Literatura científica selecionada sobre o tema "Hessian damping"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Hessian damping".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Hessian damping"
Gressman, Philip T. "Damping oscillatory integrals by the Hessian determinant via Schrödinger". Mathematical Research Letters 23, n.º 2 (2016): 405–30. http://dx.doi.org/10.4310/mrl.2016.v23.n2.a6.
Texto completo da fonteAttouch, Hedy, Juan Peypouquet e Patrick Redont. "Fast convex optimization via inertial dynamics with Hessian driven damping". Journal of Differential Equations 261, n.º 10 (novembro de 2016): 5734–83. http://dx.doi.org/10.1016/j.jde.2016.08.020.
Texto completo da fonteNiederländer, Simon K. "Second-Order Dynamics with Hessian-Driven Damping for Linearly Constrained Convex Minimization". SIAM Journal on Control and Optimization 59, n.º 5 (janeiro de 2021): 3708–36. http://dx.doi.org/10.1137/20m1323679.
Texto completo da fonteAlvarez, F., H. Attouch, J. Bolte e P. Redont. "A second-order gradient-like dissipative dynamical system with Hessian-driven damping." Journal de Mathématiques Pures et Appliquées 81, n.º 8 (2002): 747–79. http://dx.doi.org/10.1016/s0021-7824(01)01253-3.
Texto completo da fonteSologubov, A., e I. Kirpichnikova. "MULTIVARIABLE CONTROL OF SOLAR BATTERY POWER: ELECTROTECHNICAL COMPLEX AS OBJECT WITH HESSIAN-DRIVEN GRADIENT FLOWS". Bulletin of the South Ural State University series "Power Engineering" 21, n.º 3 (2021): 57–65. http://dx.doi.org/10.14529/power210307.
Texto completo da fonteAdly, Samir, e Hedy Attouch. "Finite Convergence of Proximal-Gradient Inertial Algorithms Combining Dry Friction with Hessian-Driven Damping". SIAM Journal on Optimization 30, n.º 3 (janeiro de 2020): 2134–62. http://dx.doi.org/10.1137/19m1307779.
Texto completo da fonteValenciano, Alejandro A., Biondo L. Biondi e Robert G. Clapp. "Imaging by target-oriented wave-equation inversion". GEOPHYSICS 74, n.º 6 (novembro de 2009): WCA109—WCA120. http://dx.doi.org/10.1190/1.3250267.
Texto completo da fonteNamala, Dheeraj Kumar, e V. Surendranath. "Parameter Estimation of Spring-Damping System using Unconstrained Optimization by the Quasi-Newton Methods using Line Search Techniques". Advanced Journal of Graduate Research 5, n.º 1 (9 de setembro de 2018): 1–7. http://dx.doi.org/10.21467/ajgr.5.1.1-7.
Texto completo da fonteAttouch, Hedy, Paul-Emile Maingé e Patrick Redont. "A second-order differential system with Hessian-driven damping; Application to non-elastic shock laws". Differential Equations & Applications, n.º 1 (2012): 27–65. http://dx.doi.org/10.7153/dea-04-04.
Texto completo da fonteWashio, Takumi, Akihiro Fujii e Toshiaki Hisada. "On random force correction for large time steps in semi-implicitly discretized overdamped Langevin equations". AIMS Mathematics 9, n.º 8 (2024): 20793–810. http://dx.doi.org/10.3934/math.20241011.
Texto completo da fonteTeses / dissertações sobre o assunto "Hessian damping"
Maulen, Soto Rodrigo. "A dynamical system perspective οn stοchastic and iΙnertial methοds fοr optimizatiοn". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC220.
Texto completo da fonteMotivated by the ubiquity of optimization in many areas of science and engineering, particularly in data science, this thesis exploits the close link between continuous-time dissipative dynamical systems and optimization algorithms to provide a systematic analysis of the global and local behavior of several first- and second-order systems, focusing on convex, stochastic, and infinite-dimensional settings on the one hand, and non-convex, deterministic, and finite-dimensional settings on the other hand. For stochastic convex minimization problems in infinite-dimensional separable real Hilbert spaces, our key proposal is to analyze them through the lens of stochastic differential equations (SDEs) and inclusions (SDIs), as well as their inertial variants. We first consider smooth differentiable convex problems and first-order SDEs, demonstrating almost sure weak convergence towards minimizers under integrability of the noise and providing a comprehensive global and local complexity analysis. We also study composite non-smooth convex problems using first-order SDIs, and show under integrability conditions on the noise, almost sure weak convergence of the trajectory towards a minimizer, with Tikhonov regularization almost sure strong convergence of trajectory to the minimal norm solution. We then turn to developing a unified mathematical framework for analyzing second-order stochastic inertial dynamics via time scaling and averaging of stochastic first-order dynamics, achieving almost sure weak convergence of trajectories towards minimizers and fast convergence of values and gradients. These results are extended to more general second-order SDEs with viscous and Hessian-driven damping, utilizing a dedicated Lyapunov analysis to prove convergence and establish new convergence rates. Finally, we study deterministic non-convex optimization problems and propose several inertial algorithms to solve them derived from second-order ordinary differential equations (ODEs) combining both non-vanishing viscous damping and geometric Hessian-driven damping in explicit and implicit forms. We first prove convergence of the continuous-time trajectories of the ODEs to a critical point under the Kurdyka-Lojasiewicz (KL) property with explicit rates, and generically to a local minimum under a Morse condition. Moreover, we propose algorithmic schemes by appropriate discretization of these ODEs and show that all previous properties of the continuous-time trajectories still hold in the discrete setting under a proper choice of the stepsize
Trabalhos de conferências sobre o assunto "Hessian damping"
Koulocheris, Dimitris, Vasilis Dertimanis e Constantinos Spentzas. "Optimum Positioning of Tank Mountings in a Fixed Tank Vehicle". In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58414.
Texto completo da fonte