Artigos de revistas sobre o tema "Hexose sugar"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hexose sugar".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Liu, Xiao Chen, Ping Wang, Ying Long He, Yong Lei Kou, Biao Zhang, Gui Fu Dai e Jian Wu. "Rapid Determination of Pentose and Hexose Sugars in Mixed Sugars by Multiple Linear Regression Calibration Method". Applied Mechanics and Materials 145 (dezembro de 2011): 159–63. http://dx.doi.org/10.4028/www.scientific.net/amm.145.159.
Texto completo da fonteBalibrea, María E., Cristina Martínez-Andújar, Jesús Cuartero, María C. Bolarín e Francisco Pérez-Alfocea. "The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism". Functional Plant Biology 33, n.º 3 (2006): 279. http://dx.doi.org/10.1071/fp05134.
Texto completo da fonteGranot, David. "Role of tomato hexose kinases". Functional Plant Biology 34, n.º 6 (2007): 564. http://dx.doi.org/10.1071/fp06207.
Texto completo da fonteSiu, Sarah, Anna Robotham, Susan M. Logan, John F. Kelly, Kaoru Uchida, Shin-Ichi Aizawa e Ken F. Jarrell. "Evidence that Biosynthesis of the Second and Third Sugars of the Archaellin Tetrasaccharide in the Archaeon Methanococcus maripaludis Occurs by the Same Pathway Used by Pseudomonas aeruginosa To Make a Di-N-Acetylated Sugar". Journal of Bacteriology 197, n.º 9 (2 de março de 2015): 1668–80. http://dx.doi.org/10.1128/jb.00040-15.
Texto completo da fonteLothier, Jérémy, Bertrand Lasseur, Marie-Pascale Prud'homme e Annette Morvan-Bertrand. "Hexokinase-dependent sugar signaling represses fructan exohydrolase activity in Lolium perenne". Functional Plant Biology 37, n.º 12 (2010): 1151. http://dx.doi.org/10.1071/fp10086.
Texto completo da fonteLi, Yaxin, Huan Liu, Xuehui Yao, Jiang Wang, Sheng Feng, Lulu Sun, Si Ma, Kang Xu, Li-Qing Chen e Xiaolei Sui. "Hexose transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for fruit development". Plant Physiology 186, n.º 1 (5 de fevereiro de 2021): 640–54. http://dx.doi.org/10.1093/plphys/kiab046.
Texto completo da fonteSchmidt, Stefan, Hans-Georg Joost e Annette Schürmann. "GLUT8, the enigmatic intracellular hexose transporter". American Journal of Physiology-Endocrinology and Metabolism 296, n.º 4 (abril de 2009): E614—E618. http://dx.doi.org/10.1152/ajpendo.91019.2008.
Texto completo da fonteDai, Zhan Wu, Philippe Vivin, Thierry Robert, Sylvie Milin, Shao Hua Li e Michel Génard. "Model-based analysis of sugar accumulation in response to source - sink ratio and water supply in grape (Vitis vinifera) berries". Functional Plant Biology 36, n.º 6 (2009): 527. http://dx.doi.org/10.1071/fp08284.
Texto completo da fonteDowns, Colleen T. "Sugar Preference and Apparent Sugar Assimilation in the Red Lory". Australian Journal of Zoology 45, n.º 6 (1997): 613. http://dx.doi.org/10.1071/zo97034.
Texto completo da fonteDíaz-Fernández, David, Gloria Muñoz-Fernández, Victoria Isabel Martín, José Luis Revuelta e Alberto Jiménez. "Sugar transport for enhanced xylose utilization in Ashbya gossypii". Journal of Industrial Microbiology & Biotechnology 47, n.º 12 (9 de outubro de 2020): 1173–79. http://dx.doi.org/10.1007/s10295-020-02320-5.
Texto completo da fontePark, Sang-Hyun, Bok-Rye Lee, Van Hien La, Md Al Mamun, Dong-Won Bae e Tae-Hwan Kim. "Drought Intensity-Responsive Salicylic Acid and Abscisic Acid Crosstalk with the Sugar Signaling and Metabolic Pathway in Brassica napus". Plants 10, n.º 3 (23 de março de 2021): 610. http://dx.doi.org/10.3390/plants10030610.
Texto completo da fonteBrown, Victoria, Jessica A. Sexton e Mark Johnston. "A Glucose Sensor in Candida albicans". Eukaryotic Cell 5, n.º 10 (outubro de 2006): 1726–37. http://dx.doi.org/10.1128/ec.00186-06.
Texto completo da fonteZhang, Zhan, Luming Zou, Chong Ren, Fengrui Ren, Yi Wang, Peige Fan, Shaohua Li e Zhenchang Liang. "VvSWEET10 Mediates Sugar Accumulation in Grapes". Genes 10, n.º 4 (28 de março de 2019): 255. http://dx.doi.org/10.3390/genes10040255.
Texto completo da fonteHeiland, Sylvia, Nada Radovanovic, Milan Höfer, Joris Winderickx e Hella Lichtenberg. "Multiple Hexose Transporters ofSchizosaccharomyces pombe". Journal of Bacteriology 182, n.º 8 (15 de abril de 2000): 2153–62. http://dx.doi.org/10.1128/jb.182.8.2153-2162.2000.
Texto completo da fonteSujan, SMA, MS Jamal, MA Asad e ANM Fakhruddin. "Bio-ethanol production from Jatropha curcus". Bangladesh Journal of Scientific and Industrial Research 54, n.º 1 (25 de março de 2019): 39–46. http://dx.doi.org/10.3329/bjsir.v54i1.40729.
Texto completo da fonteFourie, J. F., e G. Holz. "Effects of Fruit and Pollen Exudates on Growth of Botrytis cinerea and Infection of Plum and Nectarine Fruit". Plant Disease 82, n.º 2 (fevereiro de 1998): 165–70. http://dx.doi.org/10.1094/pdis.1998.82.2.165.
Texto completo da fonteOuattara, Badiori, Idriss Sermé, Korodjouma Ouattara, Michel P. Sédogo e Hassan Bismark Nacro. "Cropping System Effects on Soil Monosaccharides in Western Burkina Faso". Journal of Agricultural Studies 5, n.º 4 (20 de novembro de 2017): 97. http://dx.doi.org/10.5296/jas.v5i4.11985.
Texto completo da fonteKOMOR, Ewald, Christian SCHOBERT e Bong-Heuy CHO. "Sugar specificity and sugar-proton interaction for the hexose-proton-symport system of Chlorella". European Journal of Biochemistry 146, n.º 3 (fevereiro de 1985): 649–56. http://dx.doi.org/10.1111/j.1432-1033.1985.tb08700.x.
Texto completo da fonteBazer, Fuller, Jinyoung Kim, Gwonhwa Song e Guoyao Wu. "Fructose: A Hexose Sugar in Search of a Functional Role." Biology of Reproduction 87, Suppl_1 (1 de agosto de 2012): 395. http://dx.doi.org/10.1093/biolreprod/87.s1.395.
Texto completo da fonteVerlinden, Sven, Silvanda M. Silva, Robert C. Herner e Randolph M. Beaudry. "Time-dependent Changes in the Longitudinal Sugar and Respiratory Profiles of Asparagus Spears During Storage at 0 °C". Journal of the American Society for Horticultural Science 139, n.º 4 (julho de 2014): 339–48. http://dx.doi.org/10.21273/jashs.139.4.339.
Texto completo da fonteLecourieux, Fatma, David Lecourieux, Céline Vignault e Serge Delrot. "A Sugar-Inducible Protein Kinase, VvSK1, Regulates Hexose Transport and Sugar Accumulation in Grapevine Cells". Plant Physiology 152, n.º 2 (18 de novembro de 2009): 1096–106. http://dx.doi.org/10.1104/pp.109.149138.
Texto completo da fonteHill, L. M., e S. Rawsthorne. "Carbon supply for storage-product synthesis in developing seeds of oilseed rape". Biochemical Society Transactions 28, n.º 6 (1 de dezembro de 2000): 667–69. http://dx.doi.org/10.1042/bst0280667.
Texto completo da fonteMitchell, Wilfrid J. "The Phosphotransferase System in Solventogenic Clostridia". Journal of Molecular Microbiology and Biotechnology 25, n.º 2-3 (2015): 129–42. http://dx.doi.org/10.1159/000375125.
Texto completo da fonteLiu, Xuan, Paul W. Robinson, Monica A. Madore, Guy W. Witney e Mary Lu Arpaia. "`Hass' Avocado Carbohydrate Fluctuations. II. Fruit Growth and Ripening". Journal of the American Society for Horticultural Science 124, n.º 6 (novembro de 1999): 676–81. http://dx.doi.org/10.21273/jashs.124.6.676.
Texto completo da fonteStoop, Johan M. H., e David M. Pharr. "Growth Substrate and Nutrient Salt Environment Alter Mannitol-to-Hexose Partitioning in Celery Petioles". Journal of the American Society for Horticultural Science 119, n.º 2 (março de 1994): 237–42. http://dx.doi.org/10.21273/jashs.119.2.237.
Texto completo da fonteRossouw, Gerhard C., Jason P. Smith, Celia Barril, Alain Deloire e Bruno P. Holzapfel. "Implications of the Presence of Maturing Fruit on Carbohydrate and Nitrogen Distribution in Grapevines under Postveraison Water Constraints". Journal of the American Society for Horticultural Science 142, n.º 2 (março de 2017): 71–84. http://dx.doi.org/10.21273/jashs03982-16.
Texto completo da fonteAtanassova, Rossitza, Marina Leterrier, Cécile Gaillard, Alice Agasse, Emeric Sagot, Pierre Coutos-Thévenot e Serge Delrot. "Sugar-Regulated Expression of a Putative Hexose Transport Gene in Grape". Plant Physiology 131, n.º 1 (1 de janeiro de 2003): 326–34. http://dx.doi.org/10.1104/pp.009522.
Texto completo da fonteHa-Tran, Dung Minh, Trinh Thi My Nguyen, Shou-Chen Lo e Chieh-Chen Huang. "Utilization of Monosaccharides by Hungateiclostridium thermocellum ATCC 27405 through Adaptive Evolution". Microorganisms 9, n.º 7 (4 de julho de 2021): 1445. http://dx.doi.org/10.3390/microorganisms9071445.
Texto completo da fonteHarrington, Gregory N., Katherine E. Dibley, Raymond J. Ritchie, Christina E. Offler e John W. Patrick. "Hexose uptake by developing cotyledons of Vicia faba: physiological evidence for transporters of differing affinities and specificities". Functional Plant Biology 32, n.º 11 (2005): 987. http://dx.doi.org/10.1071/fp05081.
Texto completo da fonteNicolson, Susan W., e Ben-Erik Van Wyk. "Nectar Sugars in Proteaceae: Patterns and Processes". Australian Journal of Botany 46, n.º 4 (1998): 489. http://dx.doi.org/10.1071/bt97039.
Texto completo da fonteMa, Hongmei, Henrik H. Albert, Robert Paull e Paul H. Moore. "Metabolic engineering of invertase activities in different subcellular compartments affects sucrose accumulation in sugarcane cells". Functional Plant Biology 27, n.º 11 (2000): 1021. http://dx.doi.org/10.1071/pp00029.
Texto completo da fonteNadai, Chiara, Giulia Crosato, Alessio Giacomini e Viviana Corich. "Different Gene Expression Patterns of Hexose Transporter Genes Modulate Fermentation Performance of Four Saccharomyces cerevisiae Strains". Fermentation 7, n.º 3 (23 de agosto de 2021): 164. http://dx.doi.org/10.3390/fermentation7030164.
Texto completo da fonteYsart, G. E., e R. M. Mason. "Serum factors, growth factors and UDP-sugar metabolism in bovine articular cartilage chondrocytes". Biochemical Journal 303, n.º 3 (1 de novembro de 1994): 713–21. http://dx.doi.org/10.1042/bj3030713.
Texto completo da fonteLeandro, Maria José, Hana Sychrová, Catarina Prista e Maria C. Loureiro-Dias. "The osmotolerant fructophilic yeast Zygosaccharomyces rouxii employs two plasma-membrane fructose uptake systems belonging to a new family of yeast sugar transporters". Microbiology 157, n.º 2 (1 de fevereiro de 2011): 601–8. http://dx.doi.org/10.1099/mic.0.044446-0.
Texto completo da fonteHeluane, Humberto, Matthew R. Evans, Sue F. Dagher e José M. Bruno-Bárcena. "Meta-Analysis and Functional Validation of Nutritional Requirements of Solventogenic Clostridia Growing under Butanol Stress Conditions and Coutilization of d-Glucose and d-Xylose". Applied and Environmental Microbiology 77, n.º 13 (20 de maio de 2011): 4473–85. http://dx.doi.org/10.1128/aem.00116-11.
Texto completo da fonteBrigham, Christopher J., e Michael H. Malamy. "Characterization of the RokA and HexA Broad-Substrate-Specificity Hexokinases from Bacteroides fragilis and Their Role in Hexose and N-Acetylglucosamine Utilization". Journal of Bacteriology 187, n.º 3 (1 de fevereiro de 2005): 890–901. http://dx.doi.org/10.1128/jb.187.3.890-901.2005.
Texto completo da fonteKelly, F. H. C. "Phase equilibria in sugar solutions. II. Ternary systems of water-sucrose-hexose". Journal of Applied Chemistry 4, n.º 8 (4 de maio de 2007): 405–7. http://dx.doi.org/10.1002/jctb.5010040802.
Texto completo da fonteCampbell, Richard J., Richard D. Fell e Richard P. Marini. "Canopy Position, Defoliation, and Girdling Influence Apple Nectar Production". HortScience 26, n.º 5 (maio de 1991): 531–32. http://dx.doi.org/10.21273/hortsci.26.5.531.
Texto completo da fonteCaspari, T., A. Will, M. Opekarová, N. Sauer e W. Tanner. "Hexose/H+ symporters in lower and higher plants." Journal of Experimental Biology 196, n.º 1 (1 de novembro de 1994): 483–91. http://dx.doi.org/10.1242/jeb.196.1.483.
Texto completo da fonteLAI, LISA X., e RENATA BURA. "The sulfite mill as a sugar-flexible future biorefinery". August 2012 11, n.º 8 (1 de setembro de 2012): 27–35. http://dx.doi.org/10.32964/tj11.8.27.
Texto completo da fonteGuimarães, Pedro M. R., Jyri-Pekka Multanen, Lucília Domingues, José A. Teixeira e John Londesborough. "Stimulation of Zero-trans Rates of Lactose and Maltose Uptake into Yeasts by Preincubation with Hexose To Increase the Adenylate Energy Charge". Applied and Environmental Microbiology 74, n.º 10 (31 de março de 2008): 3076–84. http://dx.doi.org/10.1128/aem.00188-08.
Texto completo da fonteZhang, Ping, Wenwen Zhang, Xiangshan Zhou, Peng Bai, James M. Cregg e Yuanxing Zhang. "Catabolite Repression of Aox in Pichia pastoris Is Dependent on Hexose Transporter PpHxt1 and Pexophagy". Applied and Environmental Microbiology 76, n.º 18 (23 de julho de 2010): 6108–18. http://dx.doi.org/10.1128/aem.00607-10.
Texto completo da fonteDesai, Tasha A., e Christopher V. Rao. "Regulation of Arabinose and Xylose Metabolism in Escherichia coli". Applied and Environmental Microbiology 76, n.º 5 (18 de dezembro de 2009): 1524–32. http://dx.doi.org/10.1128/aem.01970-09.
Texto completo da fonteKelly, F. H. C. "Phase equilibria in sugar solutions. III. Ternary systems of water-hexose-inorganic salt". Journal of Applied Chemistry 4, n.º 8 (4 de maio de 2007): 407–8. http://dx.doi.org/10.1002/jctb.5010040803.
Texto completo da fonteRist, R. J., e R. J. Naftalin. "Dexamethasone inhibits the hexose monophosphate shunt in activated rat peritoneal macrophages by reducing hexokinase-dependent sugar uptake". Biochemical Journal 278, n.º 1 (15 de agosto de 1991): 129–35. http://dx.doi.org/10.1042/bj2780129.
Texto completo da fonteRossouw, Debra, Sue Bosch, Jens Kossmann, Frederik C. Botha e Jan-Hendrik Groenewald. "Downregulation of neutral invertase activity in sugarcane cell suspension cultures leads to a reduction in respiration and growth and an increase in sucrose accumulation". Functional Plant Biology 34, n.º 6 (2007): 490. http://dx.doi.org/10.1071/fp06214.
Texto completo da fonteGrochowski, Laura L., Huimin Xu e Robert H. White. "Ribose-5-Phosphate Biosynthesis in Methanocaldococcus jannaschii Occurs in the Absence of a Pentose-Phosphate Pathway". Journal of Bacteriology 187, n.º 21 (1 de novembro de 2005): 7382–89. http://dx.doi.org/10.1128/jb.187.21.7382-7389.2005.
Texto completo da fonteGuo, Jin Ling, Da Chun Gong, Zhi Jun Li e Zhou Zheng. "Construction of Yeast Strain Capable of Co-Fermenting Pentose and Hexose by Protoplast Fusion". Advanced Materials Research 781-784 (setembro de 2013): 847–51. http://dx.doi.org/10.4028/www.scientific.net/amr.781-784.847.
Texto completo da fontePlumed-Ferrer, Carme, Kaisa M. Koistinen, Tiina L. Tolonen, Satu J. Lehesranta, Sirpa O. Kärenlampi, Elina Mäkimattila, Vesa Joutsjoki, Vesa Virtanen e Atte von Wright. "Comparative Study of Sugar Fermentation and Protein Expression Patterns of Two Lactobacillus plantarum Strains Grown in Three Different Media". Applied and Environmental Microbiology 74, n.º 17 (20 de junho de 2008): 5349–58. http://dx.doi.org/10.1128/aem.00324-08.
Texto completo da fonteAristilde, Ludmilla, Ian A. Lewis, Junyoung O. Park e Joshua D. Rabinowitz. "Hierarchy in Pentose Sugar Metabolism in Clostridium acetobutylicum". Applied and Environmental Microbiology 81, n.º 4 (19 de dezembro de 2014): 1452–62. http://dx.doi.org/10.1128/aem.03199-14.
Texto completo da fonte