilinear Spaces". International Journal of Analysis 2014 (11 de março de 2014): 1–7. http://dx.doi.org/10.1155/2014/258389.

Texto completo da fonte
Resumo:
Aseev launched a new branch of functional analysis by introducing the theory of quasilinear spaces in the framework of the topics of norm, bounded quasilinear operators and functionals (Aseev (1986)). Furthermore, some quasilinear counterparts of classical nonlinear analysis that lead to such result as Frechet derivative and its applications were examined deal with. This pioneering work causes a lot of results in such applications such as (Rojas-Medar et al. (2005), Talo and Başar (2010), and Nikol'skiĭ (1993)). His work has motivated us to introduce the concept of quasilinear inner product spaces. Thanks to this new notion, we obtain some new theorems and definitions which are quasilinear counterparts of fundamental definitions and theorems in linear functional analysis. We claim that some new results related to this concept provide an important contribution to the improvement of quasilinear functional analysis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Ghosh, Prasenjit, e T. K. Samanta. "Generalized Fusion Frame in A Tensor Product of Hilbert Space". Journal of the Indian Mathematical Society 89, n.º 1-2 (27 de janeiro de 2022): 58. http://dx.doi.org/10.18311/jims/2022/29307.

Texto completo da fonte
Resumo:
Generalized fusion frames and some of their properties in a tensor product of Hilbert spaces are studied. Also, the canonical dual g-fusion frame in a tensor product of Hilbert spaces is considered. The frame operator for a pair of <em>g</em>-fusion Bessel sequences in a tensor product of Hilbert spaces is presented.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Al-Mayahi, Noori F., e Intisar H. Radhi. "On Fuzzy Co-Pre-Hilbert Spaces". Journal of Kufa for Mathematics and Computer 1, n.º 7 (1 de dezembro de 2013): 1–6. http://dx.doi.org/10.31642/jokmc/2018/010701.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Androulakis, George, Peter G. Casazza e Denka N. Kutzarova. "Some More Weak Hilbert Spaces". Canadian Mathematical Bulletin 43, n.º 3 (1 de setembro de 2000): 257–67. http://dx.doi.org/10.4153/cmb-2000-033-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia