Artigos de revistas sobre o tema "Herbivory attack"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Herbivory attack".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
de Bobadilla, Maite Fernández, Roel Van Wiechen, Gerrit Gort e Erik H. Poelman. "Plasticity in induced resistance to sequential attack by multiple herbivores in Brassica nigra". Oecologia 198, n.º 1 (13 de outubro de 2021): 11–20. http://dx.doi.org/10.1007/s00442-021-05043-1.
Texto completo da fonteSCHMIDT, GEROLD, e GERHARD ZOTZ. "Herbivory in the epiphyte, Vriesea sanguinolenta Cogn. & Marchal (Bromeliaceae)". Journal of Tropical Ecology 16, n.º 6 (novembro de 2000): 829–39. http://dx.doi.org/10.1017/s0266467400001747.
Texto completo da fonteBont, Zoe, Marc Pfander, Christelle A. M. Robert, Meret Huber, Erik H. Poelman, Ciska E. Raaijmakers e Matthias Erb. "Adapted dandelions trade dispersal for germination upon root herbivore attack". Proceedings of the Royal Society B: Biological Sciences 287, n.º 1921 (26 de fevereiro de 2020): 20192930. http://dx.doi.org/10.1098/rspb.2019.2930.
Texto completo da fonteKliebenstein, Daniel, Deana Pedersen, Bridget Barker e Thomas Mitchell-Olds. "Comparative Analysis of Quantitative Trait Loci Controlling Glucosinolates, Myrosinase and Insect Resistance in Arabidopsis thaliana". Genetics 161, n.º 1 (1 de maio de 2002): 325–32. http://dx.doi.org/10.1093/genetics/161.1.325.
Texto completo da fonteCampos, Wellington G., Ana P. Faria, Maria Goreti A. Oliveira e Hérica L. Santos. "Induced response against herbivory by chemical information transfer between plants". Brazilian Journal of Plant Physiology 20, n.º 4 (dezembro de 2008): 257–66. http://dx.doi.org/10.1590/s1677-04202008000400001.
Texto completo da fonteBebber, Dan, Nick Brown e Martin Speight. "Drought and root herbivory in understorey Parashorea Kurz (Dipterocarpaceae) seedlings in Borneo". Journal of Tropical Ecology 18, n.º 5 (21 de agosto de 2002): 795–804. http://dx.doi.org/10.1017/s0266467402002511.
Texto completo da fonteRusman, Quint, Peter N. Karssemeijer, Dani Lucas-Barbosa e Erik H. Poelman. "Settling on leaves or flowers: herbivore feeding site determines the outcome of indirect interactions between herbivores and pollinators". Oecologia 191, n.º 4 (4 de novembro de 2019): 887–96. http://dx.doi.org/10.1007/s00442-019-04539-1.
Texto completo da fonteCastro, Jorge. "Postfire Burnt-Wood Management Affects Plant Damage by Ungulate Herbivores". International Journal of Forestry Research 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/965461.
Texto completo da fonteGarcía-Guzmán, Graciela, e Julieta Benítez-Malvido. "Effect of litter on the incidence of leaf-fungal pathogens and herbivory in seedlings of the tropical tree Nectandra ambigens". Journal of Tropical Ecology 19, n.º 2 (6 de fevereiro de 2003): 171–77. http://dx.doi.org/10.1017/s0266467403003195.
Texto completo da fonteLawrence, Susan D., Nicole G. Novak, Chelsea J. T. Ju e Janice E. K. Cooke. "Examining the molecular interaction between potato (Solanum tuberosum) and Colorado potato beetle Leptinotarsa decemlineata". Botany 86, n.º 9 (setembro de 2008): 1080–91. http://dx.doi.org/10.1139/b08-074.
Texto completo da fonteCooper-Driver, Gillian. "Anti-predation strategies in pteridophytes—a biochemical approach". Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences 86 (1985): 397–402. http://dx.doi.org/10.1017/s0269727000008381.
Texto completo da fonteMalé, Pierre-Jean G., Kyle M. Turner, Manjima Doha, Ina Anreiter, Aaron M. Allen, Marla B. Sokolowski e Megan E. Frederickson. "An ant–plant mutualism through the lens of cGMP-dependent kinase genes". Proceedings of the Royal Society B: Biological Sciences 284, n.º 1862 (13 de setembro de 2017): 20170896. http://dx.doi.org/10.1098/rspb.2017.0896.
Texto completo da fonteFaraone, Nicoletta, e N. Kirk Hillier. "Preliminary Evaluation of a Granite Rock Dust Product for Pest Herbivore Management in Field Conditions". Insects 11, n.º 12 (11 de dezembro de 2020): 877. http://dx.doi.org/10.3390/insects11120877.
Texto completo da fonteNorghauer, Julian M., Jay R. Malcolm e Barbara L. Zimmerman. "Juvenile mortality and attacks by a specialist herbivore increase with conspecific adult basal area of Amazonian Swietenia macrophylla (Meliaceae)". Journal of Tropical Ecology 22, n.º 4 (julho de 2006): 451–60. http://dx.doi.org/10.1017/s0266467406003257.
Texto completo da fonteDávila-Lara, Alberto, Asifur Rahman-Soad, Michael Reichelt e Axel Mithöfer. "Carnivorous Nepenthes x ventrata plants use a naphthoquinone as phytoanticipin against herbivory". PLOS ONE 16, n.º 10 (22 de outubro de 2021): e0258235. http://dx.doi.org/10.1371/journal.pone.0258235.
Texto completo da fonteLee Díaz, Ana Shein, Muhammad Syamsu Rizaludin, Hans Zweers, Jos M. Raaijmakers e Paolina Garbeva. "Exploring the Volatiles Released from Roots of Wild and Domesticated Tomato Plants under Insect Attack". Molecules 27, n.º 5 (28 de fevereiro de 2022): 1612. http://dx.doi.org/10.3390/molecules27051612.
Texto completo da fonteSilva, Nathália Thaís Cavalcante da, Maria Aline Soares da Silva, Alissandra Trajano Nunes e Hiram Marinho Falcão. "Effect of herbivory by goats on primary and secondary metabolism of Cocos nucifera L. (Arecaceae) in a semi-arid environment in Brazilian Northeast". Journal of Environmental Analysis and Progress 5, n.º 3 (9 de setembro de 2020): 337–45. http://dx.doi.org/10.24221/jeap.5.3.2020.3446.337-345.
Texto completo da fonteWitwicka, Alicja, Danuta Frydryszak, Andrzej Antoł e Marcin Czarnoleski. "Effects of habitat, leaf damage and leaf rolling on the predation risk of caterpillars in the tropical rain forest of Borneo". Journal of Tropical Ecology 35, n.º 5 (11 de julho de 2019): 251–53. http://dx.doi.org/10.1017/s0266467419000191.
Texto completo da fonteFarnsworth, Elizabeth J., e Aaron M. Ellison. "Dynamics of herbivory in Belizean mangal". Journal of Tropical Ecology 9, n.º 4 (novembro de 1993): 435–53. http://dx.doi.org/10.1017/s0266467400007501.
Texto completo da fonteBlatt, S. E., R. C. Smallegange, L. Hess, J. A. Harvey, M. Dicke e J. J. A. van Loon. "Tolerance of Brassica nigra to Pieris brassicae herbivory". Botany 86, n.º 6 (junho de 2008): 641–48. http://dx.doi.org/10.1139/b08-040.
Texto completo da fonteBacht, Michael, Mika T. Tarkka, Iván Fernández López, Markus Bönn, Roland Brandl, François Buscot, Lasse Feldhahn, Thorsten E. E. Grams, Sylvie Herrmann e Martin Schädler. "Tree Response to Herbivory Is Affected by Endogenous Rhythmic Growth and Attenuated by Cotreatment With a Mycorrhizal Fungus". Molecular Plant-Microbe Interactions® 32, n.º 6 (junho de 2019): 770–81. http://dx.doi.org/10.1094/mpmi-10-18-0290-r.
Texto completo da fonteMurata, Mika, Kotaro Konno, Naoya Wasano, Atsushi Mochizuki e Ichiro Mitsuhara. "Expression of a gene for an MLX56 defense protein derived from mulberry latex confers strong resistance against a broad range of insect pests on transgenic tomato lines". PLOS ONE 16, n.º 1 (11 de janeiro de 2021): e0239958. http://dx.doi.org/10.1371/journal.pone.0239958.
Texto completo da fonteEngelberth, Jurgen, e Marie Engelberth. "The Costs of Green Leaf Volatile-Induced Defense Priming: Temporal Diversity in Growth Responses to Mechanical Wounding and Insect Herbivory". Plants 8, n.º 1 (18 de janeiro de 2019): 23. http://dx.doi.org/10.3390/plants8010023.
Texto completo da fonteCosta, Fernanda Vieira da, Antônio César Medeiros de Queiroz, Maria Luiza Bicalho Maia, Ronaldo Reis Júnior e Marcílio Fagundes. "Resource allocation in Copaifera langsdorffii (Fabaceae): how a supra-annual fruiting affects plant traits and herbivory?" Revista de Biología Tropical 64, n.º 2 (13 de maio de 2016): 507. http://dx.doi.org/10.15517/rbt.v64i2.18586.
Texto completo da fonteLi, Ao-Mei, Miao Wang, Zhong-Liang Chen, Cui-Xian Qin, Fen Liao, Zhen Wu, Wei-Zhong He, Prakash Lakshmanan, You-Qiang Pan e Dong-Liang Huang. "Integrated Transcriptome and Metabolome Analysis to Identify Sugarcane Gene Defense against Fall Armyworm (Spodoptera frugiperda) Herbivory". International Journal of Molecular Sciences 23, n.º 22 (8 de novembro de 2022): 13712. http://dx.doi.org/10.3390/ijms232213712.
Texto completo da fonteBecerra, Judith X. "On the factors that promote the diversity of herbivorous insects and plants in tropical forests". Proceedings of the National Academy of Sciences 112, n.º 19 (20 de abril de 2015): 6098–103. http://dx.doi.org/10.1073/pnas.1418643112.
Texto completo da fonteRadny, Janina, e Katrin M. Meyer. "The role of biotic factors during plant establishment in novel communities assessed with an agent-based simulation model". PeerJ 6 (8 de agosto de 2018): e5342. http://dx.doi.org/10.7717/peerj.5342.
Texto completo da fonteDobesberger, Erhard John. "Stochastic simulation of growth loss in thinned balsam fir stands defoliated by the spruce budworm in Newfoundland". Canadian Journal of Forest Research 28, n.º 5 (1 de maio de 1998): 703–10. http://dx.doi.org/10.1139/x98-042.
Texto completo da fontePalacios-Mosquera, Y., D. Mondragón e A. Santos-Moreno. "Vertebrate florivory of vascular epiphytes: the case of a bromeliad". Brazilian Journal of Biology 79, n.º 2 (abril de 2019): 201–7. http://dx.doi.org/10.1590/1519-6984.176023.
Texto completo da fontePan, Yu, Shi-wen Zhao, Xin-long Tang, Shang Wang, Xiao Wang, Xin-xin Zhang, Jing-Jiang Zhou e Jing-hui Xi. "Transcriptome analysis of maize reveals potential key genes involved in the response to belowground herbivore Holotrichia parallela larvae feeding". Genome 63, n.º 1 (janeiro de 2020): 1–12. http://dx.doi.org/10.1139/gen-2019-0043.
Texto completo da fontePaulo, P. D., C. G. Lima, A. B. Dominiquini, M. A. M. Fadini, S. M. Mendes e C. G. S. Marinho. "Maize plants produce direct resistance elicited by Tetranychus urticae Koch (Acari: Tetranychidae)". Brazilian Journal of Biology 78, n.º 1 (26 de junho de 2017): 13–17. http://dx.doi.org/10.1590/1519-6984.19915.
Texto completo da fonteMoreira, Xoaquín, Luis Abdala-Roberts, Hans Henrik Bruun, Felisa Covelo, Pieter De Frenne, Andrea Galmán, Álvaro Gaytán et al. "Latitudinal variation in seed predation correlates with latitudinal variation in seed defensive and nutritional traits in a widespread oak species". Annals of Botany 125, n.º 6 (20 de dezembro de 2019): 881–90. http://dx.doi.org/10.1093/aob/mcz207.
Texto completo da fonteMARQUIS, ROBERT J., IVONE R. DINIZ e HELENA C. MORAIS. "Patterns and correlates of interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado". Journal of Tropical Ecology 17, n.º 1 (janeiro de 2001): 127–48. http://dx.doi.org/10.1017/s0266467401001080.
Texto completo da fonteSingh, Archana, Amit Kumar, Susan Hartley e Indrakant Kumar Singh. "Silicon: its ameliorative effect on plant defense against herbivory". Journal of Experimental Botany 71, n.º 21 (27 de junho de 2020): 6730–43. http://dx.doi.org/10.1093/jxb/eraa300.
Texto completo da fonteJohnson, Scott N., Olivia L. Reynolds, Geoff M. Gurr, Jessica L. Esveld, Ben D. Moore, Gavin J. Tory e Andrew N. Gherlenda. "When resistance is futile, tolerate instead: silicon promotes plant compensatory growth when attacked by above- and belowground herbivores". Biology Letters 15, n.º 7 (julho de 2019): 20190361. http://dx.doi.org/10.1098/rsbl.2019.0361.
Texto completo da fonteIason, Glenn R., Julianne M. O'Reilly-Wapstra, Mark J. Brewer, Ron W. Summers e Ben D. Moore. "Do multiple herbivores maintain chemical diversity of Scots pine monoterpenes?" Philosophical Transactions of the Royal Society B: Biological Sciences 366, n.º 1569 (12 de maio de 2011): 1337–45. http://dx.doi.org/10.1098/rstb.2010.0236.
Texto completo da fonteMundim, Fabiane M., Emilio M. Bruna, Ernane H. M. Vieira-Neto e Heraldo L. Vasconcelos. "Attack frequency and the tolerance to herbivory of Neotropical savanna trees". Oecologia 168, n.º 2 (2 de agosto de 2011): 405–14. http://dx.doi.org/10.1007/s00442-011-2088-8.
Texto completo da fonteSvensson, Brita M., Bengt Å. Carlsson e Jerry M. Melillo. "Changes in species abundance after seven years of elevated atmospheric CO2 and warming in a Subarctic birch forest understorey, as modified by rodent and moth outbreaks". PeerJ 6 (29 de maio de 2018): e4843. http://dx.doi.org/10.7717/peerj.4843.
Texto completo da fonteDenham, Sander O., David R. Coyle, A. Christopher Oishi, Bronson P. Bullock, Kari Heliövaara e Kimberly A. Novick. "Tree resin flow dynamics during an experimentally induced attack by Ips avulsus, I. calligraphus, and I. grandicollis". Canadian Journal of Forest Research 49, n.º 1 (janeiro de 2019): 53–63. http://dx.doi.org/10.1139/cjfr-2018-0024.
Texto completo da fontePena, João Carlos De Castro, Pedro Luna, Felipe Aoki-Gonçalves, María Fernanda Chávez Jacobo, TAMARA MARTÍNEZ PATIÑO, KASSANDRA SÁNCHEZ MORALES, MIGUELINA VIVER VÁZQUEZ, JUAN HECTOR GARCÍA-CHÁVEZ e WESLEY DÁTTILO. "I Can See You: Temporal Variation in Ant Aggressiveness Towards Herbivores under Continuous Provision of High- or Low-quality Food Sources". Sociobiology 67, n.º 1 (18 de abril de 2020): 26. http://dx.doi.org/10.13102/sociobiology.v67i1.4727.
Texto completo da fonteHavko, Nathan E., Michael R. Das, Alan M. McClain, George Kapali, Thomas D. Sharkey e Gregg A. Howe. "Insect herbivory antagonizes leaf cooling responses to elevated temperature in tomato". Proceedings of the National Academy of Sciences 117, n.º 4 (21 de janeiro de 2020): 2211–17. http://dx.doi.org/10.1073/pnas.1913885117.
Texto completo da fonteJohnson, Scott N., Matthias Erb e Susan E. Hartley. "Roots under attack: contrasting plant responses to below- and aboveground insect herbivory". New Phytologist 210, n.º 2 (19 de janeiro de 2016): 413–18. http://dx.doi.org/10.1111/nph.13807.
Texto completo da fonteBarboza, Deise Mari, Márcia Cristina Mendes Marques, José Henrique Pedrosa-Macedo e Terence Olckers. "Plant population structure and insect herbivory on Solanum mauritianum Scopoli (Solanaceae) in southern Brazil: a support to biological control". Brazilian Archives of Biology and Technology 52, n.º 2 (abril de 2009): 413–20. http://dx.doi.org/10.1590/s1516-89132009000200019.
Texto completo da fonteWetterer, James K. "Attack by Paraponera clavata Prevents Herbivory by the Leaf-Cutting Ant, Atta cephalotes". Biotropica 26, n.º 4 (dezembro de 1994): 462. http://dx.doi.org/10.2307/2389241.
Texto completo da fonteOhata, Yuto, Yuuki Tetsumoto, Sayo Morita, Naoki Mori, Yoichi Ishiguri e Naoko Yoshinaga. "Triterpenes induced by young apple fruits in response to herbivore attack". Bioscience, Biotechnology, and Biochemistry 85, n.º 7 (4 de maio de 2021): 1594–601. http://dx.doi.org/10.1093/bbb/zbab077.
Texto completo da fonteHettenhausen, Christian, Juan Li, Huifu Zhuang, Huanhuan Sun, Yuxing Xu, Jinfeng Qi, Jingxiong Zhang et al. "Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants". Proceedings of the National Academy of Sciences 114, n.º 32 (24 de julho de 2017): E6703—E6709. http://dx.doi.org/10.1073/pnas.1704536114.
Texto completo da fonteMorrell, Kimberly, e André Kessler. "The scent of danger: Volatile-mediated information transfer and defence priming in plants". Biochemist 36, n.º 5 (1 de outubro de 2014): 26–31. http://dx.doi.org/10.1042/bio03605026.
Texto completo da fonteKadarsah, Anang. "Analysis of Avicennia Sp. Plants Herbivory and Associated Insects in Mangrove Ecosystem Restoration". Journal of Wetlands Environmental Management 9, n.º 1 (23 de março de 2021): 59. http://dx.doi.org/10.20527/jwem.v9i1.261.
Texto completo da fonteChitty, Ruth P., e Alan C. Gange. "Reciprocal interactions between aphids and arbuscular mycorrhizal fungi across plant generations". Arthropod-Plant Interactions 16, n.º 1 (20 de novembro de 2021): 33–43. http://dx.doi.org/10.1007/s11829-021-09875-9.
Texto completo da fonteBodenhausen, Natacha, e Philippe Reymond. "Signaling Pathways Controlling Induced Resistance to Insect Herbivores in Arabidopsis". Molecular Plant-Microbe Interactions® 20, n.º 11 (novembro de 2007): 1406–20. http://dx.doi.org/10.1094/mpmi-20-11-1406.
Texto completo da fonte