Literatura científica selecionada sobre o tema "Heat resistant materials"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Heat resistant materials".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Heat resistant materials"

1

Husarova, I. O., O. M. Potapov, B. M. Gorelov, T. A. Manko e G. O. Frolov. "Model composition heat-resistant materials for multifunctioal coating". Kosmìčna nauka ì tehnologìâ 28, n.º 1 (28 de fevereiro de 2022): 43–50. http://dx.doi.org/10.15407/knit2022.01.043.

Texto completo da fonte
Resumo:
A schematic diagram of composite material for a heat-resistant multifunctional coating providing radio invisibility and thermal protection of parts of missiles is proposed. Organosilicon binder KO-08K, inorganic binder НС-1A, and heat-resistant mastic NEOMID-TITANIUM were researched to select the materials of the heat-resistant matrix. Based on the analysis of the results of thermal desorption spectrometry of organosilicon binder and mastic NEOMID-TITANIUM with heat-resistant fillers, it was found that the thermal destruction is most effectively reduced by the matrix filler with perlite and aluminum. The efficiency of the selected composites at a high rate of temperature change was evaluated by the heat stroke method. It was revealed that samples based on the organosilicon binder with fillers failed to provide the required heat resistance of the material: NEOMID-TITANIUM mastic can be used in case of filling with 2 % of aluminum and aluminum-silicate binder HC-1A in the case of filling with 5 % aluminum and 10 % mullite. Selected materials were tested in a jet of a gas-dynamic burner. The results confirmed the need to reinforce the matrix with heat-resistant fabrics to increase its strength and erosion resistance. Heat-resistant silica fabric KT-11 and silica heat-resistant tape LKA-1200 were used as heat-resistant radio-transparent reinforcing fabric fillers. Thermo-erosion tests of reinforced samples in the jet of a gas-dynamic burner showed that the minimum linear removal was obtained on samples with a matrix based on NEOMID-TITANIUM mastic, which was reinforced with KT-11 fabric (outer layer) and LKA-1200 tape, which allows using these materials to create the multifunctional coating.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Tao, Zhenghong, Nantiya Viriyabanthorn, Bhavjit Ghumman, Carol Barry e Joey Mead. "Heat Resistant Elastomers". Rubber Chemistry and Technology 78, n.º 3 (1 de julho de 2005): 489–515. http://dx.doi.org/10.5254/1.3547893.

Texto completo da fonte
Resumo:
Abstract This paper reviews the different types of heat resistant elastomers and the effects of compounding on the high temperature performance of these materials. Degradation mechanisms and testing procedures are discussed briefly. New developments in improving high temperature resistance are presented.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Vlasov, V. A., P. V. Kosmachev, N. K. Skripnikova e K. A. Bezukhov. "Plasma treatment of heat-resistant materials". Journal of Physics: Conference Series 652 (5 de novembro de 2015): 012031. http://dx.doi.org/10.1088/1742-6596/652/1/012031.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kometani, Yutaka, e Shinji Tamaru. "Heat resistant and flame retardant materials." Kobunshi 34, n.º 12 (1985): 998–1001. http://dx.doi.org/10.1295/kobunshi.34.998.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

McNeill, I. C. "Heat-resistant polymers: technologically useful materials". Polymer 27, n.º 7 (julho de 1986): 1139. http://dx.doi.org/10.1016/0032-3861(86)90089-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Habib, Firdous, e Madhu Bajpai. "UV Curable Heat Resistant Epoxy Acrylate Coatings". Chemistry & Chemical Technology 4, n.º 3 (15 de setembro de 2010): 205–16. http://dx.doi.org/10.23939/chcht04.03.205.

Texto completo da fonte
Resumo:
Polymeric materials are exposed to high temperatures that results in lowering of the film integrity. A blend of an epoxy resin with the silicone acrylate resin was developed to provide high heat resistance UV cured coatings. Earlier siliconized epoxy coatings had been developed by conventional curing. But due to environmental awareness, high productivity rate, low process costs and energy saving UV curable coatings are enjoying considerable growth. Thermally stable UV cured coatings used in the present study were developed from silicone acrylate and epoxy acrylate resin with different diluents and photoinitiator. Such coatings provide higher thermal stability (693 K) along with physical and chemical resistance. In addition, such coatings can also be obtained by using functional amino silanes. The resin developed provides a simple and practical solution to improve heat resistance along with physical and chemical resistance of the UV cured coatings. The purpose of this research paper is to develop UV curable heat resistant coatings by the combination of inorganic and organic polymer, taking epoxy acrylate as a base resin.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Tukhareli, V. D., O. Y. Pushkarskaya e A. V. Tukhareli. "Methodological Approaches in Assessing the Possibility of Using Waste Electrocorundum Materials in Concrete Compositions". Solid State Phenomena 284 (outubro de 2018): 1030–35. http://dx.doi.org/10.4028/www.scientific.net/ssp.284.1030.

Texto completo da fonte
Resumo:
Heat-resistant concretes have been successfully used in many heat units and building structures. Making concrete heat-resistant is possible through the development of a heat-resistant phosphate matrix, aluminophosphate binder. The compositions of high-refractory concretes on aluminophosphate binder with electrocorundum and chrome-aluminous slag have relatively high strength up to 70 MPa after heat treatment. Wastes generated as a result of technological activities of enterprises have several technical and economic advantages as industrial raw materials. After passing the production possibility frontier, the material not only has not lost its properties, but became more prepared with the position of the grain composition and growth of specific surface area, heat treatment for use in the technology of concrete and refractory concrete, in particular, as heat-resistant fillers. The methodological approach in the study of defective ceramic-bond abrasive wheels has been proposed herein. The chemical, grain and mineralogical analyses of the material after mechanical grinding allowed us to define it as an aggregate for concrete in order to give it heat-resistant properties. The obtained concrete composition has a tensile strength 2.5 times higher than conventional cement composition of concrete and thermal resistance (water, 800°C) of the composition with heat-resistant filler has increased in 5 times.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Tsybuk, I. O., S. V. Burinskii e A. A. Lysenko. "Paper Materials Based on Heat Resistant and Flame Resistant Fiber". Fibre Chemistry 48, n.º 3 (setembro de 2016): 246–48. http://dx.doi.org/10.1007/s10692-016-9777-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

R, Ramanarayanan, HariVenkateswara Rao C e Venkateshwara Reddy C. "Heat Resistant Composite Materials for Aerospace Applications". International Journal of Advanced Materials Manufacturing and Characterization 3, n.º 1 (13 de março de 2013): 79–82. http://dx.doi.org/10.11127/ijammc.2013.02.014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Lu, Y. Martin, e J. Kutka. "Transparent and Highly Heat-Resistant TPE Materials". International Polymer Science and Technology 29, n.º 7 (julho de 2002): 11–14. http://dx.doi.org/10.1177/0307174x0202900703.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Heat resistant materials"

1

Nilsson, Erik. "Oxidation of heat resistant stainless steels in a pelletizing process". Licentiate thesis, Luleå tekniska universitet, Materialvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26622.

Texto completo da fonte
Resumo:
Godkänd; 2014; 20140331 (niriel); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Erik Nilsson Ämne: Konstruktionsmaterial/Engineering Materials Uppsats: Oxidation of Heat Resistant Stainless Steels in a Pelletizing Process Examinator: Biträdande professor Marta-Lena Antti, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Diskutant: Ph.D., Research Leader Rikard Norling, Swerea KIMAB AB, Kista Tid: Tisdag den 27 maj 2014 kl 10.00 Plats: E632, Luleå tekniska universitet
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Davis, Robert Bruce. "Design and development of advanced castable refractory materials /". Full text open access at:, 2001. http://content.ohsu.edu/u?/etd,187.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Nam, Jae-Do. "Polymer matrix degradation : characterization and manufacturing process for high temperature composites /". Thesis, Connect to this title online; UW restricted, 1991. http://hdl.handle.net/1773/9867.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Peng, Wu Tseng. "Evaluation of ceramic candle filters degradation and damage location using four-point bending tests". Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1105.

Texto completo da fonte
Resumo:
Thesis (M.S.)--West Virginia University, 1999.
Title from document title page. Document formatted into pages; contains x, 85 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 81-82).
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chhasatia, Viralsinh. "Characterization of thermal interface materials using flash diffusivity and infrared microscopy methods". Diss., Online access via UMI:, 2009.

Encontre o texto completo da fonte
Resumo:
Thesis (M.S.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Mechanical Engineering, 2009.
Includes bibliographical references.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fox, Bronwyn Louise. "The manufacture, characterization and aging of novel high temperature carbon fibre composites". View thesis entry in Australian Digital Theses Program, 2001. http://thesis.anu.edu.au/public/adt-ANU20011207.114246/index.html.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Khattab, Ahmed. "Exploratory development of VARIM process for manufacturing high temperature polymer matrix composites". Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4186.

Texto completo da fonte
Resumo:
Thesis (Ph. D.)--University of Missouri-Columbia, 2006.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (month day, year) Vita. Includes bibliographical references.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Marenkov, V. I. "Fermi level of carriers in the volume filling defects structure based on heat-resistant metals". Thesis, Sumy State University, 2011. http://essuir.sumdu.edu.ua/handle/123456789/20600.

Texto completo da fonte
Resumo:
The volume filling defects structure based on metals are widely used in modern nan- otechnology, especially when creating high temperature sensors and structural elements based on metal foams [1]. The development of contactless and nondestructive methods for diagnosis and test control parameters of multiply connected matrix base material is a very important and interesting aspect of the application [2]. In a heat-resistant metal with the volume filling defects (VFD) (micro- and nanopores with complex topologies and sizes, see. Figure 1) it is primarily its strength and electrical and physical characteristics. Almost all rapid methods of such measurements are based on both electrical measurements data and on fundamental functional relationships establishing of the microstructure parameters and the dispersion medium carriers [3]. The influence of a disordered set of volume filling defects (VFD) (micro- and nano-pores of complex topology and various sizes, Figure 1.) is the unsolved problem on the electronic properties of the micro heterogeneous materials theory. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/20600
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Yan, Jin. "Aspects of instrumented indentation with applications to thermal barrier coatings". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 177 p, 2007. http://proquest.umi.com/pqdweb?did=1397913961&sid=17&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Renier, Mark C. "Equipment and process development for fabrication of rhenium-based composites by chemical vapor infiltration". Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/18915.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Heat resistant materials"

1

R, Davis J., e ASM International. Handbook Committee., eds. Heat-resistant materials. Materials Park, Ohio: ASM International, 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

European Conference on Advanced Materials and Processes (1st 1989 Aachen, Germany). Advanced materials and processes: Proceedings of the First European Conference on Advanced Materials and Processes, EUROMAT '89. Editado por Exner Hans Eckart, Schumacher V e Deutsche Gesellschaft für Materialkunde. Oberursel, FRG: DGM Informationsgesellschaft, 1990.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Khoroshavin, L. B. Dialektika kak nauka o razvitii i eë rolʹ v sozidanii ogneuporov novogo pokolenii͡a︡. Ekaterinburg: [s.n.], 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

I͡A︡, Kosolapova T., e Institut problem materialovedenii͡a︡ im. I.N. Frant͡s︡evicha., eds. Tugoplavkie soedineni͡a︡: Poluchenie, struktura, svoĭstva i primenenie : sbornik nauchnykh trudov. Kiev: Nauk. dumka, 1991.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

United States. National Aeronautics and Space Administration., ed. Final report submitted to ... George C. Marshall Space Flight Center ... for NAS8-36955 D.O. 47 entitled high temperature materials characterization. Huntsville, Ala: Johnson Research Center, University of Alabama in Huntsville, 1990.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Khoroshavin, L. B. Ogneupory novogo pokolenii͡a︡. Ekaterinburg: In-t metallurgii UrO RAN, 1996.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Symposium on "Materials Design Approaches and Experiences" (2001 Indianapolis, Ind.). Materials design approaches and experiences: Proceedings of symposium. Warrendale, Pa: TMS, 2001.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

E, Bullock, ed. Research and development of high temperature materials for industry. London: Elsevier Applied Science, 1989.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Donskoi, A. A. Physico-chemistry of elastomer heat-shielding materials. New York: Nova Science Publishers, 1998.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

1935-, Schacht Charles A., ed. Refractories handbook. New York: Marcel Dekker, 2004.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Heat resistant materials"

1

Bíró, Tamás, e László Dévényi. "Damage Analysis of Heat Resistant Steels". In Materials Science Forum, 303–6. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-426-x.303.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Berger, C., J. Granacher e Y. Kostenko. "Creep Equations for Heat Resistant Steels". In Steels and Materials for Power Plants, 345–51. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606181.ch60.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Eisenträger, Johanna, e Holm Altenbach. "Creep in Heat-resistant Steels at Elevated Temperatures". In Advanced Structured Materials, 79–112. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30355-6_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Jingzhong, Wang, Wang Kuaishe, Du Zhongze, Liu Zhengdong e Baohansheng. "Hot Deformation Behavior of NF709 Austenitic Heat-Resistant Steel". In Energy Materials 2014, 357–63. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-48765-6_41.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Jingzhong, Wang, Wang Kuaishe, Du Zhongze, Liu Zhengdong e Baohansheng. "Hot Deformation Behavior of NF709 Austenitic Heat-Resistant Steel". In Energy Materials 2014, 357–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119027973.ch41.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Yan, Peng, Zhengdong Liu e Yuqing Weng. "Effect of Preferential Heat Treatment on Microstructure of New Martensitic Heat Resistant Steel G115". In Energy Materials 2014, 137–43. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-48765-6_14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kim, Young Wook, Yong Seong Chun, Sung Hee Lee, Ji Yeon Park, Toshiyuki Nishimura, Mamoru Mitomo e Woo Seog Ryu. "Microstructure and Mechanical Properties of Heat-Resistant Silicon Carbide Ceramics". In Key Engineering Materials, 1409–13. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.1409.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kim, Jeong Min, Bong Koo Park, Joong Hwan Jun, Ki Tae Kim e Woon Jae Jung. "Die-Casting Capabilities of Heat Resistant Mg-Al-Ca Alloys". In Materials Science Forum, 424–27. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-966-0.424.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Saida, Kazuyoshi, Woo Hyun Song, Kazutoshi Nishimoto e Makoto Shirai. "Diode Laser Brazing of Heat-Resistant Alloys Using Tandem Beam". In Materials Science Forum, 493–98. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-980-6.493.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Yan, Peng, Zhengdong Liu e Yuqing Weng. "Effect of Preferential Heat Treatment on Microstructure of New Martensitic Heat Resistant Steel G 115". In Energy Materials 2014, 137–43. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119027973.ch14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Heat resistant materials"

1

Storoshuk, I. P., N. G. Pavlukovich, A. S. Borodulin, A. N. Kalinnikov e V. M. Alekseev. "Thermoplastic polyetherimides and copolyimides for heat-resistant composite materials". In 13TH INTERNATIONAL SCIENTIFIC CONFERENCE ON AERONAUTICS, AUTOMOTIVE AND RAILWAY ENGINEERING AND TECHNOLOGIES (BulTrans-2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0119920.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Yan, Jinglong, Quan-an Li, Xiaoya Chen e Yao Zhou. "Research Progress of Gadolinium in Heat Resistant Magnesium alloys". In 2015 International Conference on Materials, Environmental and Biological Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/mebe-15.2015.221.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Sereda, B., e D. Sereda. "Getting Heat-Resistant Protective Coating under SHS Conditions on Composite Materials". In MS&T18. MS&T18, 2018. http://dx.doi.org/10.7449/2018mst/2018/mst_2018_262_265.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Sereda, B., e D. Sereda. "Getting Heat-Resistant Protective Coating under SHS Conditions on Composite Materials". In MS&T18. MS&T18, 2018. http://dx.doi.org/10.7449/2018/mst_2018_262_265.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Liu, Juan, Hongyuan Xu, Longhao Qi e He Li. "Study on Erosive Wear and Novel Wear-Resistant Materials for Centrifugal Slurry Pumps". In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56248.

Texto completo da fonte
Resumo:
The erosive wear of the impellers and liner of centrifugal slurry pumps was investigated. The eroded material surfaces of different parts in impellers and liner have been studied by using scanning electron microscopic (SEM). The examination shows that the eroded surface pattern and eroded degree of different parts in slurry pump are different. The microstructure SEM analysis provides insights into the erosive wear mechanisms in pumps. The material removal processes include chipping out of lateral cracks caused by impact of the erodent particles, grain boundary cracking and grain pull out, as well as plastic deformation caused by the repeated sliding and impact of the particles. A new kind of anti-erosive wear material- Al2O3 engineering ceramic has been made. Engineering ceramics have a high application potential for wear-protection of different working parts used for slurry pumps and mineral industries. Measurements of the erosive wear of various materials used in centrifugal slurry pumps have been studied in a simple slurry pot tester in aqueous slurry of silicon carbide grits. Effects of varying the size distribution and volume content of erodent particle are investigated.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Kesav Kumar, S., S. Krishnamoorthy e S. V. Subba Rao. "Thermophysical Properties Evaluation of High Temperature Resistant Materials by Hot wire Method". In 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-3138.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Baba, S., S. Kuwahara, Y. Karasawa, H. Hanai, Y. Yamazaki, N. Sakuma, A. Kajita, T. Sakai e K. Ueno. "Heat-Resistant Co-W Catalytic Metals for Multilayer Graphene CVD". In 2012 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2012. http://dx.doi.org/10.7567/ssdm.2012.c-1-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Suganuma, K., S. Nagao, T. Sugahara e J. Jiu. "(Invited) Ultra-Heat Resistant Interconnection for Wide Band Gap Semiconductors". In 2015 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2015. http://dx.doi.org/10.7567/ssdm.2015.e-2-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Baolan, Gu, Shou Binan, Xu Tong e Wu Zhiying. "The Microstructure Stability of the 10Cr9MoW2VNbBN Heat Resistant Steel". In ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/etam2014-1030.

Texto completo da fonte
Resumo:
In this paper, the microstructure of 9%Cr steel 10Cr9MoW2VNbBN under different heat treatment or creep testing was investigated. The morphology of tempered martensite microstructure varies after different heat treatment. After the creep test at 620°C or 650°C, the martensite lath microstructure kept unchanged, although the amounts and the sizes of precipitates, such as the carbides M23C6, carbonitrides MX, and Laves phase, increased with the creep time. The martensite laths microstructure morphology changed after the creep test at 700°C, with the carbides coarsened severely at grain boundaries. Paper published with permission.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Koňáková, Dana, Eva Vejmelková, Vojtěch Pommer, Martin Keppert, Anton Trník e Robert Černý. "Physical and chemical characteristics of heat resistant materials based on high alumina cement". In CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2021 (CEST 2021). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0069565.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Heat resistant materials"

1

Deevi, S. C., e V. K. Sikka. Reaction synthesis of heat-resistant materials. Office of Scientific and Technical Information (OSTI), dezembro de 1995. http://dx.doi.org/10.2172/273757.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Hershcovitch, Ady, e Michael Furey. Fire Retardant/Heat Resistant Paint, Primer, Insulation and Other Construction Materials. Office of Scientific and Technical Information (OSTI), maio de 2013. http://dx.doi.org/10.2172/1080286.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Kelly, J., J. Haslam, L. Finkenauer, P. Roy, J. Stolaroff, D. Nguyen, M. Ross et al. Additive Manufacturing of Corrosion Resistant UHTC Materials for Chloride Salt-to-sCO2 Brayton Cycle Heat Exchangers. Office of Scientific and Technical Information (OSTI), maio de 2021. http://dx.doi.org/10.2172/1787194.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Porter, W. D. Thermophysical Properties of Heat Resistant Shielding Material. Office of Scientific and Technical Information (OSTI), dezembro de 2004. http://dx.doi.org/10.2172/885686.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Crisosto, Carlos, Susan Lurie, Haya Friedman, Ebenezer Ogundiwin, Cameron Peace e George Manganaris. Biological Systems Approach to Developing Mealiness-free Peach and Nectarine Fruit. United States Department of Agriculture, 2007. http://dx.doi.org/10.32747/2007.7592650.bard.

Texto completo da fonte
Resumo:
Peach and nectarine production worldwide is increasing; however consumption is flat or declining because of the inconsistent eating quality experienced by consumers. The main factor for this inconsistent quality is mealiness or woolliness, a form of chilling injury that develops following shipping periods in the global fruit market today. Our research groups have devised various postharvest methods to prolong storage life, including controlled atmosphere and delayed storage; however, these treatments only delay mealiness. Mealiness texture results from disruption of the normal ripening process involving disassembly of cell wall material, and creates a soft fruit texture that is dry and grainy instead of juicy and smooth. Solving this problem is a prerequisite for increasing the demand for fresh peach and nectarine. Two approaches were used to reveal genes and their associated biochemical processes that can confer resistance to mealiness or wooliness. At the Volcani Center, Israel, a nectarine cultivar and the peach cultivar (isogenetic materials) from which the nectarine cultivar spontaneously arose, and at the Kearney Agricultural Center of UC Davis, USA, a peach population that segregates for quantitative resistance to mealiness was used for dissecting the genetic components of mealiness development. During our project we have conducted research integrating the information from phenotypic, biochemical and gene expression studies, proposed possible candidate genes and SNPs-QTLs mapping that are involved in reducing peach mealiness susceptibility. Numerous genes related to ethylene biosynthesis and its signal transduction, cell wall structure and metabolism, stress response, different transcription factor families were detected as being differentially accumulated in the cold-treated samples of these sensitive and less sensitive genotypes. The ability to produce ethylene and keep active genes involved in ethylene signaling, GTP-binding protein, EIN-3 binding protein and an ethylene receptor and activation of ethyleneresponsive fruit ripening genes during cold storage provided greater resistance to CI. Interestingly, in the functional category of genes differentially expressed at harvest, less chilling sensitive cultivar had more genes in categories related to antioxidant and heat sock proteins/chaperones that may help fruit to adapt to low temperature stress. The specific objectives of the proposed research were to: characterize the phenotypes and cell wall components of the two resistant systems in response to mealiness- inducing conditions; identify commonalities and specific differences in cell wall proteins and the transcriptome that are associated with low mealiness incidence; integrate the information from phenotypic, biochemical, and gene expression studies to identify candidate genes that are involved in reducing mealiness susceptibility; locate these genes in the Prunus genome; and associate the genes with genomic regions conferring quantitative genetic variation for mealiness resistance. By doing this we will locate genetic markers for mealiness development, essential tools for selection of mealiness resistant peach lines with improved fruit storability and quality. In our research, QTLs have been located in our peach SNPs map, and proposed candidate genes obtained from the integrated result of phenotypic, biochemical and gene expression analysis are being identified in our QTLs as an approach searching for consistent assistant markers for peach breeding programs.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fuchs, Marcel, Jerry Hatfield, Amos Hadas e Rami Keren. Reducing Evaporation from Cultivated Soils by Mulching with Crop Residues and Stabilized Soil Aggregates. United States Department of Agriculture, 1993. http://dx.doi.org/10.32747/1993.7568086.bard.

Texto completo da fonte
Resumo:
Field and laboratory studies of insulating properties of mulches show that the changes they produce on the heat balance and the evaporation depend not only on the intrinsic characteristics of the material but also on the structure of air flow in boundary layer. Field measurements of the radiation balance of corn residue showed a decrease of reflectivity from 0.2 to 0.17 from fall to spring. The aerodynamic properties of the atmospheric surface layer were turbulent, with typical roughness length of 12 to 24 mm. Evaporation from corn residue covered soils in climate chambers simulating the diurnal course of temperature in the field were up to 60% less than bare soil. Wind tunnel studies showed that turbulence in the atmospheric boundary layer added a convective component to the transport of water vapor and heat through the mulches. The decreasing the porosity of the mulch diminished this effect. Factors increasing the resistance to vapor flow lowering the effect of wind. The behavior of wheat straw and stabilized soil aggregates mulches were similar, but the resistance to water of soil aggregate layer with diameter less than 2 mm were very large, close to the values expected from molecular diffusion.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Sabau, Adrian. Review of Thermal Contact Resistance of Flexible Graphite Materials for Thermal Interfaces in High Heat Flux Applications. Office of Scientific and Technical Information (OSTI), outubro de 2022. http://dx.doi.org/10.2172/1896991.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Wang, Yong-Yi, Zhili Feng, Wentao Cheng e Sudarsanam Suresh Babu. L51939 Weldability of High-Strength Enhanced Hardenability Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), setembro de 2003. http://dx.doi.org/10.55274/r0010384.

Texto completo da fonte
Resumo:
Since the 1970s, the development of high-strength pipeline steels has followed the route of progressively reduced harden ability through lower carbon and alloying element contents. Micro-alloying, controlled rolling (CR), and thermo-mechanical controlled processing (TMCP) have been used extensively to achieve the high-strength and other material property requirements despite the trend towards lower carbon content. The primary driving force behind the evolution of these alloying and processing strategies stems from the concerns over the weld ability, particularly the hydrogen induced cracking (HIC), at ever-increasing strength levels. Accompanying the extensive reliance on micro-alloying, CR, and TMCP, there has been a movement to tighter restrictions on micro-alloy variability, the increased use of heavy reduction at low inter-critical temperatures and, in some instances, the reliance on cold expansion. The objective of this project was to evaluate alternate steels with enhanced harden ability and identify those that would have a potential to (1) meet the high strength/high toughness requirement but without the adverse effects of the early trial heats of micro-alloyed TMCP X80 and X100 line pipe steels, and (2) exhibit sufficient resistance to hydrogen induced cracking (HIC) when welded with processes and consumables representative of state-of-the-art, low-hydrogen field girth welding practices. The focus of the project was on the weld ability and properties of the base metal and the heat-affected zone (HAZ). The selection and development of suitable weld consumables were not part of this project.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Gill. L51675 Effects of Weldment Property Variations on the Behavior of Line Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), janeiro de 1993. http://dx.doi.org/10.55274/r0010133.

Texto completo da fonte
Resumo:
A steel weldment is a composite of zones or layers of different microstructures that possess different material properties. The zones include the base metal (or the sections of pipe), the weld metal, and a complex heat-affected zone (HAZ) of base metal that has been exposed to a variety of thermal cycles resulting in varying microstructures. The material properties of primary concern with respect to the mechanical behavior of the pipe are the stress-strain response (the constitutive properties) and the resistance to initiation and propagation of cracks or tears in the presence of a crack, notch, or other stress concentrator (the fracture toughness properties). Most of the experimental data on the behavior of welds with significant discontinuities were obtained from test specimens with surface or through-thickness notches or cracks. These data typically show an increase in load or nominal ductility for overmatched welds and a decrease in load or nominal ductility for undermatched welds. However, there are cases where the presence of a soft zone may enhance the nominal ductility and cases where overmatched welds will decrease the nominal ductility. The latter is especially likely in a girth weld with a circumferential crack in the HAZ.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Madrzykowski, aniel, Craig Weinschenk e Joseph Willi. Exposing Fire Service Hose in a Flashover Chamber. UL's Fire Safety Research Institute, abril de 2018. http://dx.doi.org/10.54206/102376/tkog7594.

Texto completo da fonte
Resumo:
At the request of the Fire Department City of New York (FDNY), UL’s Fire Safety Research Institute (FSRI) instrumented and documented a series of 12 thermal exposure hose experiments that were conducted in the burn compartment of an FDNY flashover simulator. The main objective of the experiments was to observe the performance of fire hoses exposed to the heat flux from flaming hot gas layer conditions above the hose. FDNY collected a variety of hose types that represented a cross section of commercially available materials and construction methods. The thermal exposures generated in the burn compartment were measured. The fire experiments were stopped once the hose being examined began to lose water through the wall of the hose. All of the hoses lost water through their wall, although the size of the holes and the amount of water leakage varied. While the burn compartment provided a “fire room environment” and different types of hose failures were demonstrated, the thermal exposure within the compartment was not demonstrated to be repeatable. Therefore it is not possible to develop a comparable rank or rating of the fire resistance of these hoses from this series of experiments.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia