Artigos de revistas sobre o tema "Heat Transmission"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Heat Transmission".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Chang, Liang, Zhiwei Li, Sheng Li, Wenang Jia e Jian Ruan. "Heat Loss Analysis of a 2D Pump’s Transmission". Machines 10, n.º 10 (26 de setembro de 2022): 860. http://dx.doi.org/10.3390/machines10100860.
Texto completo da fonteWillits, A. B. "HEAT TRANSMISSION AND TRANSMITTERS". Journal of the American Society for Naval Engineers 22, n.º 1 (18 de março de 2009): 139–44. http://dx.doi.org/10.1111/j.1559-3584.1910.tb04546.x.
Texto completo da fonteQuintanilla, R., e B. Straughan. "Explosive instabilities in heat transmission". Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458, n.º 2028 (8 de dezembro de 2002): 2833–37. http://dx.doi.org/10.1098/rspa.2002.1009.
Texto completo da fonteCathcart, W. L. "HEAT LOSSES IN STEAM TRANSMISSION". Journal of the American Society for Naval Engineers 27, n.º 3 (18 de março de 2009): 529–55. http://dx.doi.org/10.1111/j.1559-3584.1915.tb00539.x.
Texto completo da fonteMarki, J., R. A. Pitts, T. Eich, A. Herrmann, J. Horacek, F. Sanchez e G. Veres. "Sheath heat transmission factors on TCV". Journal of Nuclear Materials 363-365 (junho de 2007): 382–88. http://dx.doi.org/10.1016/j.jnucmat.2007.01.197.
Texto completo da fonteSultan, M. A., T. Z. Harmathy e J. R. Mehaffey. "Heat transmission in fire test furnaces". Fire and Materials 10, n.º 2 (junho de 1986): 47–55. http://dx.doi.org/10.1002/fam.810100202.
Texto completo da fonteCao, Wenbo, Fengxia Zhang, Jianhang Hu, Shiliang Yang, Huili Liu e Hua Wang. "DEM Investigation on the Flow and Heat Transmission Characteristics of Multi-Size Particles Mixed Flow in Moving Bed". Processes 12, n.º 2 (18 de fevereiro de 2024): 408. http://dx.doi.org/10.3390/pr12020408.
Texto completo da fonteWang, Xi, Bin Chao Liu, Hong Yu Guan, Zhi Wen Cheng, Hong Ren Li e Yan Jiang. "Dynamic Transmission Experiment Research of Underground Heat Storage". Advanced Materials Research 322 (agosto de 2011): 328–32. http://dx.doi.org/10.4028/www.scientific.net/amr.322.328.
Texto completo da fonteTso, C. P., S. C. Yap e K. S. Chan. "Heat transmission in cylindrical and spherical shells with exponential heat sources". Journal of Physics D: Applied Physics 23, n.º 7 (14 de julho de 1990): 773–77. http://dx.doi.org/10.1088/0022-3727/23/7/004.
Texto completo da fonteHagoort, Jacques. "Ramey's Wellbore Heat Transmission Revisited". SPE Journal 9, n.º 04 (1 de dezembro de 2004): 465–74. http://dx.doi.org/10.2118/87305-pa.
Texto completo da fonteDurston, A. J. "THE TRANSMISSION OF HEAT THROUGH TUBE PLATES". Journal of the American Society for Naval Engineers 5, n.º 2 (18 de março de 2009): 436–64. http://dx.doi.org/10.1111/j.1559-3584.1893.tb04363.x.
Texto completo da fonteKhroustalev, B. M., e V. D. Sizov. "DETERMINING HEAT TRANSMISSION RESISTANCE OF ENCLOSING STRUCTURES". ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations 61, n.º 1 (23 de janeiro de 2018): 47–59. http://dx.doi.org/10.21122/1029-7448-2018-61-1-47-59.
Texto completo da fonteYork, Ashley. "Turning up the heat on virus transmission". Nature Reviews Microbiology 18, n.º 5 (17 de março de 2020): 265. http://dx.doi.org/10.1038/s41579-020-0360-9.
Texto completo da fonteHetsroni, G., M. Gurevich e R. Rozenblit. "Metal foam heat sink for transmission window". International Journal of Heat and Mass Transfer 48, n.º 18 (agosto de 2005): 3793–803. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.02.040.
Texto completo da fontePrabhakaran, R., M. Kontopoulou, G. Zak, P. J. Bates e V. Sidiropoulos. "Simulation of Heat Transfer in Laser Transmission Welding". International Polymer Processing 20, n.º 4 (1 de agosto de 2005): 410–16. http://dx.doi.org/10.1515/ipp-2005-0069.
Texto completo da fonteSørensen, Lars. "Heat Transmission Coefficient Measurements in Buildings Utilizing a Heat Loss Measuring Device". Sustainability 5, n.º 8 (21 de agosto de 2013): 3601–14. http://dx.doi.org/10.3390/su5083601.
Texto completo da fonteHe Ji-Zhou e He Bing-Xiang. "Energy selective electron heat pump with transmission probability". Acta Physica Sinica 59, n.º 4 (2010): 2345. http://dx.doi.org/10.7498/aps.59.2345.
Texto completo da fonteDatciuk, T. A., A. M. Grimitlin, S. M. Anisimov e A. V. Tsygankov. "Transmission and infiltration heat losses of residential buildings". Вестник гражданских инженеров 18, n.º 6 (2021): 115–20. http://dx.doi.org/10.23968/1999-5571-2021-18-6-115-120.
Texto completo da fonteYOSHIDA, Makoto, Takashi KAWATO, Toshinori FUJITA, Kenji KAWASHIMA e Toshiharu KAGAWA. "Modeling of Gas Transmission Systems Considering Heat Transfer". Transactions of the Society of Instrument and Control Engineers 39, n.º 3 (2003): 253–58. http://dx.doi.org/10.9746/sicetr1965.39.253.
Texto completo da fonteMinaguchi, D., M. Ginno, K. Itaka, H. Furukawa, K. Ninomiya e T. Hayashi. "Heat Transfer Characteristics of Gas-Insulated Transmission Lines". IEEE Power Engineering Review PER-6, n.º 1 (janeiro de 1986): 28–29. http://dx.doi.org/10.1109/mper.1986.5528218.
Texto completo da fonteMinaguchi, D., M. Ginno, K. Itaka, H. Furukawa, K. Ninomiya e T. Hayashi. "Heat Transfer Characteristics of Gas-Insulated Transmission Lines". IEEE Transactions on Power Delivery 1, n.º 1 (1986): 1–9. http://dx.doi.org/10.1109/tpwrd.1986.4307881.
Texto completo da fonteЛучаков e Yu Luchakov. "HEAT TRANSMISSION IN TISSUES OF A HOMEIOTHERMAL ORGANISM". Clinical Medicine and Pharmacology 3, n.º 1 (1 de junho de 2017): 1–6. http://dx.doi.org/10.12737/article_59300a8b49e788.61178934.
Texto completo da fonteYou, Junyu, Hamid Rahnema e Marcia D. McMillan. "Numerical modeling of unsteady-state wellbore heat transmission". Journal of Natural Gas Science and Engineering 34 (agosto de 2016): 1062–76. http://dx.doi.org/10.1016/j.jngse.2016.08.004.
Texto completo da fonteNishikawa, T., T. Gao, M. Hibi, M. Takatsu e M. Ogawa. "Heat transmission during thermal shock testing of ceramics". Journal of Materials Science 29, n.º 1 (1994): 213–17. http://dx.doi.org/10.1007/bf00356595.
Texto completo da fonteJim, C. Y., e Hongming He. "Estimating heat flux transmission of vertical greenery ecosystem". Ecological Engineering 37, n.º 8 (agosto de 2011): 1112–22. http://dx.doi.org/10.1016/j.ecoleng.2011.02.005.
Texto completo da fonteYaroker, Kh G., A. N. Kornaev, A. V. Spiridonov e T. V. Chernorutskaya. "Transmission of solar radiation by heat-absorbing glass". Glass and Ceramics 44, n.º 7 (julho de 1987): 317–20. http://dx.doi.org/10.1007/bf00703428.
Texto completo da fonteShiraishi, K., e S. Takamura. "Heat transmission through plasma sheath with energetic electrons". Contributions to Plasma Physics 32, n.º 3-4 (1992): 243–48. http://dx.doi.org/10.1002/ctpp.2150320311.
Texto completo da fonteBi, Xiao Ping, Yi Jun Li, Yang Gao e Ning Ma. "A Study on Modeling the Temperature of Vehicle Transmission Device". Advanced Materials Research 706-708 (junho de 2013): 1193–96. http://dx.doi.org/10.4028/www.scientific.net/amr.706-708.1193.
Texto completo da fonteViertel, Jacob, e Rachmadian Wulandana. "Two Dimensional CFD Analysis and Flow Optimization of Transmission Cooling Scoop for Longitudinal Powertrain Applications". International Journal of Advanced Technology in Mechanical, Mechatronics and Materials 2, n.º 1 (19 de abril de 2021): 11–21. http://dx.doi.org/10.37869/ijatec.v2i1.39.
Texto completo da fonteMd Saquib Akhter, Ratnesh Kumar, Uday Kumar Singh. "Heat Transfer Enhancement in Heat Exchanger using Double Sinusoidal Shape Fins". Tuijin Jishu/Journal of Propulsion Technology 44, n.º 3 (14 de novembro de 2023): 3345–52. http://dx.doi.org/10.52783/tjjpt.v44.i3.1856.
Texto completo da fonteKačur, Jozef, e Patrik Mihala. "Numerical Modeling of Heat and Mass Transport with Inner Heat Exchange in Unsaturated Porous Media". Diffusion Foundations 27 (maio de 2020): 166–76. http://dx.doi.org/10.4028/www.scientific.net/df.27.166.
Texto completo da fonteJaroš, P., e M. Vertaľ. "Water vapor transmission parameters of the Kežmarok sandstone". IOP Conference Series: Materials Science and Engineering 1252, n.º 1 (1 de setembro de 2022): 012038. http://dx.doi.org/10.1088/1757-899x/1252/1/012038.
Texto completo da fonteMoskalenko, Nikolay, Ibragim Dodov e Azat Akhmetshin. "Numerical modeling of radiation heat exchange in combustion chambers and heat exchangers of power installations". E3S Web of Conferences 209 (2020): 03018. http://dx.doi.org/10.1051/e3sconf/202020903018.
Texto completo da fonteDOLGUSHIN, А. А., A. F. KURNOSOV e R. V. CHERNUKHIN. "HEAT EXCHANGE OF THE TRANSMISSION UNITS OF TRUCK ENGINE". Tekhnicheskiy servis mashin 62, n.º 2 (21 de junho de 2024): 65–70. http://dx.doi.org/10.22314/2618-8287-2024-62-2-65-70.
Texto completo da fonteRashid, Farhan Lafta, Ahmed Kadhim Hussein, Emad Hasani Malekshah, Aissa Abderrahmane, Kamel Guedri e Obai Younis. "Review of Heat Transfer Analysis in Different Cavity Geometries with and without Nanofluids". Nanomaterials 12, n.º 14 (19 de julho de 2022): 2481. http://dx.doi.org/10.3390/nano12142481.
Texto completo da fonteLeu, T. S., N. J. Huang e C. T. Wang. "Dimensional Effect of Micro Capillary Pumped Loop". Journal of Mechanics 26, n.º 2 (junho de 2010): 157–63. http://dx.doi.org/10.1017/s1727719100003014.
Texto completo da fonteCritoph, Robert E., e Angeles M. Rivero Pacho. "District Heating of Buildings by Renewable Energy Using Thermochemical Heat Transmission". Energies 15, n.º 4 (16 de fevereiro de 2022): 1449. http://dx.doi.org/10.3390/en15041449.
Texto completo da fonteXu, Aixue, Huijuan Qi e Hongnian Wen. "Thermal energy storage technology and its application in power data remote transmission". Thermal Science 27, n.º 2 Part A (2023): 1175–81. http://dx.doi.org/10.2298/tsci2302175x.
Texto completo da fonteKustov, Borislav, e Mihail Gerasimchuk. "EXPERIMENTAL STUDIES OF THERMAL TRANSMISSION THROUGH A MOBILE HEAT EXCHANGE SURFACE". Scientific Papers Collection of the Angarsk State Technical University 2018, n.º 1 (4 de março de 2020): 28–31. http://dx.doi.org/10.36629/2686-7788-2018-1-28-31.
Texto completo da fonteUrch, Catherine. "Normal Pain Transmission". Reviews in Pain 1, n.º 1 (agosto de 2007): 2–6. http://dx.doi.org/10.1177/204946370700100102.
Texto completo da fonteM. Al-Makhyoul, Ziad, e Dr Ghalib Y.Kahwaji. "VALIDATION OF THE TOTAL RESISTANCE HEAT DISSIPATION MODEL FOR HEAT TRANSMISSION THROUGH ANNULAR FINS". AL-Rafdain Engineering Journal (AREJ) 14, n.º 3 (28 de setembro de 2006): 31–42. http://dx.doi.org/10.33899/rengj.2006.45305.
Texto completo da fonteXue, Heng, Zuxi Huang, Liqiang Zhao, Hehua Wang, Bo Kang, Pingli Liu, Fei Liu, Yi Cheng e Jun Xin. "Influence of acid-rock reaction heat and heat transmission on wormholing in carbonate rock". Journal of Natural Gas Science and Engineering 50 (fevereiro de 2018): 189–204. http://dx.doi.org/10.1016/j.jngse.2017.12.008.
Texto completo da fonteYusufov, Sh A. "THERMOELECTRIC HEAT EXCHANGER - HEAT TRANSMISSION INTENSIFIER FOR MAINTAINING A THERMAL REGIME IN ELECTRONIC SYSTEMS". Herald of Dagestan State Technical University. Technical Sciences 47, n.º 1 (21 de abril de 2020): 48–57. http://dx.doi.org/10.21822/2073-6185-2020-47-1-48-57.
Texto completo da fonteShi, Yaran, Jixiang Yan, Yuan Zhou, Dong Xu e Laifeng Li. "Experimental study on nitrogen pulsating heat pipes with different heat transmission distances and configurations". Cryogenics 141 (julho de 2024): 103898. http://dx.doi.org/10.1016/j.cryogenics.2024.103898.
Texto completo da fonteWang, Xiao, Ru Jian Ma e En Ping Zhang. "Design of Remote Transmission System for Wireless Heat Metering". Advanced Materials Research 383-390 (novembro de 2011): 1337–42. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.1337.
Texto completo da fonteWang, Xiao, Ru Jian Ma e En Ping Zhang. "Design of Remote Transmission System for Wireless Heat Metering". Advanced Materials Research 433-440 (janeiro de 2012): 6293–99. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.6293.
Texto completo da fonteNISHIKAWA, Tadahiro, Tie GAO e Manabu TAKATSU. "Heat Transmission on the Thermal Shock Test of Ceramics." Journal of the Society of Materials Science, Japan 42, n.º 476 (1993): 507–11. http://dx.doi.org/10.2472/jsms.42.507.
Texto completo da fonteZhang, Ruquan, Nanping Deng, Bowen Cheng, Shangyong Zhang e Ying Wu. "Mathematical Model of Embedded Temperature Sensing Fabric Heat Transmission". Fibres and Textiles in Eastern Europe 24, n.º 5(119) (1 de setembro de 2016): 73–79. http://dx.doi.org/10.5604/12303666.1215531.
Texto completo da fonteGILKEY, P. B., e K. KIRSTEN. "HEAT CONTENT ASYMPTOTICS WITH TRANSMITTAL AND TRANSMISSION BOUNDARY CONDITIONS". Journal of the London Mathematical Society 68, n.º 02 (25 de setembro de 2003): 431–43. http://dx.doi.org/10.1112/s0024610703004526.
Texto completo da fonteDesheng Cheng, Ge Li, Fei Xie, Hua Li e Qiang jiang Chen. "Simulation of heat transfer performance of NBI transmission line". IEEE Transactions on Dielectrics and Electrical Insulation 20, n.º 4 (agosto de 2013): 1293–98. http://dx.doi.org/10.1109/tdei.2013.6571447.
Texto completo da fonte