Artigos de revistas sobre o tema "High pressure gas Adsorption"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "High pressure gas Adsorption".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Chen, Liwei, Mingzhen Zhao, Xiaohua Li e Yuan Liu. "Impact research of CH4 replacement with CO2 in hydrous coal under high pressure injection". Mining of Mineral Deposits 16, n.º 1 (30 de março de 2022): 121–26. http://dx.doi.org/10.33271/mining16.01.121.
Texto completo da fonteVermesse, J., D. Vidal e P. Malbrunot. "Gas Adsorption on Zeolites at High Pressure". Langmuir 12, n.º 17 (janeiro de 1996): 4190–96. http://dx.doi.org/10.1021/la950283m.
Texto completo da fonteGiacobbe, F. W. "A high‐pressure volumetric gas adsorption system". Review of Scientific Instruments 62, n.º 9 (setembro de 1991): 2186–92. http://dx.doi.org/10.1063/1.1142336.
Texto completo da fonteJia, Bao, Jyun-Syung Tsau e Reza Barati. "Different Flow Behaviors of Low-Pressure and High-Pressure Carbon Dioxide in Shales". SPE Journal 23, n.º 04 (30 de maio de 2018): 1452–68. http://dx.doi.org/10.2118/191121-pa.
Texto completo da fonteEkundayo, Jamiu M., Reza Rezaee e Chunyan Fan. "Measurement of gas contents in shale reservoirs – impact of gas density and implications for gas resource estimates". APPEA Journal 61, n.º 2 (2021): 606. http://dx.doi.org/10.1071/aj20177.
Texto completo da fonteHu, Ke, e Helmut Mischo. "Absolute adsorption and adsorbed volume modeling for supercritical methane adsorption on shale". Adsorption 28, n.º 1-2 (fevereiro de 2022): 27–39. http://dx.doi.org/10.1007/s10450-021-00350-8.
Texto completo da fonteLiu, Zhen, Qingbo Gu, He Yang, Jiangwei Liu, Guoliang Luan, Peng Hu e Zehan Yu. "Gas–Water Two-Phase Displacement Mechanism in Coal Fractal Structures Based on a Low-Field Nuclear Magnetic Resonance Experiment". Sustainability 15, n.º 21 (30 de outubro de 2023): 15440. http://dx.doi.org/10.3390/su152115440.
Texto completo da fonteWynnyk, Kyle G., Behnaz Hojjati, Payman Pirzadeh e Robert A. Marriott. "High-pressure sour gas adsorption on zeolite 4A". Adsorption 23, n.º 1 (18 de novembro de 2016): 149–62. http://dx.doi.org/10.1007/s10450-016-9841-6.
Texto completo da fonteGuo, Wenjing, Jie Liu, Fan Dong, Ru Chen, Jayanti Das, Weigong Ge, Xiaoming Xu e Huixiao Hong. "Deep Learning Models for Predicting Gas Adsorption Capacity of Nanomaterials". Nanomaterials 12, n.º 19 (27 de setembro de 2022): 3376. http://dx.doi.org/10.3390/nano12193376.
Texto completo da fonteCheng, De Zhu, Ai Ling Du e Ai Qin Du. "The Influence of Coal Adsorbing Methane and Carbon Dioxide on Gas Outburst". Advanced Materials Research 1049-1050 (outubro de 2014): 101–4. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.101.
Texto completo da fonteKasuya, F., e T. Tsuji. "High purity CO gas separation by pressure swing adsorption". Gas Separation & Purification 5, n.º 4 (dezembro de 1991): 242–46. http://dx.doi.org/10.1016/0950-4214(91)80031-y.
Texto completo da fonteCai, Hailiang, Peichao Li, Zhixin Ge, Yuxi Xian e Detang Lu. "A new method to determine varying adsorbed density based on Gibbs isotherm of supercritical gas adsorption". Adsorption Science & Technology 36, n.º 9-10 (9 de outubro de 2018): 1687–99. http://dx.doi.org/10.1177/0263617418802665.
Texto completo da fonteJing, Tongling, Chuanqi Tao, Yanbin Wang, Huan Miao, Mingyu Xi, Xingchen Zhao e Haiyang Fu. "Energy Variation Features during the Isothermal Adsorption of Coal under High-Temperature and High-Pressure Conditions". Processes 11, n.º 9 (23 de agosto de 2023): 2524. http://dx.doi.org/10.3390/pr11092524.
Texto completo da fonteWu, Xukun, Guangming Zhao, Youlin Xu, Xiangrui Meng e Xiang Cheng. "Research on Adsorption and Desorption Characteristics of Gas in Coal Rock Based on Nuclear Magnetic Resonance Technology". Geofluids 2022 (16 de maio de 2022): 1–13. http://dx.doi.org/10.1155/2022/1277973.
Texto completo da fonteSalmachi, Alireza, e Manouchehr Haghighi. "Temperature effect on methane sorption and diffusion in coal: application for thermal recovery from coal seam gas reservoirs". APPEA Journal 52, n.º 1 (2012): 291. http://dx.doi.org/10.1071/aj11021.
Texto completo da fonteHuang, Shijun, Yonghui Wu, Linsong Cheng, Hongjun Liu, Yongchao Xue e Guanyang Ding. "Apparent Permeability Model for Shale Gas Reservoirs Considering Multiple Transport Mechanisms". Geofluids 2018 (4 de junho de 2018): 1–18. http://dx.doi.org/10.1155/2018/2186194.
Texto completo da fonteAprianti, Tine, Harrini Mutiara Hapsari, Debby Yulinar Permata, Selvia Aprilyanti, Justin Sobey, Kallan Pham, Srinivasan Kandadai e Hui Tong Chua. "Experimental study of gas adsorption using high-performance activated carbon: Propane adsorption isotherm". Teknomekanik 7, n.º 1 (10 de junho de 2024): 62–73. http://dx.doi.org/10.24036/teknomekanik.v7i1.28672.
Texto completo da fonteQu, Lina, Zhenzhen Wang e Long Liu. "Molecular Simulation Study Based on Adsorption of Gas (CO2,O2,CH4) on Coal". Fire 6, n.º 9 (11 de setembro de 2023): 355. http://dx.doi.org/10.3390/fire6090355.
Texto completo da fonteLi, Jing, Keliu Wu, Zhangxin Chen, Kun Wang, Jia Luo, Jinze Xu, Ran Li, Renjie Yu e Xiangfang Li. "On the Negative Excess Isotherms for Methane Adsorption at High Pressure: Modeling and Experiment". SPE Journal 24, n.º 06 (5 de agosto de 2019): 2504–25. http://dx.doi.org/10.2118/197045-pa.
Texto completo da fonteShasha, Si, Wang Zhaofeng, Zhang Wenhao e Dai Juhua. "Study on Adsorption Model of Deep Coking Coal Based on Adsorption Potential Theory". Adsorption Science & Technology 2022 (8 de agosto de 2022): 1–13. http://dx.doi.org/10.1155/2022/9596874.
Texto completo da fonteDeng, Jia, Qi Zhang, Lan Zhang, Zijian Lyu, Yan Rong e Hongqing Song. "Investigation on the adsorption properties and adsorption layer thickness during CH4 flow driven by pressure gradient in nano-slits". Physics of Fluids 35, n.º 1 (janeiro de 2023): 016104. http://dx.doi.org/10.1063/5.0134419.
Texto completo da fonteXu, Wenjie, Xigui Zheng, Cancan Liu, Peng Li, Boyang Li, Kundai Michael Shayanowako, Jiyu Wang, Xiaowei Guo e Guowei Lai. "Numerical Simulation Study of High-Pressure Air Injection to Promote Gas Drainage". Sustainability 14, n.º 21 (22 de outubro de 2022): 13699. http://dx.doi.org/10.3390/su142113699.
Texto completo da fonteAgarwal, R. K., K. A. G. Amankwah e J. A. Schwarz. "Analysis of adsorption entropies of high pressure gas adsorption data on activated carbon". Carbon 28, n.º 1 (1990): 169–74. http://dx.doi.org/10.1016/0008-6223(90)90110-k.
Texto completo da fonteChang, Cheng, Jian Zhang, Haoran Hu, Deliang Zhang e Yulong Zhao. "Molecular Simulation of Adsorption in Deep Marine Shale Gas Reservoirs". Energies 15, n.º 3 (27 de janeiro de 2022): 944. http://dx.doi.org/10.3390/en15030944.
Texto completo da fonteDeyko, Gregory S., Valery N. Zakharov, Lev M. Glukhov, Dmitry O. Charkin, Dmitry Yu Kultin, Vladimir V. Chernyshev, Leonid A. Aslanov e Leonid M. Kustov. "High-Pressure Gas Adsorption on Covalent Organic Framework CTF-1". Crystals 14, n.º 12 (10 de dezembro de 2024): 1066. https://doi.org/10.3390/cryst14121066.
Texto completo da fonteKostroski, Kyle P., e Phillip C. Wankat. "High Recovery Cycles for Gas Separations by Pressure-Swing Adsorption". Industrial & Engineering Chemistry Research 45, n.º 24 (novembro de 2006): 8117–33. http://dx.doi.org/10.1021/ie060566h.
Texto completo da fonteKinigoma, B. S., e G. O. Ani. "Comparison of gas dehydration methods based on energy consumption". Journal of Applied Sciences and Environmental Management 20, n.º 2 (25 de julho de 2016): 253–58. http://dx.doi.org/10.4314/jasem.v20i2.4.
Texto completo da fonteYue, Jiwei, Zhaofeng Wang e Jinsheng Chen. "Dynamic response characteristics of water and methane during isobaric imbibition process in remolded coal containing methane". Energy Exploration & Exploitation 37, n.º 1 (13 de setembro de 2018): 83–101. http://dx.doi.org/10.1177/0144598718798083.
Texto completo da fonteChen, Xuexi, Wenxuan Shan, Ruibang Sun e Liang Zhang. "Methane displacement characteristic of coal and its pore change in water injection". Energy Exploration & Exploitation 38, n.º 5 (2 de julho de 2020): 1647–63. http://dx.doi.org/10.1177/0144598720934052.
Texto completo da fonteKalman, Viktor, Johannes Voigt, Christian Jordan e Michael Harasek. "Hydrogen Purification by Pressure Swing Adsorption: High-Pressure PSA Performance in Recovery from Seasonal Storage". Sustainability 14, n.º 21 (28 de outubro de 2022): 14037. http://dx.doi.org/10.3390/su142114037.
Texto completo da fonteZhang, Yongchun, Aiguo Hu, Pei Xiong, Hao Zhang e Zhonghua Liu. "Experimental Study of Temperature Effect on Methane Adsorption Dynamic and Isotherm". Energies 15, n.º 14 (11 de julho de 2022): 5047. http://dx.doi.org/10.3390/en15145047.
Texto completo da fonteCai, Feng, Jingwen Yin e Juqiang Feng. "Effect of Methane Adsorption on Mechanical Performance of Coal". Applied Sciences 12, n.º 13 (29 de junho de 2022): 6597. http://dx.doi.org/10.3390/app12136597.
Texto completo da fonteLiu, Zhenjian, Zhenyu Zhang, Xiaoqian Liu, Tengfei Wu e Xidong Du. "Supercritical CO2 Exposure-Induced Surface Property, Pore Structure, and Adsorption Capacity Alterations in Various Rank Coals". Energies 12, n.º 17 (27 de agosto de 2019): 3294. http://dx.doi.org/10.3390/en12173294.
Texto completo da fonteEkundayo, Jamiu M., e Reza Rezaee. "Numerical Simulation of Gas Production from Gas Shale Reservoirs—Influence of Gas Sorption Hysteresis". Energies 12, n.º 18 (4 de setembro de 2019): 3405. http://dx.doi.org/10.3390/en12183405.
Texto completo da fonteTang, Songlei, Hongbo Zhai, Hong Tang e Feng Yang. "Isothermal Desorption Hysteretic Model for Deep Coalbed Methane Development". Geofluids 2022 (25 de janeiro de 2022): 1–9. http://dx.doi.org/10.1155/2022/5259115.
Texto completo da fonteNi, X. M., Q. F. Jia e Y. B. Wang. "Characterization of Permeability Changes in Coal of High Rank during the CH4-CO2 Replacement Process". Geofluids 2018 (12 de novembro de 2018): 1–8. http://dx.doi.org/10.1155/2018/8321974.
Texto completo da fonteZhou, Juan, Shiwang Gao, Lianbo Liu, Tieya Jing, Qian Mao, Mingyu Zhu, Wentao Zhao, Bingxiao Du, Xu Zhang e Yuling Shen. "Investigating the Influence of Pore Shape on Shale Gas Recovery with CO2 Injection Using Molecular Simulation". Energies 16, n.º 3 (3 de fevereiro de 2023): 1529. http://dx.doi.org/10.3390/en16031529.
Texto completo da fonteDe Wireld, Guy, Youssef Belmabkhout e Marc Frère. "Buoyancy effect correction on high pressure pure gas adsorption gravimetric measurements". Annales de Chimie Science des Matériaux 30, n.º 4 (28 de agosto de 2005): 411–23. http://dx.doi.org/10.3166/acsm.30.411-423.
Texto completo da fonteChilev, Ch, F. Darkrim Lamari, E. Kirilova e I. Pentchev. "Comparison of gas excess adsorption models and high pressure experimental validation". Chemical Engineering Research and Design 90, n.º 11 (novembro de 2012): 2002–12. http://dx.doi.org/10.1016/j.cherd.2012.03.012.
Texto completo da fonteRouquerol, Jean, Françoise Rouquerol, Phillip Llewellyn e Renaud Denoyel. "Surface excess amounts in high-pressure gas adsorption: Issues and benefits". Colloids and Surfaces A: Physicochemical and Engineering Aspects 496 (maio de 2016): 3–12. http://dx.doi.org/10.1016/j.colsurfa.2015.10.045.
Texto completo da fonteRaza, Syed Shabbar, Julie Pearce, Pradeep Shukla, Phil Hayes e Victor Rudolph. "Characterisation of Surat Basin Walloon interburden and overlying Springbok Sandstone: a focus on methane adsorption isotherms, permeability and gas content". APPEA Journal 60, n.º 2 (2020): 748. http://dx.doi.org/10.1071/aj19078.
Texto completo da fonteGao, Jian Liang, e Yu Wang. "Research on the Relationship between the Drilling Cutting Gas Desorption Index △h2 and Parameters of Gas Occurrence". Applied Mechanics and Materials 99-100 (setembro de 2011): 1312–18. http://dx.doi.org/10.4028/www.scientific.net/amm.99-100.1312.
Texto completo da fonteLi, De-Yang, Dong-Mei Liu, Hong-Kui Hu, Hui-Feng Bo e Zhan-Xin Zhang. "Molecular Simulation of Adsorption and Diffusion of Methane and Ethane in Kaolinite Clay under Supercritical Conditions: Effects of Water and Temperature". Minerals 13, n.º 10 (28 de setembro de 2023): 1269. http://dx.doi.org/10.3390/min13101269.
Texto completo da fonteDamasceno Borges, Daiane, e Douglas S. Galvao. "Schwarzites for Natural Gas Storage: A Grand-Canonical Monte Carlo Study". MRS Advances 3, n.º 1-2 (2018): 115–20. http://dx.doi.org/10.1557/adv.2018.190.
Texto completo da fonteAbou Alfa, Khaled, Diana C. Meza-Sepulveda, Cyril Vaulot, Jean-Marc Le Meins, Camelia Matei Ghimbeu, Louise Tonini, Janneth A. Cubillos et al. "Cocoa Pod Husk Carbon Family for Biogas Upgrading: Preliminary Assessment Using the Approximate Adsorption Performance Indicator". C 10, n.º 4 (29 de novembro de 2024): 100. http://dx.doi.org/10.3390/c10040100.
Texto completo da fonteTan, Xiaohua, Xinjian Ma, Xiaoping Li e Yilong Li. "An Adsorption Model Considering Fictitious Stress". Fractal and Fractional 9, n.º 1 (30 de dezembro de 2024): 17. https://doi.org/10.3390/fractalfract9010017.
Texto completo da fonteJia, Tianrang, Cao Liu, Guoying Wei, Jiangwei Yan, Qinghao Zhang, Lifei Niu, Xiaolei Liu, Mingjie Zhang, Yiwen Ju e Yongjun Zhang. "Micro-Nanostructure of Coal and Adsorption-Diffusion Characteristics of Methane". Journal of Nanoscience and Nanotechnology 21, n.º 1 (1 de janeiro de 2021): 422–30. http://dx.doi.org/10.1166/jnn.2021.18733.
Texto completo da fonteZhang, Guofang, Taoping Chen, Fuping Wang, Boyu Sun, Yong Wang e Dali Hou. "Experimental determination of deviation factor of natural gas in natural gas reservoir with high CO2 content". E3S Web of Conferences 245 (2021): 01045. http://dx.doi.org/10.1051/e3sconf/202124501045.
Texto completo da fonteÖztan, Hazal, e Duygu Uysal. "Determination of adsorption capacities of N2 and CO2 on commercial activated carbon and adsorption isotherm models". E3S Web of Conferences 433 (2023): 01004. http://dx.doi.org/10.1051/e3sconf/202343301004.
Texto completo da fonteAo, Xiang, Baobao Wang, Yuxi Rao, Lang Zhang, Yu Wang e Hongkun Tang. "Effect of CO2 Corrosion and Adsorption-Induced Strain on Permeability of Oil Shale: Numerical Simulation". Energies 16, n.º 2 (9 de janeiro de 2023): 780. http://dx.doi.org/10.3390/en16020780.
Texto completo da fonte