Artigos de revistas sobre o tema "Heat exchangers Fluid dynamics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Heat exchangers Fluid dynamics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Dawood Jumaah, Itimad, Senaa Kh. Ali e Anees A. Khadom. "Evaluation Analysis of Double Coil Heat Exchanger for Heat Transfer Enhancement". Diyala Journal of Engineering Sciences 14, n.º 1 (15 de março de 2021): 96–107. http://dx.doi.org/10.24237/djes.2021.14109.
Texto completo da fonteНикулин, Н., e Nikolay Nikulin. "THE STUDY OF HEAT TRANSFER IN INTENSIFIED SHELL AND TUBE DEVICE". Bulletin of Belgorod State Technological University named after. V. G. Shukhov 4, n.º 4 (25 de abril de 2019): 77–82. http://dx.doi.org/10.34031/article_5cb1e65e6c0d28.53980880.
Texto completo da fonteAydin, Ahmet, Halit Yaşar, Tahsin Engin e Ekrem Büyükkaya. "Optimization and CFD analysis of a shell-and-tube heat exchanger with a multi segmental baffle". Thermal Science, n.º 00 (2020): 293. http://dx.doi.org/10.2298/tsci200111293a.
Texto completo da fonteWalter, Christian, Sebastian Martens, Christian Zander, Carsten Mehring e Ulrich Nieken. "Heat Transfer through Wire Cloth Micro Heat Exchanger". Energies 13, n.º 14 (10 de julho de 2020): 3567. http://dx.doi.org/10.3390/en13143567.
Texto completo da fonteKamidollayev, Tlegen, Juan Pablo Trelles, Jay Thakkar e Jan Kosny. "Parametric Study of Panel PCM–Air Heat Exchanger Designs". Energies 15, n.º 15 (30 de julho de 2022): 5552. http://dx.doi.org/10.3390/en15155552.
Texto completo da fonteTrokhaniak, V. I., I. L. Rogovskii, L. L. Titova, P. S. Popyk, O. O. Bannyi e P. H. Luzan. "Computational fluid dynamics investigation of heat-exchangers for various air-cooling systems in poultry houses". Bulletin of the Karaganda University. "Physics" Series 97, n.º 1 (30 de março de 2020): 125–34. http://dx.doi.org/10.31489/2020ph1/125-134.
Texto completo da fonteFetuga, Ibrahim Ademola, Olabode Thomas Olakoyejo, Adeola S. Shote, Gbeminiyi Mike Sobamowo, Omotayo Oluwatusin e Joshua Kolawole Gbegudu. "Thermal and Fluid Flow Analysis of Shell-and-Tube Heat Exchangers with Smooth and Dimpled Tubes". Journal of Advanced Engineering and Computation 6, n.º 3 (30 de setembro de 2022): 233. http://dx.doi.org/10.55579/jaec.202263.378.
Texto completo da fonteHughes, J. P., T. E. R. Jones e P. W. James. "Numerical Simulations and Experimental Measurements of the Isothermal Flow in a Model Tubular Heat Exchanger". Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 220, n.º 2 (1 de maio de 2006): 109–19. http://dx.doi.org/10.1243/095440806x78847.
Texto completo da fonteSundén, Bengt. "Computational Fluid Dynamics in Research and Design of Heat Exchangers". Heat Transfer Engineering 28, n.º 11 (novembro de 2007): 898–910. http://dx.doi.org/10.1080/01457630701421679.
Texto completo da fonteChennu, Ranganayakulu. "Numerical analysis of compact plate-fin heat exchangers for aerospace applications". International Journal of Numerical Methods for Heat & Fluid Flow 28, n.º 2 (5 de fevereiro de 2018): 395–412. http://dx.doi.org/10.1108/hff-08-2016-0313.
Texto completo da fonteNaqvi, S. M. A., e Qiuwang Wang. "Numerical Comparison of Thermohydraulic Performance and Fluid-Induced Vibrations for STHXs with Segmental, Helical, and Novel Clamping Antivibration Baffles". Energies 12, n.º 3 (9 de fevereiro de 2019): 540. http://dx.doi.org/10.3390/en12030540.
Texto completo da fonteKaviany, M., e M. Reckker. "Performance of a Heat Exchanger Based on Enhanced Heat Diffusion in Fluids by Oscillation: Experiment". Journal of Heat Transfer 112, n.º 1 (1 de fevereiro de 1990): 56–63. http://dx.doi.org/10.1115/1.2910364.
Texto completo da fonteÁlvarez Gómez, Pascual, Ismael Rodríguez Maestre, F. Javier González Gallero e J. Daniel Mena Baladés. "The Influence of Outer Weather Conditions on the Modelling of Vertical Ground Heat Exchangers". Applied Mechanics and Materials 361-363 (agosto de 2013): 276–80. http://dx.doi.org/10.4028/www.scientific.net/amm.361-363.276.
Texto completo da fonteNurhasanah, Siti, Muhammad Subekti, Moch Nurul Subkhi e Bebeh Wahid Nuryadin. "Optimal tube diameter on heat exchanger shell and tube type with 15 mega watt thermal power using fluent 6.3". MATEC Web of Conferences 197 (2018): 02011. http://dx.doi.org/10.1051/matecconf/201819702011.
Texto completo da fonteLadeinde, Foluso. "Reduced-Order Computational-Fluid-Dynamics-Based Analysis of Aviation Heat Exchangers". Journal of Thermophysics and Heat Transfer 34, n.º 4 (outubro de 2020): 696–715. http://dx.doi.org/10.2514/1.t5903.
Texto completo da fonteKonchada, Pavan Kumar, Vinay Pv e Varaprasad Bhemuni. "Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach". Archives of Thermodynamics 37, n.º 2 (1 de junho de 2016): 3–22. http://dx.doi.org/10.1515/aoter-2016-0010.
Texto completo da fonteAlsahil, Muath I., Mowffaq M. Oreijah e Mohamed H. Mohamed. "Quantitative and Qualitative Study of Double-Pipe Heat Exchangers Performance Using Water Based Nanofluids". Journal of Nanofluids 11, n.º 6 (1 de dezembro de 2022): 924–43. http://dx.doi.org/10.1166/jon.2022.1891.
Texto completo da fonteShafagh, Ida, Simon Rees, Iñigo Urra Mardaras, Marina Curto Janó e Merche Polo Carbayo. "A Model of a Diaphragm Wall Ground Heat Exchanger". Energies 13, n.º 2 (7 de janeiro de 2020): 300. http://dx.doi.org/10.3390/en13020300.
Texto completo da fonteKhanlari, Ataollah, Adnan Sözen e Halil İbrahim Variyenli. "Simulation and experimental analysis of heat transfer characteristics in the plate type heat exchangers using TiO2/water nanofluid". International Journal of Numerical Methods for Heat & Fluid Flow 29, n.º 4 (1 de abril de 2019): 1343–62. http://dx.doi.org/10.1108/hff-05-2018-0191.
Texto completo da fonteSong, Su Fang. "Performance Study of Heat Exchangers with Continuous Helical Baffles on Different Inclination Angles". Advanced Materials Research 655-657 (janeiro de 2013): 461–64. http://dx.doi.org/10.4028/www.scientific.net/amr.655-657.461.
Texto completo da fonteAgarwal, Abhishek. "Modelling & Numerical Investigation of the Effectiveness of Plate Heat Exchanger for Cooling Engine Oil Using ANSYS CFX". International Journal of Heat and Technology 39, n.º 2 (30 de abril de 2021): 653–58. http://dx.doi.org/10.18280/ijht.390237.
Texto completo da fonteRus, Alexandru, Vlad Martian e Mihai Nagi. "Study of Height Influence of Heat Exchanger Tanks on Overall Pressure Drop". Applied Mechanics and Materials 659 (outubro de 2014): 446–49. http://dx.doi.org/10.4028/www.scientific.net/amm.659.446.
Texto completo da fontePorter, Michael A., Dennis H. Martens, Thomas Duffy e Sean McGuffie. "High-Temperature Heat Exchanger Tube-Sheet Assembly Investigation With Computational Fluid Dynamics". Journal of Pressure Vessel Technology 129, n.º 2 (20 de novembro de 2006): 313–15. http://dx.doi.org/10.1115/1.2716436.
Texto completo da fontede Souza, Diego Amorim Caetano, Lúben Cabezas Gómez e José Antônio da Silva. "Fluid Dynamic Simulation and Optimization of Compact Heat Exchangers with Louver Fins". Applied Mechanics and Materials 798 (outubro de 2015): 205–9. http://dx.doi.org/10.4028/www.scientific.net/amm.798.205.
Texto completo da fonteAjeeb, Wagd, Monica S. A. Oliveira, Nelson Martins e S. M. Sohel Murshed. "Numerical approach for fluids flow and thermal convection in microchannels". Journal of Physics: Conference Series 2116, n.º 1 (1 de novembro de 2021): 012049. http://dx.doi.org/10.1088/1742-6596/2116/1/012049.
Texto completo da fonteLiu, Liu, e Yingwen Liu. "Numerical study on a thermoacoustic refrigerator with continuous and staggered arrangements". Thermal Science, n.º 00 (2022): 25. http://dx.doi.org/10.2298/tsci210901025l.
Texto completo da fontevan Driel, Michael R. "Cardioplegia heat exchanger design modelling using computational fluid dynamics". Perfusion 15, n.º 6 (dezembro de 2000): 541–48. http://dx.doi.org/10.1177/026765910001500611.
Texto completo da fonteKhan, Abdullah, Imran Shah, Waheed Gul, Tariq Amin Khan, Yasir Ali e Syed Athar Masood. "Numerical and Experimental Analysis of Shell and Tube Heat Exchanger with Round and Hexagonal Tubes". Energies 16, n.º 2 (12 de janeiro de 2023): 880. http://dx.doi.org/10.3390/en16020880.
Texto completo da fonteNavickaitė, Kristina, Michael Penzel, Christian R. H. Bahl e Kurt Engelbrecht. "Performance Assessment of Double Corrugated Tubes in a Tube-In-Shell Heat Exchanger". Energies 14, n.º 5 (1 de março de 2021): 1343. http://dx.doi.org/10.3390/en14051343.
Texto completo da fonteJUN, SOOJIN, e VIRENDRA M. PURI. "3D milk-fouling model of plate heat exchangers using computational fluid dynamics". International Journal of Dairy Technology 58, n.º 4 (novembro de 2005): 214–24. http://dx.doi.org/10.1111/j.1471-0307.2005.00213.x.
Texto completo da fonteMenni, Younes, Houari Ameur, Shao-Wen Yao, Mohammed Amine Amraoui, Mustafa Inc, Giulio Lorenzini e Hijaz Ahmad. "Computational fluid dynamic simulations and heat transfer characteristic comparisons of various arc-baffled channels". Open Physics 19, n.º 1 (1 de janeiro de 2021): 51–60. http://dx.doi.org/10.1515/phys-2021-0005.
Texto completo da fonteWu, H. L., Y. Gong e X. Zhu. "Air Flow and Heat Transfer in Louver-Fin Round-Tube Heat Exchangers". Journal of Heat Transfer 129, n.º 2 (21 de maio de 2006): 200–210. http://dx.doi.org/10.1115/1.2402180.
Texto completo da fonteHu, Ping Fang, Zhong Yi Yu, Fei Lei, Na Zhu, Qi Ming Sun e Xu Dong Yuan. "Performance Evaluation of a Vertical U-Tube Ground Heat Exchanger Using a Numerical Simulation Approach". Advanced Materials Research 724-725 (agosto de 2013): 909–15. http://dx.doi.org/10.4028/www.scientific.net/amr.724-725.909.
Texto completo da fonteDwivedi, Anil Kumar, e Sarit Kumar Das. "Dynamics of plate heat exchangers subject to flow variations". International Journal of Heat and Mass Transfer 50, n.º 13-14 (julho de 2007): 2733–43. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.11.029.
Texto completo da fonteSharma, Shubham, Shalab Sharma, Mandeep Singh, Parampreet Singh, Rasmeet Singh, Sthitapragyan Maharana, Nima Khalilpoor e Alibek Issakhov. "Computational Fluid Dynamics Analysis of Flow Patterns, Pressure Drop, and Heat Transfer Coefficient in Staggered and Inline Shell-Tube Heat Exchangers". Mathematical Problems in Engineering 2021 (1 de junho de 2021): 1–10. http://dx.doi.org/10.1155/2021/6645128.
Texto completo da fonteDirkse, Martijn H., Wilko K. P. van Loon, Tom van der Walle, Sebastiaan L. Speetjens e Gerard P. A. Bot. "A Computational Fluid Dynamics Model for Designing Heat Exchangers based on Natural Convection". Biosystems Engineering 94, n.º 3 (julho de 2006): 443–52. http://dx.doi.org/10.1016/j.biosystemseng.2006.04.007.
Texto completo da fonteMočnik, Urban, Bogdan Blagojevič e Simon Muhič. "Numerical Analysis with Experimental Validation of Single-Phase Fluid Flow in a Dimple Pattern Heat Exchanger Channel". Strojniški vestnik – Journal of Mechanical Engineering 66, n.º 9 (15 de setembro de 2020): 544–53. http://dx.doi.org/10.5545/sv-jme.2020.6776.
Texto completo da fonteSonjaya, Abeth Novria, Marhaenanto Marhaenanto, Mokhamad Eka Faiq e La Ode M. Firman. "Analisis Perbandingan Jenis Material Penukar Kalor Plat Datar Aliran Silang Untuk Proses Pengeringan Kayu". Jurnal Teknologi 9, n.º 1 (30 de novembro de 2021): 60–71. http://dx.doi.org/10.31479/jtek.v9i1.117.
Texto completo da fonteGizatullin, R. R., S. N. Peshcherenko e N. A. Lykova. "Simulation of oil cooling of a submersible motor using a heat exchanger". Вестник Пермского университета. Физика, n.º 1 (2021): 69–75. http://dx.doi.org/10.17072/1994-3598-2021-1-69-75.
Texto completo da fonteMikielewicz, Jarosław, e Dariusz Mikielewicz. "Thermal-hydraulic issues of flow boiling and condensation in organic Rankine cycle heat exchangers". Archives of Thermodynamics 33, n.º 1 (1 de agosto de 2012): 41–66. http://dx.doi.org/10.2478/v10173-012-0002-3.
Texto completo da fonteYu, Qin, Chai, Huang e Liu. "The Effect of Compressible Flow on Heat Transfer Performance of Heat Exchanger by Computational Fluid Dynamics (CFD) Simulation". Entropy 21, n.º 9 (25 de agosto de 2019): 829. http://dx.doi.org/10.3390/e21090829.
Texto completo da fonteSalmi, Mohamed, Benameur Afif, Ali Akgul, Rabab Jarrar, Hussein Shanak, Younes Menni, Hijaz Ahmad e Jihad Asad. "Turbulent flows around rectangular and triangular turbulators in baffled channels a computational analysis". Thermal Science 26, Spec. issue 1 (2022): 191–99. http://dx.doi.org/10.2298/tsci22s1191s.
Texto completo da fonteBerce, Jure, Matevž Zupančič, Matic Može e Iztok Golobič. "A Review of Crystallization Fouling in Heat Exchangers". Processes 9, n.º 8 (1 de agosto de 2021): 1356. http://dx.doi.org/10.3390/pr9081356.
Texto completo da fonteHuang, Bo Wun, Jung Ge Tseng e Jao Hwa Kuang. "Vibration of a Tube with the Axial Loads and Fluid". Applied Mechanics and Materials 275-277 (janeiro de 2013): 925–29. http://dx.doi.org/10.4028/www.scientific.net/amm.275-277.925.
Texto completo da fonteYasuo, A., e M. P. Paidoussis. "Flow-Induced Instability of Heat-Exchanger Tubes due to Axial Flow in a Diffuser-Shaped, Loose Intermediate Support". Journal of Pressure Vessel Technology 111, n.º 4 (1 de novembro de 1989): 428–34. http://dx.doi.org/10.1115/1.3265700.
Texto completo da fonteChen, Tang, e Wei-zong Wang. "Modeling of combustion and hydrodynamics for a coal-fired supercritical boiler with double-reheat cycle". International Journal of Numerical Methods for Heat & Fluid Flow 30, n.º 4 (23 de fevereiro de 2019): 1661–75. http://dx.doi.org/10.1108/hff-08-2018-0456.
Texto completo da fonteÜnverdi, Murat, e Hasan Küçük. "Performance comparison of plate heat exchangers designed using Taguchi method and Computational Fluid Dynamics". Pamukkale University Journal of Engineering Sciences 25, n.º 4 (2019): 373–86. http://dx.doi.org/10.5505/pajes.2019.35493.
Texto completo da fonteÜnverdi, Murat, e Hasan Küçük. "Performance comparison of plate heat exchangers designed using Taguchi method and Computational Fluid Dynamics". Pamukkale University Journal of Engineering Sciences 25, n.º 4 (2019): 373–86. http://dx.doi.org/10.5505/pajes.2018.35493.
Texto completo da fonteSakib, Shadman, e Abdullah Al-Faruk. "Flow and Thermal Characteristics Analysis of Plate–Finned Tube and Annular–Finned Tube Heat Exchangers fo In–Line and Staggered Configurations". Mechanics and Mechanical Engineering 22, n.º 4 (2 de setembro de 2020): 1407–18. http://dx.doi.org/10.2478/mme-2018-0110.
Texto completo da fonteMuthusamy, P., e Palanisamy Senthil Kumar. "Waste Heat Recovery Using Matrix Heat Exchanger from the Exhaust of an Automobile Engine for Heating Car’s Passenger Cabin". Advanced Materials Research 984-985 (julho de 2014): 1132–37. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.1132.
Texto completo da fonte