Artigos de revistas sobre o tema "High-Fidelity simulations"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "High-Fidelity simulations".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Lee White, Marjorie, Shawn R. Gilbert, Amber Q. Youngblood, J. Lynn Zinkan, Rachel Martin e Nancy M. Tofil. "High-Fidelity Simulations for Orthopaedic Residents". Journal of Bone and Joint Surgery-American Volume 95, n.º 10 (maio de 2013): e70-1-4. http://dx.doi.org/10.2106/jbjs.l.00761.
Texto completo da fonteGarmann, Daniel J., e Miguel R. Visbal. "High-Fidelity Simulations of Afterbody Vortex Flows". AIAA Journal 57, n.º 9 (setembro de 2019): 3980–90. http://dx.doi.org/10.2514/1.j058284.
Texto completo da fonteChen, Xiaodong, Dongjun Ma, Vigor Yang e Stephane Popinet. "HIGH-FIDELITY SIMULATIONS OF IMPINGING JET ATOMIZATION". Atomization and Sprays 23, n.º 12 (2013): 1079–101. http://dx.doi.org/10.1615/atomizspr.2013007619.
Texto completo da fonteHamilton, Cam, e Ginny Langham. "Low Fidelity Simulations with High Impact Results". Clinical Simulation in Nursing 5, n.º 3 (maio de 2009): S7. http://dx.doi.org/10.1016/j.ecns.2009.03.175.
Texto completo da fonteGroen, D., J. Borgdorff, C. Bona-Casas, J. Hetherington, R. W. Nash, S. J. Zasada, I. Saverchenko et al. "Flexible composition and execution of high performance, high fidelity multiscale biomedical simulations". Interface Focus 3, n.º 2 (6 de abril de 2013): 20120087. http://dx.doi.org/10.1098/rsfs.2012.0087.
Texto completo da fonteMüller, Maximilian, Malte Woidt, Matthias Haupt e Peter Horst. "Challenges of Fully-Coupled High-Fidelity Ditching Simulations". Aerospace 6, n.º 2 (22 de janeiro de 2019): 10. http://dx.doi.org/10.3390/aerospace6020010.
Texto completo da fonteHarrington, Peter, Mustafa Mustafa, Max Dornfest, Benjamin Horowitz e Zarija Lukić. "Fast, High-fidelity Lyα Forests with Convolutional Neural Networks". Astrophysical Journal 929, n.º 2 (1 de abril de 2022): 160. http://dx.doi.org/10.3847/1538-4357/ac5faa.
Texto completo da fonteHarrington, Peter, Mustafa Mustafa, Max Dornfest, Benjamin Horowitz e Zarija Lukić. "Fast, High-fidelity Lyα Forests with Convolutional Neural Networks". Astrophysical Journal 929, n.º 2 (1 de abril de 2022): 160. http://dx.doi.org/10.3847/1538-4357/ac5faa.
Texto completo da fonteXu, Jie, Si Zhang, Edward Huang, Chun-Hung Chen, Loo Hay Lee e Nurcin Celik. "MO2TOS: Multi-Fidelity Optimization with Ordinal Transformation and Optimal Sampling". Asia-Pacific Journal of Operational Research 33, n.º 03 (junho de 2016): 1650017. http://dx.doi.org/10.1142/s0217595916500172.
Texto completo da fonteRanftl, Sascha, Gian Marco Melito, Vahid Badeli, Alice Reinbacher-Köstinger, Katrin Ellermann e Wolfgang von der Linden. "On the Diagnosis of Aortic Dissection with Impedance Cardiography: A Bayesian Feasibility Study Framework with Multi-Fidelity Simulation Data". Proceedings 33, n.º 1 (9 de dezembro de 2019): 24. http://dx.doi.org/10.3390/proceedings2019033024.
Texto completo da fonteGarcia, S., B. Cather, J. Schultz, L. Myers e A. Klassen. "321 Low Fidelity In-Situ Field Simulations versus High Fidelity Center-Based Simulations: Paramedic Student Perspectives". Annals of Emergency Medicine 78, n.º 4 (outubro de 2021): S130. http://dx.doi.org/10.1016/j.annemergmed.2021.09.335.
Texto completo da fonteTamanampudi, Gowtham Manikanta Reddy, Swanand Sardeshmukh, William Anderson e Cheng Huang. "Combustion instability modeling using multi-mode flame transfer functions and a nonlinear Euler solver". International Journal of Spray and Combustion Dynamics 12 (janeiro de 2020): 175682772095032. http://dx.doi.org/10.1177/1756827720950320.
Texto completo da fonteZheng, Jun, Hao Bo Qiu e Xiao Lin Zhang. "Variable-Fidelity Multidisciplinary Design Optimization Based on Analytical Target Cascading Framework". Advanced Materials Research 544 (junho de 2012): 49–54. http://dx.doi.org/10.4028/www.scientific.net/amr.544.49.
Texto completo da fonteCole, Rebekah, Sean J. Egan, James Schwartz e Sherri L. Rudinsky. "The Impact of High-fidelity Simulations on Medical Student Readiness". Military Medicine 188, Supplement_3 (1 de maio de 2023): 7–14. http://dx.doi.org/10.1093/milmed/usac382.
Texto completo da fonteMichelassi, Vittorio, e Li He. "Editorial: Data-driven modelling and high-fidelity simulations". Journal of the Global Power and Propulsion Society, May (21 de maio de 2021): 1–2. http://dx.doi.org/10.33737/jgpps/135933.
Texto completo da fonteMüller, Maximilian, Malte Woidt, Matthias Haupt e Peter Horst. "Challenges of fully-coupled high-fidelity ditching simulations". MATEC Web of Conferences 233 (2018): 00020. http://dx.doi.org/10.1051/matecconf/201823300020.
Texto completo da fonteDameff, Christian J., Jordan A. Selzer, Jonathan Fisher, James P. Killeen e Jeffrey L. Tully. "Clinical Cybersecurity Training Through Novel High-Fidelity Simulations". Journal of Emergency Medicine 56, n.º 2 (fevereiro de 2019): 233–38. http://dx.doi.org/10.1016/j.jemermed.2018.10.029.
Texto completo da fonteQuirós Rodríguez, Alejandro, Miguel Fosas de Pando e Taraneh Sayadi. "Gradient-enhanced stochastic optimization of high-fidelity simulations". Computer Physics Communications 298 (maio de 2024): 109122. http://dx.doi.org/10.1016/j.cpc.2024.109122.
Texto completo da fonteRoth, Kaleigh. "Improving Confidence and Retention Through High-Fidelity Simulations". Journal of Obstetric, Gynecologic & Neonatal Nursing 53, n.º 4 (maio de 2024): S17. http://dx.doi.org/10.1016/j.jogn.2024.05.027.
Texto completo da fonteTchopev, Zahari N., Alexis E. Nelson, John C. Hunninghake, Kelsey Cacic, Melissa K. Cook e Morgan C. Jordan. "Curriculum Innovations: High-Fidelity Simulation of Acute Neurology Enhances Rising Resident Confidence". Neurology: Education 1, n.º 2 (15 de novembro de 2022): e200022. http://dx.doi.org/10.1212/ne9.0000000000200022.
Texto completo da fonteDante, Angelo, Carmen La Cerra, Valeria Caponnetto, Vittorio Masotta, Alessia Marcotullio, Luca Bertocchi, Fabio Ferraiuolo, Cristina Petrucci e Loreto Lancia. "Dose–Response Relationship between High-Fidelity Simulation and Intensive Care Nursing Students’ Learning Outcomes: An Italian Multimethod Study". International Journal of Environmental Research and Public Health 19, n.º 2 (6 de janeiro de 2022): 617. http://dx.doi.org/10.3390/ijerph19020617.
Texto completo da fonteLocsin, Rozzano C. "Caring Scholar Response To: Grounding Nursing Simulations in Caring". International Journal of Human Caring 12, n.º 2 (março de 2008): 47–49. http://dx.doi.org/10.20467/1091-5710.12.2.47.
Texto completo da fonteSuzuki, Takao, Michael L. Shur, Michael K. Strelets, Andrey K. Travin e Philippe R. Spalart. "High-fidelity fan-noise simulations based on improved delayed detached eddy simulation". Journal of the Acoustical Society of America 150, n.º 4 (outubro de 2021): A131. http://dx.doi.org/10.1121/10.0007867.
Texto completo da fonteLi, Ran, e Frank Gaitan. "High-fidelity universal quantum gates". Quantum Information and Computation 10, n.º 11&12 (novembro de 2010): 936–46. http://dx.doi.org/10.26421/qic10.11-12-4.
Texto completo da fonteBose, Sownak, Daniel J. Eisenstein, Boryana Hadzhiyska, Lehman H. Garrison e Sihan Yuan. "Constructing high-fidelity halo merger trees in abacussummit". Monthly Notices of the Royal Astronomical Society 512, n.º 1 (3 de março de 2022): 837–54. http://dx.doi.org/10.1093/mnras/stac555.
Texto completo da fonteBerci, M., P. H. Gaskell, R. W. Hewson e V. V. Toropov. "Multifidelity metamodel building as a route to aeroelastic optimization of flexible wings". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225, n.º 9 (5 de julho de 2011): 2115–37. http://dx.doi.org/10.1177/0954406211403549.
Texto completo da fonteMatei, Ion, Alexander Feldman, Johan De Kleer e Alexandre Perez. "Real time model-based diagnosis enabled by hybrid modeling". Annual Conference of the PHM Society 12, n.º 1 (3 de novembro de 2020): 10. http://dx.doi.org/10.36001/phmconf.2020.v12i1.1278.
Texto completo da fonteGrillo, Elizabeth U., e Christine M. Thomas. "Using High-Fidelity Simulation to Facilitate Graduate Student Clinical Learning". Perspectives of the ASHA Special Interest Groups 1, n.º 10 (31 de março de 2016): 4–15. http://dx.doi.org/10.1044/persp1.sig10.4.
Texto completo da fonteRubel, Clark, e Mark Owkes. "EXTRACTION OF DROPLET GENEALOGIES FROM HIGH-FIDELITY ATOMIZATION SIMULATIONS". Atomization and Sprays 29, n.º 8 (2019): 709–39. http://dx.doi.org/10.1615/atomizspr.2020031624.
Texto completo da fonteWetzel, Cordula M., Stephen A. Black, Debra Nestel, Maria Woloshynowych, John HN Wolfe, Ara Darzi e Roger L. Kneebone. "Development of High Fidelity Simulations for Exploring Surgical Stress". Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare 1, n.º 2 (2006): 104. http://dx.doi.org/10.1097/01266021-200600120-00031.
Texto completo da fonteKravchenko, Boris, Gladimir V. G. Baranoski, Tenn Francis Chen, Erik Miranda e Spencer R. Van Leeuwen. "High-fidelity iridal light transport simulations at interactive rates". Computer Animation and Virtual Worlds 28, n.º 3-4 (19 de abril de 2017): e1755. http://dx.doi.org/10.1002/cav.1755.
Texto completo da fonteMontiel, Miguel, e Roque Corral. "Time-Inclined Method for High-Fidelity Rotor/Stator Simulations". Aerospace 10, n.º 5 (18 de maio de 2023): 475. http://dx.doi.org/10.3390/aerospace10050475.
Texto completo da fonteHouck, D. R., N. deVelder e C. L. Kelley. "Comparison of a mid-fidelity free vortex wake method to a high-fidelity actuator line model large eddy simulation for wind turbine wake simulations". Journal of Physics: Conference Series 2265, n.º 4 (1 de maio de 2022): 042044. http://dx.doi.org/10.1088/1742-6596/2265/4/042044.
Texto completo da fonteGalindo, José, Roberto Navarro, Francisco Moya e Andrea Conchado. "Comprehensive Method for Obtaining Multi-Fidelity Surrogate Models for Design Space Approximation: Application to Multi-Dimensional Simulations of Condensation Due to Mixing Streams". Applied Sciences 13, n.º 11 (23 de maio de 2023): 6361. http://dx.doi.org/10.3390/app13116361.
Texto completo da fonteLin, Jeffrey, Carlo Scalo e Lambertus Hesselink. "High-fidelity simulation of a standing-wave thermoacoustic–piezoelectric engine". Journal of Fluid Mechanics 808 (26 de outubro de 2016): 19–60. http://dx.doi.org/10.1017/jfm.2016.609.
Texto completo da fonteBlair, Carrie A., Brian J. Hoffman e Robert T. Ladd. "Assessment centers vs situational judgment tests: longitudinal predictors of success". Leadership & Organization Development Journal 37, n.º 7 (5 de setembro de 2016): 899–911. http://dx.doi.org/10.1108/lodj-12-2014-0235.
Texto completo da fonteFranze, Marius. "Comparison of a closed-loop control by means of high-fidelity and low-fidelity coupled CFD/RBD computations". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 234, n.º 10 (16 de outubro de 2019): 1611–23. http://dx.doi.org/10.1177/0954410019882275.
Texto completo da fonteLi, R., M. Hoover e F. Gaitan. "High-fidelity single-qubit gates using non-adiabatic rapid passage". Quantum Information and Computation 7, n.º 7 (setembro de 2007): 594–608. http://dx.doi.org/10.26421/qic7.7-3.
Texto completo da fonteDuinmeijer, Wytze C., Libera Fresiello, Justyna Swol, Pau Torrella, Jordi Riera, Valentina Obreja, Mateusz Puślecki, Marek Dąbrowski, Jutta Arens e Frank R. Halfwerk. "Simulators and Simulations for Extracorporeal Membrane Oxygenation: An ECMO Scoping Review". Journal of Clinical Medicine 12, n.º 5 (22 de fevereiro de 2023): 1765. http://dx.doi.org/10.3390/jcm12051765.
Texto completo da fonteCzekirda, Marta, Patrycja Misztal-Okońska, Anna Włoszczak-Szubzda, Mariusz Goniewicz, Mateusz Cybulski, Krystyna Kowalczuk, Noemi Jaszyna et al. "Objective and Subjective Stress Parameters in Response to High and Low-Fidelity Simulation Activities". International Journal of Environmental Research and Public Health 19, n.º 5 (3 de março de 2022): 2980. http://dx.doi.org/10.3390/ijerph19052980.
Texto completo da fonteGrinderslev, Christian, Niels Nørmark Sørensen, Georg Raimund Pirrung e Sergio González Horcas. "Multiple limit cycle amplitudes in high-fidelity predictions of standstill wind turbine blade vibrations". Wind Energy Science 7, n.º 6 (7 de novembro de 2022): 2201–13. http://dx.doi.org/10.5194/wes-7-2201-2022.
Texto completo da fontevan Rij, Yu, Guo e Coe. "A Wave Energy Converter Design Load Case Study". Journal of Marine Science and Engineering 7, n.º 8 (30 de julho de 2019): 250. http://dx.doi.org/10.3390/jmse7080250.
Texto completo da fonteJiménez-Rodríguez, Diana, e Oscar Arrogante. "Simulated Video Consultations as a Learning Tool in Undergraduate Nursing: Students’ Perceptions". Healthcare 8, n.º 3 (20 de agosto de 2020): 280. http://dx.doi.org/10.3390/healthcare8030280.
Texto completo da fontePienaar, Elsje. "Multifidelity Analysis for Predicting Rare Events in Stochastic Computational Models of Complex Biological Systems". Biomedical Engineering and Computational Biology 9 (janeiro de 2018): 117959721879025. http://dx.doi.org/10.1177/1179597218790253.
Texto completo da fonteBowen-Withington, Julie, Shelaine Zambas, Rachel Macdiarmid, Catherine Cook e Stephen Neville. "Integration of high-fidelity simulation into undergraduate nursing education in Aotearoa New Zealand and Australia: An integrative literature review". Nursing Praxis Aotearoa New Zealand 36, n.º 3 (novembro de 2020): 37–50. http://dx.doi.org/10.36951/27034542.2020.013.
Texto completo da fonteBoodaghidizaji, Miad, Monsurul Khan e Arezoo M. Ardekani. "Multi-fidelity modeling to predict the rheological properties of a suspension of fibers using neural networks and Gaussian processes". Physics of Fluids 34, n.º 5 (maio de 2022): 053101. http://dx.doi.org/10.1063/5.0087449.
Texto completo da fontePerron, Christian, Dushhyanth Rajaram e Dimitri N. Mavris. "Multi-fidelity non-intrusive reduced-order modelling based on manifold alignment". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, n.º 2253 (setembro de 2021): 20210495. http://dx.doi.org/10.1098/rspa.2021.0495.
Texto completo da fonteHowe, Jessica, Joseph Puthumana, Daniel Hoffman, Rebecca Kowalski, Danielle Weldon, Kristen Miller, Peter Weyhrauch et al. "Development of Virtual Simulations for Medical Team Training: An Evaluation of Key Features". Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care 7, n.º 1 (junho de 2018): 261–66. http://dx.doi.org/10.1177/2327857918071062.
Texto completo da fonteCotter, Valerie, Danetta Sloan, Daniel Scerpella, Jennifer Wolff e Kelly Smith. "USING SIMULATION TO ASSESS THE FIDELITY OF ADVANCE CARE PLANNING IN THE CONTEXT OF A PRAGMATIC TRIAL". Innovation in Aging 7, Supplement_1 (1 de dezembro de 2023): 464. http://dx.doi.org/10.1093/geroni/igad104.1527.
Texto completo da fonteHooper, Barbara, Luanne Shaw e Rebekah Zamzam. "Implementing High-Fidelity Simulations With Large Groups of Nursing Students". Nurse Educator 40, n.º 2 (2015): 87–90. http://dx.doi.org/10.1097/nne.0000000000000101.
Texto completo da fonte