Artigos de revistas sobre o tema "High strength concrete Testing"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "High strength concrete Testing".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Price, W. F., e J. P. Hynes. "In-situ strength testing of high strength concrete". Magazine of Concrete Research 48, n.º 176 (setembro de 1996): 189–97. http://dx.doi.org/10.1680/macr.1996.48.176.189.
Texto completo da fonteJohnson, Claude D., e S. Ali Mirza. "Confined capping system for compressive strength testing of high performance concrete cylinders". Canadian Journal of Civil Engineering 22, n.º 3 (1 de junho de 1995): 617–20. http://dx.doi.org/10.1139/l95-070.
Texto completo da fonteSolikin, Mochamad. "Compressive Strength Development of High Strength High Volume Fly Ash Concrete by Using Local Material". Materials Science Forum 872 (setembro de 2016): 271–75. http://dx.doi.org/10.4028/www.scientific.net/msf.872.271.
Texto completo da fonteHooton, RD, M. Sonebi e KH Khayat. "Testing Abrasion Resistance of High-Strength Concrete". Cement, Concrete and Aggregates 23, n.º 1 (2001): 34. http://dx.doi.org/10.1520/cca10523j.
Texto completo da fonteDavidyuk, Artem, e Igor Rumyantsev. "Quality control of high-performance concrete in high-rise construction during operation". MATEC Web of Conferences 170 (2018): 01035. http://dx.doi.org/10.1051/matecconf/201817001035.
Texto completo da fonteSovová, Kateřina, Karel Mikulica, Adam Hubáček e Karel Dvořák. "Behavior of High Strength Concrete at High Temperatures". Solid State Phenomena 276 (junho de 2018): 259–64. http://dx.doi.org/10.4028/www.scientific.net/ssp.276.259.
Texto completo da fonteChen, Bo, Yue Bo Cai, Jian Tong Ding e Yao Jian. "Crack Resistance Evaluating of HSC Based on Thermal Stress Testing". Advanced Materials Research 168-170 (dezembro de 2010): 716–20. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.716.
Texto completo da fonteVincent, Thomas, e Togay Ozbakkloglu. "An Experimental Study on the Compressive Behavior of CFRP-Confined High- and Ultra High-Strength Concrete". Advanced Materials Research 671-674 (março de 2013): 1860–64. http://dx.doi.org/10.4028/www.scientific.net/amr.671-674.1860.
Texto completo da fonteWedatalla, Afaf M. O., Yanmin Jia e Abubaker A. M. Ahmed. "Curing Effects on High-Strength Concrete Properties". Advances in Civil Engineering 2019 (6 de março de 2019): 1–14. http://dx.doi.org/10.1155/2019/1683292.
Texto completo da fonteBickley, J. A., J. Ryell, C. Rogers e R. D. Hooton. "Some characteristics of high-strength structural concrete". Canadian Journal of Civil Engineering 18, n.º 5 (1 de outubro de 1991): 885–89. http://dx.doi.org/10.1139/l91-107.
Texto completo da fonteSucharda, O., V. Bilek e P. Mateckova. "Testing and mechanical properties of high strength concrete". IOP Conference Series: Materials Science and Engineering 549 (18 de junho de 2019): 012012. http://dx.doi.org/10.1088/1757-899x/549/1/012012.
Texto completo da fonteJacobsen, Stefan, Hans Christian Gran, Erik J. Sellevold e Jon Arne Bakke. "High strength concrete — Freeze/thaw testing and cracking". Cement and Concrete Research 25, n.º 8 (dezembro de 1995): 1775–80. http://dx.doi.org/10.1016/0008-8846(95)00173-5.
Texto completo da fonteWang, Zheng Jun, Mei Han e Felix Zhao. "Applying Research on Testing Technique of High Performance Concrete". Advanced Materials Research 378-379 (outubro de 2011): 226–29. http://dx.doi.org/10.4028/www.scientific.net/amr.378-379.226.
Texto completo da fonteMarzouk, H., e Z. W. Chen. "Nonlinear analysis of normal- and high-strength concrete slabs". Canadian Journal of Civil Engineering 20, n.º 4 (1 de agosto de 1993): 696–707. http://dx.doi.org/10.1139/l93-086.
Texto completo da fonteStehlík, Michal. "TESTING THE STRENGTH OF CONCRETE MADE FROM RAW AND DISPERSION-TREATED CONCRETE RECYCLATE BY ADDITION OF ADDITIVES AND ADMIXTURES". Journal of Civil Engineering and Management 19, n.º 1 (16 de janeiro de 2013): 107–12. http://dx.doi.org/10.3846/13923730.2012.734853.
Texto completo da fonteGunay, Ahmet Reha, Sami Karadeniz e Mustafa Kaya. "An Experimental Study on the Dynamic Behavior of an Ultra High-Strength Concrete". Applied Sciences 10, n.º 12 (17 de junho de 2020): 4170. http://dx.doi.org/10.3390/app10124170.
Texto completo da fonteKong, Xu Wen, Long Cui e Jin Shan Wang. "Experimental Study of Green High Performance Concrete Strength Testing by Rebound Method". Applied Mechanics and Materials 71-78 (julho de 2011): 737–43. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.737.
Texto completo da fonteYi, Wei Jian, e Yan Mei Lv. "Experimental Study on Shear Failure of High-Strength Concrete Beams with High-Strength Stirrups". Key Engineering Materials 400-402 (outubro de 2008): 857–63. http://dx.doi.org/10.4028/www.scientific.net/kem.400-402.857.
Texto completo da fonteYu, Le Hua, Shuang Xi Zhou e Hui Ou. "Experimental Investigation on Properties of High Performance Concrete with Mineral Admixtures in Pavement of Highway". Advanced Materials Research 723 (agosto de 2013): 345–52. http://dx.doi.org/10.4028/www.scientific.net/amr.723.345.
Texto completo da fonteElbasha, N., e M. N. S. Hadi. "Experimental testing of helically confined high-strength concrete beams". Structural Concrete 6, n.º 2 (junho de 2005): 43–48. http://dx.doi.org/10.1680/stco.2005.6.2.43.
Texto completo da fonteKumar, C. Naga Satish, e T. D. Gunneswara Rao. "Fracture parameters of high-strength concrete – mode II testing". Magazine of Concrete Research 62, n.º 3 (março de 2010): 157–62. http://dx.doi.org/10.1680/macr.2010.62.3.157.
Texto completo da fonteThomas, C., J. Sainz-Aja, J. Setien, A. Cimentada e J. A. Polanco. "Resonance fatigue testing on high-strength self-compacting concrete". Journal of Building Engineering 35 (março de 2021): 102057. http://dx.doi.org/10.1016/j.jobe.2020.102057.
Texto completo da fonteGaidhane, Ms Sakshi Harish. "“Testing of High-Performance Concrete using Recycled Aggregates”". International Journal for Research in Applied Science and Engineering Technology 9, n.º 9 (30 de setembro de 2021): 495–98. http://dx.doi.org/10.22214/ijraset.2021.37970.
Texto completo da fonteLee, Taegyu, Jaehyun Lee e Hyeonggil Choi. "Assessment of Strength Development at Hardened Stage on High-Strength Concrete Using NDT". Applied Sciences 10, n.º 18 (9 de setembro de 2020): 6261. http://dx.doi.org/10.3390/app10186261.
Texto completo da fonteWang, Zheng Jun, e Felix Zhao. "Applying Research on Testing Compressive Strength of High Performance Concrete with Rebound Method". Advanced Materials Research 452-453 (janeiro de 2012): 106–9. http://dx.doi.org/10.4028/www.scientific.net/amr.452-453.106.
Texto completo da fonteBaranova, Al'bina, e Ol'ga Yazina. "FOAM CONCRETES BASED ON HIGH-STRENGTH BINDERS". Modern Technologies and Scientific and Technological Progress 2018, n.º 1 (23 de março de 2020): 97–98. http://dx.doi.org/10.36629/2686-9896-2020-2018-1-97-98.
Texto completo da fonteFlores, Elsy Y., Jordan Varbel, Craig M. Newtson e Brad D. Weldon. "Ultra-High-Performance Concrete Shear Keys in Concrete Bridge Superstructures". MATEC Web of Conferences 271 (2019): 07006. http://dx.doi.org/10.1051/matecconf/201927107006.
Texto completo da fonteWardi, Adil Hadi, Gökhan Tunç e Khalil Ibraheem. "Structural behavior of shear connectors embedded in different types of concrete". Challenge Journal of Structural Mechanics 6, n.º 4 (20 de dezembro de 2020): 160. http://dx.doi.org/10.20528/cjsmec.2020.04.001.
Texto completo da fonteMohtasham Moein, Mohammad, Ashkan Saradar, Komeil Rahmati, Arman Hatami Shirkouh, Iman Sadrinejad, Vartenie Aramali e Moses Karakouzian. "Investigation of Impact Resistance of High-Strength Portland Cement Concrete Containing Steel Fibers". Materials 15, n.º 20 (14 de outubro de 2022): 7157. http://dx.doi.org/10.3390/ma15207157.
Texto completo da fonteZhang, Nan, Juan Liao, Tao Zhang, Wen Zhan Ji, Bao Hua Wang e Dong Hua Zhang. "The Effect of Mineral Admixtures on Mechanical Properties of High Performance Concrete at very Low Temperature". Applied Mechanics and Materials 584-586 (julho de 2014): 1509–13. http://dx.doi.org/10.4028/www.scientific.net/amm.584-586.1509.
Texto completo da fonteKorolev, Evgeniy Valerjevich, e Alexandr Sergeevich Inozemtcev. "Preparation and Research of the High-Strength Lightweight Concrete Based on Hollow Microspheres". Advanced Materials Research 746 (agosto de 2013): 285–88. http://dx.doi.org/10.4028/www.scientific.net/amr.746.285.
Texto completo da fonteOh, Bo Hwan, Hong C. Rhim e Hyo Seon Park. "Effect of Confining Pressure on Modeling High Early Strength Concrete under Uniaxial Loading". Key Engineering Materials 321-323 (outubro de 2006): 367–70. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.367.
Texto completo da fonteA.M. Mhamoud, Hassan, e Jia Yanmin. "Effect of different additives on high temperatures of concrete". Journal of Structural Fire Engineering 9, n.º 2 (11 de junho de 2018): 161–70. http://dx.doi.org/10.1108/jsfe-01-2017-0021.
Texto completo da fonteLi, Cao, e Wang Qing Gao. "Experimental Study on Rebound Curve of High-Strength Concrete". Key Engineering Materials 881 (abril de 2021): 137–41. http://dx.doi.org/10.4028/www.scientific.net/kem.881.137.
Texto completo da fonteStepanova, V. F., G. V. Chehniy, I. M. Parshina, S. A. Orekhov e A. I. Kruglov. "Study into the freeze-thaw/ frost-salt resistance of high-strength B60–B100 concrete". Bulletin of Science and Research Center of Construction 33, n.º 2 (19 de abril de 2022): 183–93. http://dx.doi.org/10.37538/2224-9494-2022-2(33)-183-193.
Texto completo da fonteVarona, Francisco B., Francisco Baeza-Brotons, Antonio J. Tenza-Abril, F. Javier Baeza e Luis Bañón. "Residual Compressive Strength of Recycled Aggregate Concretes after High Temperature Exposure". Materials 13, n.º 8 (23 de abril de 2020): 1981. http://dx.doi.org/10.3390/ma13081981.
Texto completo da fonteKUTSYK, Olena, e Oleksandr ZHURAVSKYI. "EXPERIMENTAL AND THEORETICAL STUDIES OF REINFORCED CONCRETE BENDING ELEMENTS MADE OF HIGH-STRENGTH CONCRETE". Building constructions. Theory and Practice, n.º 9 (28 de dezembro de 2021): 87–93. http://dx.doi.org/10.32347/2522-4182.9.2021.87-93.
Texto completo da fonteRizkiasari, Anggia Eta, e Abdul Rouf. "Analisis Hubungan Kecepatan Gelombang Dengan Kuat Tekan Beton Menggunakan Metode UPV". IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) 10, n.º 1 (30 de abril de 2020): 11. http://dx.doi.org/10.22146/ijeis.33414.
Texto completo da fonteHosseini Mehrab, Alireza, Seyedmahdi Amirfakhrian e M. Reza Esfahani. "Fracture characteristics of various concrete composites containing polypropylene fibers through five fracture mechanics methods". Materials Testing 65, n.º 1 (1 de janeiro de 2023): 10–32. http://dx.doi.org/10.1515/mt-2022-0210.
Texto completo da fonteHuang, Peng Fei. "Patent Analysis of Concrete Testing Technology". Key Engineering Materials 726 (janeiro de 2017): 120–24. http://dx.doi.org/10.4028/www.scientific.net/kem.726.120.
Texto completo da fonteLee, Ming Gin, Yung Chih Wang, Wan Xuan Xiao, Ming Ju Lee e Tuz Yuan Huang. "Effect of CO2 Curing on the Strength of High Strength Pervious Concrete". Key Engineering Materials 846 (junho de 2020): 207–12. http://dx.doi.org/10.4028/www.scientific.net/kem.846.207.
Texto completo da fonteYue, Zhong Wen, Hui Zhang e Bo Yang Dou. "Industrial Test on Outer Frozen Shaft Wall of High Strength and High Performance Concrete". Advanced Materials Research 179-180 (janeiro de 2011): 569–74. http://dx.doi.org/10.4028/www.scientific.net/amr.179-180.569.
Texto completo da fonteWang, Jiantao, e Qing Sun. "Cyclic testing of Q690 circular high-strength concrete-filled thin-walled steel tubular columns". Advances in Structural Engineering 22, n.º 2 (14 de agosto de 2018): 444–58. http://dx.doi.org/10.1177/1369433218790769.
Texto completo da fonteSiregar, Atur P. N. "Experimental investigation of the flexural ductility of singly reinforced concrete beam using normal and high strength concrete". Journal of Sustainable Engineering: Proceedings Series 1, n.º 2 (30 de setembro de 2019): 218–24. http://dx.doi.org/10.35793/joseps.v1i2.30.
Texto completo da fonteLiu, Feng, Gui Xuan Chen e Li Juan Li. "Performance of Rubberized High Strength Concrete after Fire". Advanced Materials Research 163-167 (dezembro de 2010): 1403–8. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.1403.
Texto completo da fonteAli, A., Z. Soomro, S. Iqbal, N. Bhatti e A. F. Abro. "Prediction of Corner Columns’ Load Capacity Using Composite Material Analogy". Engineering, Technology & Applied Science Research 8, n.º 2 (19 de abril de 2018): 2745–49. http://dx.doi.org/10.48084/etasr.1879.
Texto completo da fonteDvořák, Richard, Zdeněk Chobola e Ivo Kusák. "Acoustic non-destructive testing of high temperature degraded concrete with comparison of acoustic impedance". MATEC Web of Conferences 219 (2018): 03003. http://dx.doi.org/10.1051/matecconf/201821903003.
Texto completo da fonteLiu, Guan Guo, Guo Rong Zhang, Yun Sheng Zhang e Lu Lu. "Study on Tensile Creep Characteristics of High Strength Concrete". Applied Mechanics and Materials 835 (maio de 2016): 535–41. http://dx.doi.org/10.4028/www.scientific.net/amm.835.535.
Texto completo da fonteKadam, Shriganesh Shantikumar, V. V. Karjinni e C. S. Jarali. "Prediction of Fiber Reinforced Concrete Strength Properties by Micromechanics Method". Civil Engineering Journal 5, n.º 1 (27 de janeiro de 2019): 200. http://dx.doi.org/10.28991/cej-2019-03091238.
Texto completo da fonteDel Savio, Alexandre Almeida, Darwin La Torre e Juan P. Cedrón. "Experimental Volume Incidence Study and the Relationship of Polypropylene Macrofiber Slenderness to the Mechanical Strengths of Fiber-Reinforced Concretes". Applied Sciences 12, n.º 18 (11 de setembro de 2022): 9126. http://dx.doi.org/10.3390/app12189126.
Texto completo da fonte