Literatura científica selecionada sobre o tema "High Q² sensitivity"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "High Q² sensitivity".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "High Q² sensitivity"
Zhang, Yuguang, Shoubao Han, Senlin Zhang, Penghao Liu e Yaocheng Shi. "High-Q and High-Sensitivity Photonic Crystal Cavity Sensor". IEEE Photonics Journal 7, n.º 5 (outubro de 2015): 1–6. http://dx.doi.org/10.1109/jphot.2015.2469131.
Texto completo da fonteHelm, P. J. S., M. Dagenais, M. A. Krainak e R. Leavitt. "High-sensitivity semiconductor optically preamplified Q-PPM receiver". IEEE Photonics Technology Letters 9, n.º 10 (outubro de 1997): 1394–96. http://dx.doi.org/10.1109/68.623274.
Texto completo da fonteGaber, Noha, Yasser Sabry, Mazen Erfan, Frédéric Marty e Tarik Bourouina. "High-Q Fabry–Pérot Micro-Cavities for High-Sensitivity Volume Refractometry". Micromachines 9, n.º 2 (31 de janeiro de 2018): 54. http://dx.doi.org/10.3390/mi9020054.
Texto completo da fonteConradi, Mark S. "Marginal oscillators: High sensitivity, simple detectors of Q changes". Journal of the Acoustical Society of America 95, n.º 5 (maio de 1994): 2811. http://dx.doi.org/10.1121/1.409741.
Texto completo da fonteKim, Sejeong, Hwi-Min Kim e Yong-Hee Lee. "Single nanobeam optical sensor with a high Q-factor and high sensitivity". Optics Letters 40, n.º 22 (10 de novembro de 2015): 5351. http://dx.doi.org/10.1364/ol.40.005351.
Texto completo da fonteLalauze, R., C. Pijolat, S. Vincent e L. Bruno. "High-sensitivity materials for gas detection". Sensors and Actuators B: Chemical 8, n.º 3 (junho de 1992): 237–43. http://dx.doi.org/10.1016/0925-4005(92)85024-q.
Texto completo da fonteHu, Senyong, Yunhao Cao, Shengxiao Jin e Wengang Wu. "Design of a high-sensitivity and high-Q microwave sensor based on H-fractal metasurface structure". Advances in Engineering Technology Research 1, n.º 3 (2 de fevereiro de 2023): 850. http://dx.doi.org/10.56028/aetr.3.1.850.
Texto completo da fonteKhusnutdinov, R. R., G. V. Mozzhukhin, N. R. Khusnutdinova e B. M. Salakhutdinov. "High-Q litz wire NQR sensor for medical applications". Power engineering: research, equipment, technology 25, n.º 3 (21 de agosto de 2023): 3–11. http://dx.doi.org/10.30724/1998-9903-2023-25-3-3-11.
Texto completo da fonteClevenson, Hannah, Pierre Desjardins, Xuetao Gan e Dirk Englund. "High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity". Applied Physics Letters 104, n.º 24 (16 de junho de 2014): 241108. http://dx.doi.org/10.1063/1.4879735.
Texto completo da fonteLing, Tao, Sung-Liang Chen e L. Jay Guo. "High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators". Applied Physics Letters 98, n.º 20 (16 de maio de 2011): 204103. http://dx.doi.org/10.1063/1.3589971.
Texto completo da fonteTeses / dissertações sobre o assunto "High Q² sensitivity"
Paxton, Thanai. "Ultra-high sensitivity unambiguous sequencing on a novel geometry quadrupole orthogonal-acceleration time of flight mass spectrometer, the Q-TOF". Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322004.
Texto completo da fonteJoshi, Shivam. "Characterization of resistive Micromegas for High Angle-Time Projection Chambers readout and preparation of neutrino physics analysis with upgraded near detector of T2K experiment". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP123.
Texto completo da fonteThe PhD work is in the field of Neutrino Physics as a part of the T2K experiment. The thesis is divided into two subjects- detector characterization and preparation of physics analysis. In the context of the upgrade of T2K near detector- ND280, a model was developed and utilized to characterize the charge spreading in novel resistive Micromegas (ERAM) detector. In addition, pad-by-pad gain and energy resolution was obtained for each ERAM for a complete characterization. The results directly led to the selection of specific ERAMs for installation at specific positions in the High Angle-Time Projection Chamber anode planes for charge readout. In total, 37 ERAMs were successfully characterized using X-ray data from a test bench at CERN. This information was also used as inputs for reconstruction. Improvement in statistics and detection efficiency of charged-current quasi-elastic events in high Q² (4-momentum transfer) region after the ND280 upgrade was studied. The question of- how effectively the high Q² uncertainties will be constrained after the ND280 upgrade by the 4 high Q² parameters in the neutrino-nucleus cross-section model was addressed using T2K re-weighting tools and the ND280 fitter- GUNDAM. An important source of the high Q² uncertainties is the axial-vector form factor model (dipole) used currently in the cross-section model. Some alternative form factor models that can better constrain these uncertainties were also studied. The effect of uncertainties in nucleon removal energy estimation on different variables (muon kinematics, neutrino energy, etc.) was studied. Binned splines were produced for the 4 removal energy parameters in the cross-section model in the context of Oscillation Analysis using data collected in 2024
Capítulos de livros sobre o assunto "High Q² sensitivity"
Ishchenko, Alexander A., Yurii L. Slominskii e Illia P. Sharanov. "High-efficiency polymethine dyes for passive Q-switch and mode locking of neodymium lasers". In NEW FUNCTIONAL SUBSTANCES AND MATERIALS FOR CHEMICAL ENGINEERING, 39–52. PH “Akademperiodyka”, 2021. http://dx.doi.org/10.15407/akademperiodyka.444.039.
Texto completo da fonteSarid, Dror. "Capacitance Detection System". In Scanning Force Microscopy, 65–74. Oxford University PressNew York, NY, 1994. http://dx.doi.org/10.1093/oso/9780195092042.003.0005.
Texto completo da fonteMilic, Ljiljana. "IIR Filters to Sampling Rate Conversion". In Multirate Filtering for Digital Signal Processing, 136–70. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-178-0.ch005.
Texto completo da fonteBaldovin, Fulvio. "Numerical Analysis of Conservative Maps: A Possible Foundation of Nonextensive Phenomena". In Nonextensive Entropy. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195159769.003.0010.
Texto completo da fonteTrabalhos de conferências sobre o assunto "High Q² sensitivity"
Cao, Yunhao, Hongshun Sun, Yusa Chen, Liye Li, Lijun Ma e Wengang Wu. "A Self-Aligned Assembling Terahertz Metasurface Microfluidic Sensor with High Sensing Performance". In CLEO: Applications and Technology, JTu2A.56. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.56.
Texto completo da fonteChishti, Abdul Rehman, Abdul Aziz, Rifaqat Hussain, Sharif Iqbal Mitu Sheikh e Abdullah Algarni. "Development of a Compact Terahertz Band Absorber with Enhanced Q-Factor for Biomedical Applications Requiring High Sensitivity". In 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 1571–72. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10686254.
Texto completo da fonteSalama, Norhan A., Salah S. A. Obayya e Mohamed A. Swillam. "Ultra-Sensitive Quantitative Detection of Ethanol using Metal Organic Framework Integrated Metasurface". In Frontiers in Optics, JW4A.47. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jw4a.47.
Texto completo da fonteQian, Hangyu, Shuxian Wu, Zonglin Wu, Feihong Bao, Guomin Yang, Jie Zou e Gongbin Tang. "A High Sensitivity Temperature Sensor Using High-Q NS-SAW Resonator". In 2022 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). IEEE, 2022. http://dx.doi.org/10.1109/eftf/ifcs54560.2022.9850684.
Texto completo da fonteDong, Bing, Dongshan Wei, Zhilin Ke, Jing Liu e Dongxiong Ling. "Design of high-Q and high-sensitivity terahertz metamaterial sensors for trace detection". In Fourteenth International Conference on Information Optics and Photonics (CIOP 2023), editado por Yue Yang. SPIE, 2023. http://dx.doi.org/10.1117/12.3004104.
Texto completo da fontePark, Yong-Hwa, e K. C. Park. "Design Sensitivity Analysis for the Performance Improvement of High-Q MEMS Resonators". In 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-1351.
Texto completo da fonteLi, Bei-Bei, Qing-Yan Wang, Xue-Feng Jiang, Qihuang Gong e Yun-Feng Xiao. "High-sensitivity temperature sensing by employing an on-chip high-Q PDMS-coated toroidal microcavity". In SPIE Defense, Security, and Sensing, editado por Hai Xiao, Xudong Fan e Anbo Wang. SPIE, 2011. http://dx.doi.org/10.1117/12.886258.
Texto completo da fonteYang, Daquan, Huiping Tian e Yuefeng Ji. "Photonic Crystal Nanobeam Air-mode Cavity for High-Q and High Sensitivity Refractive Index Sensing". In CLEO: Applications and Technology. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_at.2014.jw2a.8.
Texto completo da fonteYang, Daquan, Shota Kita, Cheng Wang, Qimin Quan, Marko Loncar, Huiping Tian e Yuefeng Ji. "A Novel Nanoslotted Quadrabeam Photonic Crystal Cavity Sensor with High Sensitivity and High Q-factor". In CLEO: Science and Innovations. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_si.2014.sm3e.4.
Texto completo da fonteTingyu Li, Zhenguo Wang, Dingshan Gao e Xinliang Zhang. "High Q one-dimensional photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing". In 2015 Opto-Electronics and Communications Conference (OECC). IEEE, 2015. http://dx.doi.org/10.1109/oecc.2015.7340282.
Texto completo da fonte