Literatura científica selecionada sobre o tema "Higher order logics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Higher order logics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Higher order logics"
Finkelstein, David. "Higher-order quantum logics". International Journal of Theoretical Physics 31, n.º 9 (setembro de 1992): 1627–38. http://dx.doi.org/10.1007/bf00671777.
Texto completo da fonteHella, Lauri, e José M. Turull-Torres. "Expressibility of Higher Order Logics". Electronic Notes in Theoretical Computer Science 84 (setembro de 2003): 129–40. http://dx.doi.org/10.1016/s1571-0661(04)80850-8.
Texto completo da fonteAguirre, Alejandro, Gilles Barthe, Marco Gaboardi, Deepak Garg, Shin-ya Katsumata e Tetsuya Sato. "Higher-order probabilistic adversarial computations: categorical semantics and program logics". Proceedings of the ACM on Programming Languages 5, ICFP (22 de agosto de 2021): 1–30. http://dx.doi.org/10.1145/3473598.
Texto completo da fonteDal Lago, Ugo, Simone Martini e Davide Sangiorgi. "Light Logics and Higher-Order Processes". Electronic Proceedings in Theoretical Computer Science 41 (28 de novembro de 2010): 46–60. http://dx.doi.org/10.4204/eptcs.41.4.
Texto completo da fonteDAL LAGO, UGO, SIMONE MARTINI e DAVIDE SANGIORGI. "Light logics and higher-order processes". Mathematical Structures in Computer Science 26, n.º 6 (17 de novembro de 2014): 969–92. http://dx.doi.org/10.1017/s0960129514000310.
Texto completo da fonteHella, Lauri, e José María Turull-Torres. "Computing queries with higher-order logics". Theoretical Computer Science 355, n.º 2 (abril de 2006): 197–214. http://dx.doi.org/10.1016/j.tcs.2006.01.009.
Texto completo da fonteCrary, Karl. "Higher-order representation of substructural logics". ACM SIGPLAN Notices 45, n.º 9 (27 de setembro de 2010): 131–42. http://dx.doi.org/10.1145/1932681.1863565.
Texto completo da fonteBenzmüller, Christoph, Dov Gabbay, Valerio Genovese e Daniele Rispoli. "Embedding and automating conditional logics in classical higher-order logic". Annals of Mathematics and Artificial Intelligence 66, n.º 1-4 (25 de setembro de 2012): 257–71. http://dx.doi.org/10.1007/s10472-012-9320-z.
Texto completo da fonteAndrews, James H. "An untyped higher order logic with Y combinator". Journal of Symbolic Logic 72, n.º 4 (dezembro de 2007): 1385–404. http://dx.doi.org/10.2178/jsl/1203350794.
Texto completo da fonteSági, Gábor. "A completeness theorem for higher order logics". Journal of Symbolic Logic 65, n.º 2 (junho de 2000): 857–84. http://dx.doi.org/10.2307/2586575.
Texto completo da fonteTeses / dissertações sobre o assunto "Higher order logics"
Assaf, Ali. "A framework for defining computational higher-order logics". Palaiseau, Ecole polytechnique, 2015. https://theses.hal.science/tel-01235303v4/document.
Texto completo da fonteFreire, Cibele Matos. "Complexidade descritiva das lÃgicas de ordem superior com menor ponto fixo e anÃlise de expressividade de algumas lÃgicas modais". Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6359.
Texto completo da fonteIn Descriptive Complexity, we investigate the use of logics to characterize computational classes os problems through complexity. Since 1974, when Fagin proved that the class NP is captured by existential second-order logic, considered the rst result in this area, other relations between logics and complexity classes have been established. Wellknown results usually involve rst-order logic and its extensions, and complexity classes in polynomial time or space. Some examples are that the rst-order logic extended by the least xed-point operator captures the class P and the second-order logic extended by the transitive closure operator captures the class PSPACE. In this dissertation, we will initially analyze the expressive power of some modal logics with respect to the decision problem REACH and see that is possible to express it with temporal logics CTL and CTL. We will also analyze the combined use of higher-order logics extended by the least xed-point operator and obtain as result that each level of this hierarchy captures each level of the deterministic exponential time hierarchy. As a corollary, we will prove that the hierarchy of HOi(LFP), for i 2, does not collapse, that is, HOi(LFP) HOi+1(LFP)
TEICA, ELENA. "FORMAL CORRECTNESS AND COMPLETENESS FOR A SET OF UNINTERPRETED RTL TRANSFORMATIONS". University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1001432470.
Texto completo da fonteFreire, Cibele Matos. "Complexidade descritiva das lógicas de ordem superior com menor ponto fixo e análise de expressividade de algumas lógicas modais". reponame:Repositório Institucional da UFC, 2010. http://www.repositorio.ufc.br/handle/riufc/17668.
Texto completo da fonteApproved for entry into archive by guaracy araujo (guaraa3355@gmail.com) on 2016-06-14T19:48:16Z (GMT) No. of bitstreams: 1 2010_dis_cmfreire.pdf: 426798 bytes, checksum: 4ad13c09839833ee22b0396a445e8a26 (MD5)
Made available in DSpace on 2016-06-14T19:48:16Z (GMT). No. of bitstreams: 1 2010_dis_cmfreire.pdf: 426798 bytes, checksum: 4ad13c09839833ee22b0396a445e8a26 (MD5) Previous issue date: 2010
In Descriptive Complexity, we investigate the use of logics to characterize computational classes os problems through complexity. Since 1974, when Fagin proved that the class NP is captured by existential second-order logic, considered the rst result in this area, other relations between logics and complexity classes have been established. Wellknown results usually involve rst-order logic and its extensions, and complexity classes in polynomial time or space. Some examples are that the rst-order logic extended by the least xed-point operator captures the class P and the second-order logic extended by the transitive closure operator captures the class PSPACE. In this dissertation, we will initially analyze the expressive power of some modal logics with respect to the decision problem REACH and see that is possible to express it with temporal logics CTL and CTL . We will also analyze the combined use of higher-order logics extended by the least xed-point operator and obtain as result that each level of this hierarchy captures each level of the deterministic exponential time hierarchy. As a corollary, we will prove that the hierarchy of HOi(LFP), for i 2, does not collapse, that is, HOi(LFP) HOi+1(LFP)
Em Complexidade Descritiva investigamos o uso de logicas para caracterizar classes problemas pelo vies da complexidade. Desde 1974, quando Fagin provou que NP e capturado pela logica existencial de segunda-ordem, considerado o primeiro resultado da area, outras relac~oes entre logicas e classes de complexidade foram estabelecidas. Os resultados mais conhecidos normalmemte envolvem logica de primeira-ordem e suas extens~oes, e classes de complexidade polinomiais em tempo ou espaco. Alguns exemplos são que a l ogica de primeira-ordem estendida com o operador de menor ponto xo captura a clsse P e que a l ogica de segunda-ordem estendida com o operador de fecho transitivo captura a classe PSPACE. Nesta dissertação, analisaremos inicialmente a expressividade de algumas l ogicas modais com rela cão ao problema de decisão REACH e veremos que e poss vel express a-lo com as l ogicas temporais CTL e CTL . Analisaremos tamb em o uso combinado de l ogicas de ordem superior com o operador de menor ponto xo e obteremos como resultado que cada n vel dessa hierarquia captura cada n vel da hierarquia determin stica em tempo exponencial. Como corol ario, provamos que a hierarquia de HOi(LFP) não colapsa, ou seja, HOi(LFP) HOi+1(LFP)
FREIRE, Cibele Matos. Complexidade descritiva das lógicas de ordem superior com menor ponto fixo e análise de expressividade de algumas lógicas modais. 2010. 54 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências, Departamento de Computação, Fortaleza-CE, 2010.
Krishnaswami, Neelakantan R. "Verifying Higher-Order Imperative Programs with Higher-Order Separation Logic". Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/164.
Texto completo da fonteZardini, Elia. "Living on the slippery slope : the nature, sources and logic of vagueness". Thesis, St Andrews, 2008. http://hdl.handle.net/10023/508.
Texto completo da fonteNesi, Monica. "Formalising process calculi in higher order logic". Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627495.
Texto completo da fonteCamilleri, Albert John. "Executing behavioural definitions in Higher Order Logic". Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.232795.
Texto completo da fonteSultana, Nikolai. "Higher-order proof translation". Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/247345.
Texto completo da fonteFritz, Peter. "Intensional type theory for higher-order contingentism". Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:b9415266-ad21-494a-9a78-17d2395eb8dd.
Texto completo da fonteLivros sobre o assunto "Higher order logics"
Paulson, Lawrence C. The representation of logics in higher-order logic. Cambridge: University of Cambridge, Computer Laboratory, 1987.
Encontre o texto completo da fonteCarreño, Victor A., César A. Muñoz e Sofiène Tahar, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45685-6.
Texto completo da fonteSlind, Konrad, Annette Bunker e Ganesh Gopalakrishnan, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b100400.
Texto completo da fonteMohamed, Otmane Ait, César Muñoz e Sofiène Tahar, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71067-7.
Texto completo da fonteBasin, David, e Burkhart Wolff, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/b11935.
Texto completo da fonteBertot, Yves, Gilles Dowek, Laurent Théry, André Hirschowitz e Christine Paulin, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48256-3.
Texto completo da fonteSchneider, Klaus, e Jens Brandt, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74591-4.
Texto completo da fonteGrundy, Jim, e Malcolm Newey, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0055125.
Texto completo da fonteGoos, Gerhard, Juris Hartmanis, Jan van Leeuwen, Joakim von Wright, Jim Grundy e John Harrison, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0105392.
Texto completo da fonteBerghofer, Stefan, Tobias Nipkow, Christian Urban e Makarius Wenzel, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03359-9.
Texto completo da fonteCapítulos de livros sobre o assunto "Higher order logics"
Kropf, Thomas. "Higher-Order Logics". In Introduction to Formal Hardware Verification, 207–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03809-3_5.
Texto completo da fonteLu, Jianguo, Masateru Harao e Masami Hagiya. "Higher Order Generalization". In Logics in Artificial Intelligence, 368–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-49545-2_25.
Texto completo da fonteCharalambidis, Angelos, Konstantinos Handjopoulos, Panos Rondogiannis e William W. Wadge. "Extensional Higher-Order Logic Programming". In Logics in Artificial Intelligence, 91–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15675-5_10.
Texto completo da fonteGordon, Michael J. C. "Mechanizing Programming Logics in Higher Order Logic". In Current Trends in Hardware Verification and Automated Theorem Proving, 387–439. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3658-0_10.
Texto completo da fonteLescanne, Pierre. "Common Knowledge Logic in a Higher Order Proof Assistant". In Programming Logics, 271–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37651-1_11.
Texto completo da fonteHella, Lauri, e José María Turull-Torres. "Complete Problems for Higher Order Logics". In Computer Science Logic, 380–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11874683_25.
Texto completo da fonteTurull-Torres, José Maria. "Relational Complexity and Higher Order Logics". In Lecture Notes in Computer Science, 311–33. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30024-5_17.
Texto completo da fonteHintikka, Jaakko. "Standard vs. Nonstandard Logic: Higher-Order, Modal, and First-Order Logics". In Language, Truth and Logic in Mathematics, 130–43. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-2045-8_7.
Texto completo da fonteHintermeier, Claus, Hélène Kirchner e Peter D. Mosses. "R n - and G n -logics". In Higher-Order Algebra, Logic, and Term Rewriting, 90–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61254-8_21.
Texto completo da fonteBenzmüller, Christoph, e Bruno Woltzenlogel Paleo. "Higher-Order Modal Logics: Automation and Applications". In Reasoning Web. Web Logic Rules, 32–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21768-0_2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Higher order logics"
Crary, Karl. "Higher-order representation of substructural logics". In the 15th ACM SIGPLAN international conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1863543.1863565.
Texto completo da fonteMaruyama, Yoshihiro. "Higher-Order Fuzzy Logics and their Categorical Semantics: Higher-Order Linear Completeness and Baaz Translation via Substructural Tripos Theory". In 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2021. http://dx.doi.org/10.1109/fuzz45933.2021.9494453.
Texto completo da fonteBenzmüller, Christoph. "A (Simplified) Supreme Being Necessarily Exists, says the Computer: Computationally Explored Variants of Gödel's Ontological Argument". In 17th International Conference on Principles of Knowledge Representation and Reasoning {KR-2020}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/kr.2020/80.
Texto completo da fonteRose, Judy, e Samantha Low-Choy. "Modern Pedagogical Approaches to Teaching Mixed Methods to Social Science Researchers". In Fifth International Conference on Higher Education Advances. Valencia: Universitat Politècnica València, 2019. http://dx.doi.org/10.4995/head19.2019.9509.
Texto completo da fonteLiu, Qiang, e Yongmei Liu. "Multi-agent Epistemic Planning with Common Knowledge". In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/264.
Texto completo da fonteSchwering, Christoph. "A Reasoning System for a First-Order Logic of Limited Belief". In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/173.
Texto completo da fonteCharalambidis, Angelos, Panos Rondogiannis e Antonis Troumpoukis. "Higher-order logic programming". In PPDP '16: 18th International Symposium on Principles and Practice of Declarative Programming. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2967973.2968607.
Texto completo da fonteHowe, Douglas J. "Higher-order abstract syntax in classical higher-order logic". In the Fourth International Workshop. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1577824.1577826.
Texto completo da fonteLi, Linna, e Wei Zhang. "Higher-Order Logic Recommender System". In 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. IEEE, 2008. http://dx.doi.org/10.1109/wiiat.2008.196.
Texto completo da fonteQian, Zhenyu. "Higher-order equational logic programming". In the 21st ACM SIGPLAN-SIGACT symposium. New York, New York, USA: ACM Press, 1994. http://dx.doi.org/10.1145/174675.177889.
Texto completo da fonteRelatórios de organizações sobre o assunto "Higher order logics"
Archer, Myla M., Ben L. DiVito e Cesar Munoz. Proceedings STRATA 2003. First International Workshop on Design and Application of Strategies/Tactics in Higher Order Logics; Focus on PVS Experiences. Fort Belvoir, VA: Defense Technical Information Center, novembro de 2003. http://dx.doi.org/10.21236/ada418902.
Texto completo da fonteJindal, A., R. Overbeek e W. McCune. A parallel processing approach for implementing high-performance first-order logic deduction systems. Office of Scientific and Technical Information (OSTI), abril de 1989. http://dx.doi.org/10.2172/6215473.
Texto completo da fonte