Artigos de revistas sobre o tema "Heterostructured photocatalyst"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Heterostructured photocatalyst".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Baylan, Elif, Hasan Akyildiz e Ozlem Yildirim. "Stable CuCrO2 nanoparticles - ZnO fibres p-n heterostructure system for effective photocatalytic activity". Processing and Application of Ceramics 13, n.º 2 (2019): 189–201. http://dx.doi.org/10.2298/pac1902189b.
Texto completo da fonteZhang, Caomeng, Shijie Zhong, Qun Li, Yuanpeng Ji, Liwei Dong, Guisheng Zhang, Yuanpeng Liu e Weidong He. "Heterostructured Nanoscale Photocatalysts via Colloidal Chemistry for Pollutant Degradation". Crystals 12, n.º 6 (31 de maio de 2022): 790. http://dx.doi.org/10.3390/cryst12060790.
Texto completo da fonteLiu, Jianjun, Yingchun Yu, Zhixin Liu, Shengli Zuo e Baoshan Li. "AgBr-Coupled TiO2: A Visible Heterostructured Photocatalyst for Degrading Dye Pollutants". International Journal of Photoenergy 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/254201.
Texto completo da fonteWei, Xueyu, Saraschandra Naraginti, Pengli Chen, Jiyuan Li, Xiaofan Yang e Buwei Li. "Visible Light-Driven Photocatalytic Degradation of Tetracycline Using p-n Heterostructured Cr2O3/ZrO2 Nanocomposite". Water 15, n.º 20 (23 de outubro de 2023): 3702. http://dx.doi.org/10.3390/w15203702.
Texto completo da fonteRen, LiZhen, DongEn Zhang, Xiao Yun Hao, Xin Xiao, Jun Yan Gong, Ming Yan Wang e ZhiWei Tong. "Synthesis and photocatalytic performance of Bi2S3/SnS2 heterojunction". Functional Materials Letters 10, n.º 02 (abril de 2017): 1750004. http://dx.doi.org/10.1142/s1793604717500047.
Texto completo da fonteTsay, Chien-Yie, Ching-Yu Chung, Chi-Jung Chang, Yu-Cheng Chang, Chin-Yi Chen e Shu-Yii Wu. "Fe-Doped g-C3N4/Bi2MoO6 Heterostructured Composition with Improved Visible Photocatalytic Activity for Rhodamine B Degradation". Molecules 29, n.º 11 (3 de junho de 2024): 2631. http://dx.doi.org/10.3390/molecules29112631.
Texto completo da fonteTigabu Bekele, Mekonnen. "Photocatalytic degradation of organic pollutants in the presence of selected transition metal nanoparticles: review". Journal of Plant Science and Phytopathology 6, n.º 3 (29 de setembro de 2022): 115–25. http://dx.doi.org/10.29328/journal.jpsp.1001084.
Texto completo da fonteMrad, Maroua, Bilel Chouchene, Tahar Ben Chaabane, Thomas Gries, Ghouti Medjahdi, Lavinia Balan e Raphaël Schneider. "Heterostructured Photocatalysts Associating ZnO Nanorods and Ag-In-Zn-S Quantum Dots for the Visible Light-Driven Photocatalytic Degradation of the Acid Orange 7 Dye". Catalysts 12, n.º 12 (6 de dezembro de 2022): 1585. http://dx.doi.org/10.3390/catal12121585.
Texto completo da fonteChowdhury, Arpita Paul, K. S. Anantharaju, K. Keshavamurthy e Samuel Lalthazuala Rokhum. "Recent Advances in Efficient Photocatalytic Degradation Approaches for Azo Dyes". Journal of Chemistry 2023 (26 de dezembro de 2023): 1–24. http://dx.doi.org/10.1155/2023/9780955.
Texto completo da fonteZhou, Tong-Tong, Feng-He Zhao, Yu-Qian Cui, Li-Xiang Chen, Jia-Shu Yan, Xiao-Xiong Wang e Yun-Ze Long. "Flexible TiO2/PVDF/g-C3N4 Nanocomposite with Excellent Light Photocatalytic Performance". Polymers 12, n.º 1 (31 de dezembro de 2019): 55. http://dx.doi.org/10.3390/polym12010055.
Texto completo da fonteBai, Yuxin, Shasha Xu, Jing Chen, Xun Sun, Shan Zhao, Jingcai Chang e Zuoli He. "Ti3C2@g-C3N4/TiO2 Ternary Heterogeneous Photocatalyst for Promoted Photocatalytic Degradation Activities". Coatings 13, n.º 3 (20 de março de 2023): 655. http://dx.doi.org/10.3390/coatings13030655.
Texto completo da fonteTigabu Bekele, Mekonnen. "An overview of the developments of nanotechnology and heterogeneous photocatalysis in the presence of metal nanoparticles". Journal of Plant Science and Phytopathology 6, n.º 3 (20 de setembro de 2022): 103–14. http://dx.doi.org/10.29328/journal.jpsp.1001083.
Texto completo da fonteZhang, Hui, Feng Liu, Zhigang Mou, Xiaofeng Liu, Jianhua Sun e Weiwei Lei. "A facile one-step synthesis of ZnO quantum dots modified poly(triazine imide) nanosheets for enhanced hydrogen evolution under visible light". Chemical Communications 52, n.º 88 (2016): 13020–23. http://dx.doi.org/10.1039/c6cc06970c.
Texto completo da fonteKumar, Pawan, Arvind Kumar, Chetan Joshi, Raghuvir Singh, Sandeep Saran e Suman L. Jain. "Heterostructured nanocomposite tin phthalocyanine@mesoporous ceria (SnPc@CeO2) for photoreduction of CO2 in visible light". RSC Advances 5, n.º 53 (2015): 42414–21. http://dx.doi.org/10.1039/c5ra06449j.
Texto completo da fonteGuo, Xingkui, Fan Yang, Xiaolu Sun, Chuang Han, Yujiao Bai, Guanjun Liu, Wenbo Liu e Rongguo Wang. "Fabrication of a novel separation-free heterostructured photocatalyst with enhanced visible light activity in photocatalytic degradation of antibiotics". Journal of Materials Chemistry A 10, n.º 6 (2022): 3146–58. http://dx.doi.org/10.1039/d1ta09757a.
Texto completo da fonteXu, You, Wenguang Tu, Shengming Yin, Markus Kraft, Qichun Zhang e Rong Xu. "Self-template synthesis of CdS/NiSx heterostructured nanohybrids for efficient photocatalytic hydrogen evolution". Dalton Transactions 46, n.º 32 (2017): 10650–56. http://dx.doi.org/10.1039/c7dt00842b.
Texto completo da fonteWang, Bin, Peng Li, Hanjing Hao, Huijie He, Hairui Cai, Fanfan Shang, Bei An, Xiaoqian Li e Shengchun Yang. "The Construction of Phosphorus-Doped g-C3N4/Rh-Doped SrTiO3 with Type-II Band Alignment for Efficient Photocatalytic Hydrogen Evolution". Nanomaterials 12, n.º 24 (12 de dezembro de 2022): 4428. http://dx.doi.org/10.3390/nano12244428.
Texto completo da fonteXu, Yuyan, Zhongkai Xie, Rui Yu, Min Chen e Deli Jiang. "Co(OH)2 water oxidation cocatalyst-decorated CdS nanowires for enhanced photocatalytic CO2 reduction performance". Dalton Transactions 50, n.º 29 (2021): 10159–67. http://dx.doi.org/10.1039/d1dt01082d.
Texto completo da fonteLi, Weijia, Zhaoyong Lin e Guowei Yang. "A 2D self-assembled MoS2/ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution". Nanoscale 9, n.º 46 (2017): 18290–98. http://dx.doi.org/10.1039/c7nr06755k.
Texto completo da fonteTeng, Daoguang, Jie Qu, Peng Li, Peng Jin, Jie Zhang, Ying Zhang e Yijun Cao. "Heterostructured α-Bi2O3/BiOCl Nanosheet for Photocatalytic Applications". Nanomaterials 12, n.º 20 (16 de outubro de 2022): 3631. http://dx.doi.org/10.3390/nano12203631.
Texto completo da fonteLi, Haidong, Yana Wang, Guohui Chen, Yuanhua Sang, Huaidong Jiang, Jiating He, Xu Li e Hong Liu. "Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property". Nanoscale 8, n.º 11 (2016): 6101–9. http://dx.doi.org/10.1039/c5nr08796a.
Texto completo da fonteLi, Yen-Sheng, Alex Fang, Gang-Juan Lee, Jerry J. Wu, Yu-Cheng Chang, Chien-Yie Tsay, Jing-Heng Chen, Tzyy-Leng Horng e Chin-Yi Chen. "Preparation and Photocatalytic Properties of Heterostructured Ceria/Polyaniline Nanoparticles". Catalysts 10, n.º 7 (2 de julho de 2020): 732. http://dx.doi.org/10.3390/catal10070732.
Texto completo da fonteYang, Jinman, Xingwang Zhu, Zhao Mo, Jianjian Yi, Jia Yan, Jiujun Deng, Yuanguo Xu et al. "A multidimensional In2S3–CuInS2 heterostructure for photocatalytic carbon dioxide reduction". Inorganic Chemistry Frontiers 5, n.º 12 (2018): 3163–69. http://dx.doi.org/10.1039/c8qi00924d.
Texto completo da fonteKombo, Miza A., Abdul A. J. Mohamed, Suleiman A. Suleiman e An-Wu Xu. "Novel Graphitic Carbon Nitride/Co-B-P Nanocomposites with Significantly Enhance Visible-Light Photocatalytic Hydrogen Production from Water Splitting". Chemical Science International Journal 33, n.º 3 (30 de abril de 2024): 73–88. http://dx.doi.org/10.9734/csji/2024/v33i3895.
Texto completo da fonteGhugal, Sachin G., Suresh S. Umare e Rajamma Sasikala. "Mineralization of anionic dyes over visible light responsive Cd(x)Zn(y)S–Nb2O5 heterostructured photocatalysts". RSC Advances 6, n.º 68 (2016): 64047–55. http://dx.doi.org/10.1039/c6ra06023d.
Texto completo da fonteBehera, Arjun, Pradeepta Babu e Kulamani Parida. "Growth of macroporous TiO2 on B-doped g-C3N4 nanosheets: a Z-scheme photocatalyst for H2O2 production and phenol oxidation under visible light". Inorganic Chemistry Frontiers 8, n.º 6 (2021): 1489–99. http://dx.doi.org/10.1039/d0qi01327g.
Texto completo da fonteTahmasebi, N., e S. Madmoli. "Facile synthesis of a WOx/CsyWO3 heterostructured composite as a visible light photocatalyst". RSC Advances 8, n.º 13 (2018): 7014–21. http://dx.doi.org/10.1039/c7ra12355h.
Texto completo da fonteCai, Xiaoyan, Miao Su, Zhongtian Zeng, Haifeng Weng, Zhiguo Cai, Junying Zhang e Liang Mao. "Boosting the photocatalytic H2 evolution activity of a CdS/N-doped ZnIn2S4 direct Z-scheme heterostructure using a band alignment regulation strategy". Sustainable Energy & Fuels 5, n.º 24 (2021): 6441–48. http://dx.doi.org/10.1039/d1se01266e.
Texto completo da fonteYe, Chen, e Yu Huan. "Studies on Electron Escape Condition in Semiconductor Nanomaterials via Photodeposition Reaction". Materials 15, n.º 6 (13 de março de 2022): 2116. http://dx.doi.org/10.3390/ma15062116.
Texto completo da fonteAlaya, Yassine, Bilel Chouchene, Ghouti Medjahdi, Lavinia Balan, Noureddine Bouguila e Raphaël Schneider. "Heterostructured S-TiO2/g-C3N4 Photocatalysts with High Visible Light Photocatalytic Activity". Catalysts 14, n.º 4 (28 de março de 2024): 226. http://dx.doi.org/10.3390/catal14040226.
Texto completo da fonteWang, Wen-Min, Lu Zhang, Wen-Long Wang, Jin-Yi Huang, Qian-Yuan Wu e Jerry J. Wu. "Photocatalytic Degradation of 1,4-Dioxane by Heterostructured Bi2O3/Cu-MOF Composites". Catalysts 13, n.º 8 (15 de agosto de 2023): 1211. http://dx.doi.org/10.3390/catal13081211.
Texto completo da fonteLiu, Xiaoyan, Siyi Lv, Baoyan Fan, An Xing e Bi Jia. "Ferroelectric Polarization-Enhanced Photocatalysis in BaTiO3-TiO2 Core-Shell Heterostructures". Nanomaterials 9, n.º 8 (3 de agosto de 2019): 1116. http://dx.doi.org/10.3390/nano9081116.
Texto completo da fonteZheng, Yun, Yilin Chen, Lvting Wang, Mingyue Tan, Yingying Xiao, Bifen Gao e Bizhou Lin. "Metal-free 2D/2D heterostructured photocatalyst of black phosphorus/covalent triazine-based frameworks for water splitting and pollutant degradation". Sustainable Energy & Fuels 4, n.º 7 (2020): 3739–46. http://dx.doi.org/10.1039/d0se00394h.
Texto completo da fonteMarkhabayeva, Aiymkul A., Zhanar K. Kalkozova, Renata Nemkayeva, Yerassyl Yerlanuly, Assiya A. Anarova, Malika A. Tulegenova, Aida T. Tulegenova e Khabibulla A. Abdullin. "Construction of a ZnO Heterogeneous Structure Using Co3O4 as a Co-Catalyst to Enhance Photoelectrochemical Performance". Materials 17, n.º 1 (27 de dezembro de 2023): 146. http://dx.doi.org/10.3390/ma17010146.
Texto completo da fonteYang, Yang. "Plasmonic Heterosturcture for Full Solar Spectrum Harvesting". ECS Meeting Abstracts MA2018-01, n.º 31 (13 de abril de 2018): 1873. http://dx.doi.org/10.1149/ma2018-01/31/1873.
Texto completo da fonteLiu, Tingting, Fanyu Yang, Liming Wang, Liang Pei, Yushan Hu, Ru Li, Kang Hou e Tianlong Ren. "Synergistic Effect of Charge Separation and Multiple Reactive Oxygen Species Generation on Boosting Photocatalytic Degradation of Fluvastatin by ZnIn2S4/Bi2WO6 Z-Scheme Heterostructured Photocatalytst". Toxics 10, n.º 10 (22 de setembro de 2022): 555. http://dx.doi.org/10.3390/toxics10100555.
Texto completo da fonteTatykayev, Batukhan, Bilel Chouchene, Lavinia Balan, Thomas Gries, Ghouti Medjahdi, Emilien Girot, Bolat Uralbekov e Raphaël Schneider. "Heterostructured g-CN/TiO2 Photocatalysts Prepared by Thermolysis of g-CN/MIL-125(Ti) Composites for Efficient Pollutant Degradation and Hydrogen Production". Nanomaterials 10, n.º 7 (16 de julho de 2020): 1387. http://dx.doi.org/10.3390/nano10071387.
Texto completo da fonteKappadan, Shabina, Sabu Thomas e Nandakumar Kalarikkal. "BaTiO3/ZnO heterostructured photocatalyst with improved efficiency in dye degradation". Materials Chemistry and Physics 255 (novembro de 2020): 123583. http://dx.doi.org/10.1016/j.matchemphys.2020.123583.
Texto completo da fonteRuzimuradov, Olim, Suvankul Nurmanov, Mirabbos Hojamberdiev, Ravi Mohan Prasad, Alexander Gurlo, Joachim Broetz, Kazuki Nakanishi e Ralf Riedel. "Preparation and characterization of macroporous TiO2–SrTiO3 heterostructured monolithic photocatalyst". Materials Letters 116 (fevereiro de 2014): 353–55. http://dx.doi.org/10.1016/j.matlet.2013.11.065.
Texto completo da fonteKim, T. W., S. G. Hur, S. J. Hwang, H. Park, W. Choi e J. H. Choy. "Heterostructured Visible-Light-Active Photocatalyst of Chromia-Nanoparticle-Layered Titanate". Advanced Functional Materials 17, n.º 2 (22 de janeiro de 2007): 307–14. http://dx.doi.org/10.1002/adfm.200600022.
Texto completo da fonteLuo, Kaiyi, Jing Li, Wenyu Hu, Han Li, Qiuping Zhang, Huan Yuan, Fei Yu, Ming Xu e Shuyan Xu. "Synthesizing CuO/CeO2/ZnO Ternary Nano-Photocatalyst with Highly Effective Utilization of Photo-Excited Carriers under Sunlight". Nanomaterials 10, n.º 10 (29 de setembro de 2020): 1946. http://dx.doi.org/10.3390/nano10101946.
Texto completo da fontePrashanth, G. K., M. S. Dileep, P. A. Prashanth, S. S. Sreeja Mole, S. R. Boselin Prabhu, B. M. Nagabhushana, S. Ravichandran e N. P. Bhagya. "An evaluation of noble nanocomposites based on zinc oxide: synthesis, characterization, environmental, optical and biomedical applications". Journal of Optoelectronic and Biomedical Materials 13, n.º 4 (outubro de 2021): 151–69. http://dx.doi.org/10.15251/jobm.2021.134.151.
Texto completo da fonteWang, Xinling, Di Zhu, Yan Zhong, Dianhui Wang e Chaohao Hu. "AgBr/(Sr0.6Bi0.305)2Bi2O7 Heterostructured Composites: Fabrication, Characterization, and Significantly Enhanced Photocatalytic Activity". Catalysts 9, n.º 5 (26 de abril de 2019): 394. http://dx.doi.org/10.3390/catal9050394.
Texto completo da fonteLiu, Rong, Mingming Li, Jie Chen, Yu Yin, Wei Zhao, Zhanghao Gong, Hua Jin e Zhigang Liu. "Enhanced Photocatalytic Degradation of Tetracycline by Magnetically Separable g-C3N4-Doped Magnetite@Titanium Dioxide Heterostructured Photocatalyst". Water 16, n.º 10 (11 de maio de 2024): 1372. http://dx.doi.org/10.3390/w16101372.
Texto completo da fonteKumar, Anurag, Abderrahmane Hamdi, Yannick Coffinier, Ahmed Addad, Pascal Roussel, Rabah Boukherroub e Suman L. Jain. "Visible light assisted oxidative coupling of benzylamines using heterostructured nanocomposite photocatalyst". Journal of Photochemistry and Photobiology A: Chemistry 356 (abril de 2018): 457–63. http://dx.doi.org/10.1016/j.jphotochem.2018.01.033.
Texto completo da fonteSong, Guixian, Feng Xin, Jingshuai Chen e Xiaohong Yin. "Photocatalytic reduction of CO2 in cyclohexanol on CdS–TiO2 heterostructured photocatalyst". Applied Catalysis A: General 473 (março de 2014): 90–95. http://dx.doi.org/10.1016/j.apcata.2013.12.035.
Texto completo da fonteZhao, Wei, Nianqi Liu, Hongxing Wang e Lihao Mao. "Sacrificial template synthesis of core-shell SrTiO3/TiO2 heterostructured microspheres photocatalyst". Ceramics International 43, n.º 6 (abril de 2017): 4807–13. http://dx.doi.org/10.1016/j.ceramint.2016.12.009.
Texto completo da fonteJiang, Da-yu, Da Xu, Jia Zheng, Yang Yang, Chang Liu, Yu-shuang Wang, Guang-bo Che, Xue Lin e Li-min Chang. "Efficient Removal Phenol Red over Ternary Heterostructured Ag-Bi2MoO6/BiPO4Composite Photocatalyst". Chinese Journal of Chemical Physics 29, n.º 5 (27 de outubro de 2016): 600–606. http://dx.doi.org/10.1063/1674-0068/29/cjcp1602034.
Texto completo da fonteLiu, Yumin, Peng Zhang, Hua Lv, Jing Guang, Shuang Li e Juhui Jiang. "A nanosheet-like BiPO4/Bi2O2CO3 heterostructured photocatalyst with enhanced photocatalytic activity". RSC Advances 5, n.º 102 (2015): 83764–72. http://dx.doi.org/10.1039/c5ra16146k.
Texto completo da fonteHou, Huilin, Xiangkang Zeng e Xiwang Zhang. "2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications". Science China Materials 63, n.º 11 (1 de abril de 2020): 2119–52. http://dx.doi.org/10.1007/s40843-019-1256-0.
Texto completo da fonte