Artigos de revistas sobre o tema "Hadamard spaces"

Siga este link para ver outros tipos de publicações sobre o tema: Hadamard spaces.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hadamard spaces".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Moslemipour, Ali, Mehdi Roohi, Mohammad Mardanbeigi e Mahdi Azhini. "Monotone relations in Hadamard spaces". Filomat 33, n.º 19 (2019): 6347–58. http://dx.doi.org/10.2298/fil1919347m.

Texto completo da fonte
Resumo:
In this paper, the notion of W-property for subsets of X x X? is introduced and investigated, where X is an Hadamard space and X? is its linear dual space. It is shown that an Hadamard space X is flat if and only if X x X? has W-property. Moreover, the notion of monotone relation from an Hadamard space to its linear dual space is introduced. A characterization result for monotone relations with W-property (and hence in flat Hadamard spaces) is given. Finally, a type of Debrunner-Flor Lemma concerning extension of monotone relations in Hadamard spaces is proved.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

LANG, U., e V. SCHROEDER. "Quasiflats in Hadamard spaces". Annales Scientifiques de l’École Normale Supérieure 30, n.º 3 (1997): 339–52. http://dx.doi.org/10.1016/s0012-9593(97)89923-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Hirayama, Michihiro. "Entropy of Hadamard spaces". Topology and its Applications 158, n.º 4 (março de 2011): 627–35. http://dx.doi.org/10.1016/j.topol.2010.12.011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Yakhshiboyev, M. U. "On Boundedness of Fractional Hadamard Integration and Hadamard-Type Integration in LebesgueSpaces with Mixed Norm". Contemporary Mathematics. Fundamental Directions 68, n.º 1 (20 de abril de 2022): 178–89. http://dx.doi.org/10.22363/2413-3639-2022-68-1-178-189.

Texto completo da fonte
Resumo:
In this paper, we consider the boundedness of integrals of fractional Hadamard integration and Hadamard-type integration (mixed and directional) in Lebesgue spaces with mixed norm. We prove Sobolev-type theorems of boundedness of one-dimensional and multidimensional Hadamard-type fractional integration in weighted Lebesgue spaces with mixed norm.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Yakhshiboyev, M. U. "On Boundedness of Fractional Hadamard Integration and Hadamard-Type Integration in LebesgueSpaces with Mixed Norm". Contemporary Mathematics. Fundamental Directions 68, n.º 1 (20 de abril de 2022): 178–89. http://dx.doi.org/10.22363/2413-3639-2022-68-1-178-189.

Texto completo da fonte
Resumo:
In this paper, we consider the boundedness of integrals of fractional Hadamard integration and Hadamard-type integration (mixed and directional) in Lebesgue spaces with mixed norm. We prove Sobolev-type theorems of boundedness of one-dimensional and multidimensional Hadamard-type fractional integration in weighted Lebesgue spaces with mixed norm.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Berdellima, Arian. "On a weak topology for Hadamard spaces". Sbornik: Mathematics 214, n.º 10 (2023): 1373–89. http://dx.doi.org/10.4213/sm9808e.

Texto completo da fonte
Resumo:
We investigate whether the existing notion of weak sequential convergence in Hadamard spaces can be induced by a topology. We provide an affirmative answer in what we call weakly proper Hadamard spaces. Several results from functional analysis are extended to the setting of Hadamard spaces. Our weak topology coincides with the usual one in the case of a Hilbert space. Finally, we compare our topology with other existing notions of weak topologies. Bibliography: 24 titles.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Wulan, Hasi, e Yanhua Zhang. "Hadamard products and QK spaces". Journal of Mathematical Analysis and Applications 337, n.º 2 (janeiro de 2008): 1142–50. http://dx.doi.org/10.1016/j.jmaa.2007.04.020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Bocci, Cristiano, Enrico Carlini e Joe Kileel. "Hadamard products of linear spaces". Journal of Algebra 448 (fevereiro de 2016): 595–617. http://dx.doi.org/10.1016/j.jalgebra.2015.10.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Pavlović, Miroslav. "Hadamard product in Qp spaces". Journal of Mathematical Analysis and Applications 305, n.º 2 (maio de 2005): 589–98. http://dx.doi.org/10.1016/j.jmaa.2004.12.040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Alexander, Stephanie B., e Richard L. Bishop. "Warped products of Hadamard spaces". manuscripta mathematica 96, n.º 4 (1 de agosto de 1998): 487–505. http://dx.doi.org/10.1007/s002290050078.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

BERTRAND, JÉRÔME, e BENOÎT KLOECKNER. "A GEOMETRIC STUDY OF WASSERSTEIN SPACES: HADAMARD SPACES". Journal of Topology and Analysis 04, n.º 04 (dezembro de 2012): 515–42. http://dx.doi.org/10.1142/s1793525312500227.

Texto completo da fonte
Resumo:
Optimal transport enables one to construct a metric on the set of (sufficiently small at infinity) probability measures on any (not too wild) metric space X, called its Wasserstein space [Formula: see text]. In this paper we investigate the geometry of [Formula: see text] when X is a Hadamard space, by which we mean that X has globally non-positive sectional curvature and is locally compact. Although it is known that, except in the case of the line, [Formula: see text] is not non-positively curved, our results show that [Formula: see text] have large-scale properties reminiscent of that of X. In particular we define a geodesic boundary for [Formula: see text] that enables us to prove a non-embeddablity result: if X has the visibility property, then the Euclidean plane does not admit any isometric embedding in [Formula: see text].
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Giles, J. R., e Scott Sciffer. "On weak Hadamard differentiability of convex functions on Banach spaces". Bulletin of the Australian Mathematical Society 54, n.º 1 (agosto de 1996): 155–66. http://dx.doi.org/10.1017/s000497270001515x.

Texto completo da fonte
Resumo:
We study two variants of weak Hadamard differentiability of continuous convex functions on a Banach space, uniform weak Hadamard differentiability and weak Hadamard directional differentiability, and determine their special properties on Banach spaces which do not contain a subspace topologically isomorphic to l1.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Turcanu, Teodor, e Mihai Postolache. "On Enriched Suzuki Mappings in Hadamard Spaces". Mathematics 12, n.º 1 (3 de janeiro de 2024): 157. http://dx.doi.org/10.3390/math12010157.

Texto completo da fonte
Resumo:
We define and study enriched Suzuki mappings in Hadamard spaces. The results obtained here are extending fundamental findings previously established in related research. The extension is realized with respect to at least two different aspects: the setting and the class of involved operators. More accurately, Hilbert spaces are particular Hadamard spaces, while enriched Suzuki nonexpansive mappings are natural generalizations of enriched nonexpansive mappings. Next, enriched Suzuki nonexpansive mappings naturally contain Suzuki nonexpansive mappings in Hadamard spaces. Besides technical lemmas, the results of this paper deal with (1) the existence of fixed points for enriched Suzuki nonexpansive mappings and (2) Δ and strong (metric) convergence of Picard iterates of the α-averaged mapping, which are exactly Krasnoselskij iterates for the original mapping.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Mleczko, Paweł. "Hadamard Multipliers and Abel Dual of Hardy Spaces". Journal of Function Spaces 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/3262761.

Texto completo da fonte
Resumo:
The paper is devoted to the study of Hadamard multipliers of functions from the abstract Hardy classes generated by rearrangement invariant spaces. In particular the relation between the existence of such multiplier and the boundedness of the appropriate convolution operator on spaces of measurable functions is presented. As an application, the description of Hadamard multipliers intoH∞is given and the Abel type theorem for mentioned Hardy spaces is proved.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

NAGANO, Koichi. "Asymptotic rigidity of Hadamard 2-spaces". Journal of the Mathematical Society of Japan 52, n.º 4 (outubro de 2000): 699–723. http://dx.doi.org/10.2969/jmsj/05240699.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Wan, Lili. "Composite Minimization Problems in Hadamard Spaces". Journal of Applied Mathematics and Physics 08, n.º 04 (2020): 597–608. http://dx.doi.org/10.4236/jamp.2020.84046.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Banert, Sebastian. "Backward–backward splitting in Hadamard spaces". Journal of Mathematical Analysis and Applications 414, n.º 2 (junho de 2014): 656–65. http://dx.doi.org/10.1016/j.jmaa.2014.01.054.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Eikrem, Kjersti Solberg. "Hadamard gap series in growth spaces". Collectanea Mathematica 64, n.º 1 (4 de junho de 2012): 1–15. http://dx.doi.org/10.1007/s13348-012-0065-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Adams, Scot, e Werner Ballmann. "Amenable isometry groups of Hadamard spaces". Mathematische Annalen 312, n.º 1 (1 de setembro de 1998): 183–96. http://dx.doi.org/10.1007/s002080050218.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Karapetrović, Boban, e Javad Mashreghi. "Hadamard products in weighted Bergman spaces". Journal of Mathematical Analysis and Applications 494, n.º 2 (fevereiro de 2021): 124617. http://dx.doi.org/10.1016/j.jmaa.2020.124617.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Moslemipour, A., M. Roohi, M. R. Mardanbeigi e M. Azhini. "Fitzpatrick transform of monotone relations in Hadamard spaces". Analele Universitatii "Ovidius" Constanta - Seria Matematica 28, n.º 2 (1 de julho de 2020): 173–93. http://dx.doi.org/10.2478/auom-2020-0026.

Texto completo da fonte
Resumo:
AbstractIn the present paper, monotone relations and maximal monotone relations from an Hadamard space to its linear dual space are investigated. Fitzpatrick transform of monotone relations in Hadamard spaces is introduced. It is shown that Fitzpatrick transform of a special class of monotone relations is proper, convex and lower semi-continuous. Finally, a representation result for monotone relations is given.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Ogwo, Grace N., Chinedu Izuchukwu, Kazeem O. Aremu e Oluwatosin T. Mewomo. "On θ-generalized demimetric mappings and monotone operators in Hadamard spaces". Demonstratio Mathematica 53, n.º 1 (3 de julho de 2020): 95–111. http://dx.doi.org/10.1515/dema-2020-0006.

Texto completo da fonte
Resumo:
AbstractOur main interest in this article is to introduce and study the class of θ-generalized demimetric mappings in Hadamard spaces. Also, a Halpern-type proximal point algorithm comprising this class of mappings and resolvents of monotone operators is proposed, and we prove that it converges strongly to a fixed point of a θ-generalized demimetric mapping and a common zero of a finite family of monotone operators in a Hadamard space. Furthermore, we apply the obtained results to solve a finite family of convex minimization problems, variational inequality problems and convex feasibility problems in Hadamard spaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Moslemipour, Ali, e Mehdi Roohi. "Monotonicity of sets in Hadamard spaces from polarity point of view". Filomat 36, n.º 13 (2022): 4459–70. http://dx.doi.org/10.2298/fil2213459m.

Texto completo da fonte
Resumo:
This paper is devoted to introduce and investigate the notion of monotone sets in Hadamard spaces. First, flat Hadamard spaces are introduced and investigated. It is shown that an Hadamard space X is flat if and only if X ? X? has Fl-property, where X? is the linear dual of X. Moreover, monotone and maximal monotone sets are introduced and also monotonicity from polarity point of view is considered. Some characterizations of (maximal) monotone sets, specially based on polarity, are given. Finally, it is proved that any maximal monotone set is sequentially bw?????-closed in X ? X?.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Ceng, Lu-Chuan, Yeong-Cheng Liou, Ching-Feng Wen, Hui-Ying Hu, Long He e Yun-Ling Cui. "On the Hadamard Well-Posedness of Generalized Mixed Variational Inequalities in Banach Spaces". Journal of Mathematics 2021 (18 de novembro de 2021): 1–9. http://dx.doi.org/10.1155/2021/9527107.

Texto completo da fonte
Resumo:
We introduce a new concept of Hadamard well-posedness of a generalized mixed variational inequality in a Banach space. The relations between the Levitin–Polyak well-posedness and Hadamard well-posedness for a generalized mixed variational inequality are studied. The characterizations of Hadamard well-posedness for a generalized mixed variational inequality are established.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Ruiz-Garzón, Gabriel, Rafaela Osuna-Gómez e Jaime Ruiz-Zapatero. "Necessary and Sufficient Optimality Conditions for Vector Equilibrium Problems on Hadamard Manifolds". Symmetry 11, n.º 8 (12 de agosto de 2019): 1037. http://dx.doi.org/10.3390/sym11081037.

Texto completo da fonte
Resumo:
The aim of this paper is to show the existence and attainability of Karush–Kuhn–Tucker optimality conditions for weakly efficient Pareto points for vector equilibrium problems with the addition of constraints in the novel context of Hadamard manifolds, as opposed to the classical examples of Banach, normed or Hausdorff spaces. More specifically, classical necessary and sufficient conditions for weakly efficient Pareto points to the constrained vector optimization problem are presented. The results described in this article generalize results obtained by Gong (2008) and Wei and Gong (2010) and Feng and Qiu (2014) from Hausdorff topological vector spaces, real normed spaces, and real Banach spaces to Hadamard manifolds, respectively. This is done using a notion of Riemannian symmetric spaces of a noncompact type as special Hadarmard manifolds.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

HARUNA, LAWAL YUSUF, GODWIN CHIDI UGWUNNADI e BASHIR ALI. "On the Proximal Point Algorithm of Hybrid-Type in Flat Hadamard Spaces with Applications". Kragujevac Journal of Mathematics 48, n.º 6 (2024): 845–57. http://dx.doi.org/10.46793/kgjmat2406.845h.

Texto completo da fonte
Resumo:
In this paper, we introduce a hybrid-type proximal point algorithm for approximating zero of monotone operator in Hadamard-type spaces. We then prove that a sequence generated by the algorithm involving Mann-type iteration converges strongly to a zero of the said operator in the setting of flat Hadamard spaces. To the best of our knowledge, this result presents the first hybrid-type proximal point algorithm in the space. The result is applied to convex minimization and fixed point problems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Bačák, Miroslav. "Computing Medians and Means in Hadamard Spaces". SIAM Journal on Optimization 24, n.º 3 (janeiro de 2014): 1542–66. http://dx.doi.org/10.1137/140953393.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Zhou, Jizhen. "Hadamard products inF(p,q,s) spaces". Journal of Function Spaces and Applications 8, n.º 3 (2010): 257–70. http://dx.doi.org/10.1155/2010/765341.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Salem, Hussein A. H. "Hadamard-type fractional calculus in Banach spaces". Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 113, n.º 2 (30 de março de 2018): 987–1006. http://dx.doi.org/10.1007/s13398-018-0531-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Lang, U., B. Pavlović e V. Schroeder. "Extensions of Lipschitz maps into Hadamard spaces". Geometric and Functional Analysis 10, n.º 6 (dezembro de 2000): 1527–53. http://dx.doi.org/10.1007/pl00001660.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Ugwunnadi, Godwin Chidi, Chinedu Izuchkwu e Oluwatosin Temitope Mewomo. "On nonspreading-type mappings in Hadamard spaces". Boletim da Sociedade Paranaense de Matemática 39, n.º 5 (1 de janeiro de 2021): 175–97. http://dx.doi.org/10.5269/bspm.41768.

Texto completo da fonte
Resumo:
In this paper, we studied a new class of nonspreading-type mappings more general than the class of strictly pseudononspreading and the class of generalized nonspreading mappings. We state and prove some strong convergence theorems of the Mann-type and Ishikawa-type algorithms for approximating fixed points of our class of mappings in Hadamard spaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Hruska, G. Christopher, e Bruce Kleiner. "Erratum to “Hadamard spaces with isolated flats”". Geometry & Topology 13, n.º 2 (1 de janeiro de 2009): 699–707. http://dx.doi.org/10.2140/gt.2009.13.699.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Izuchukwu, Chinedu, Kazeem Olalekan Aremu, Olawale Kazeem Oyewole, Oluwatosin Temitope Mewomo e Safeer Hussain Khan. "On Mixed Equilibrium Problems in Hadamard Spaces". Journal of Mathematics 2019 (13 de outubro de 2019): 1–13. http://dx.doi.org/10.1155/2019/3210649.

Texto completo da fonte
Resumo:
The main purpose of this paper is to study mixed equilibrium problems in Hadamard spaces. First, we establish the existence of solution of the mixed equilibrium problem and the unique existence of the resolvent operator for the problem. We then prove a strong convergence of the resolvent and a Δ-convergence of the proximal point algorithm to a solution of the mixed equilibrium problem under some suitable conditions. Furthermore, we study the asymptotic behavior of the sequence generated by a Halpern-type PPA. Finally, we give a numerical example in a nonlinear space setting to illustrate the applicability of our results. Our results extend and unify some related results in the literature.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Trybuła, Maria. "Hadamard Multipliers on Spaces of Holomorphic Functions". Integral Equations and Operator Theory 88, n.º 2 (27 de abril de 2017): 249–68. http://dx.doi.org/10.1007/s00020-017-2369-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Бeрделлима, Ариан, e Arian Berdellima. "On a weak topology for Hadamard spaces". Математический сборник 214, n.º 10 (2023): 25–43. http://dx.doi.org/10.4213/sm9808.

Texto completo da fonte
Resumo:
Изучается вопрос о топологизуемости секвенциальной слабой сходимости в пространствах Адамара. Положительный ответ на этот вопрос дается для так называемых слабо собственных пространств Адамара. Ряд результатов из функционального анализа переносится на случай пространств Адамара. Показывается, что вводимое определение слабой топологии совпадает с обычным определением слабой топологии для гильбертовых пространств. Дается сравнение вводимой топологии с существующими определениями других слабых топологий. Библиография: 24 названия.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Bačák, Miroslav. "Old and new challenges in Hadamard spaces". Japanese Journal of Mathematics 18, n.º 2 (setembro de 2023): 115–68. http://dx.doi.org/10.1007/s11537-023-1826-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Dragomir, S. S. "Inequalities of Hermite-Hadamard Type". Moroccan Journal of Pure and Applied Analysis 1, n.º 1 (1 de junho de 2015): 1–21. http://dx.doi.org/10.7603/s40956-015-0001-x.

Texto completo da fonte
Resumo:
AbstractSome inequalities of Hermite-Hadamard type for λ-convex functions defined on convex subsets in real or complex linear spaces are given. Applications for norm inequalities are provided as well.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

WOLTER, THOMAS H. "GEOMETRY OF HOMOGENEOUS HADAMARD MANIFOLDS". International Journal of Mathematics 02, n.º 02 (abril de 1991): 223–34. http://dx.doi.org/10.1142/s0129167x91000430.

Texto completo da fonte
Resumo:
Using result of R. Azencott and E. Wilson on the algebraic structure of homogeneous manifolds of nonpositive sectional curvature, we discuss the geometry of these manifolds and give several conditions how to distinguish the symmetric spaces among them.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Stojiljković, Vuk, Rajagopalan Ramaswamy, Ola A. Ashour Abdelnaby e Stojan Radenović. "Some Refinements of the Tensorial Inequalities in Hilbert Spaces". Symmetry 15, n.º 4 (16 de abril de 2023): 925. http://dx.doi.org/10.3390/sym15040925.

Texto completo da fonte
Resumo:
Hermite–Hadamard inequalities and their refinements have been investigated for a long period of time. In this paper, we obtained refinements of the Hermite–Hadamard inequality of tensorial type for the convex functions of self-adjoint operators in Hilbert spaces. The obtained inequalities generalize the previously obtained inequalities by Dragomir. We also provide useful Lemmas which enabled us to obtain the results. The examples of the obtained inequalities for specific convex functions have been given in the example and consequences section. Symmetry in the upper and lower bounds can be seen in the last Theorem of the paper given, as the upper and lower bounds differ by a constant.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Liu, Weiwei, e Lishan Liu. "Properties of Hadamard Fractional Integral and Its Application". Fractal and Fractional 6, n.º 11 (13 de novembro de 2022): 670. http://dx.doi.org/10.3390/fractalfract6110670.

Texto completo da fonte
Resumo:
We begin by introducing some function spaces Lcp(R+),Xcp(J) made up of integrable functions with exponent or power weights defined on infinite intervals, and then we investigate the properties of Mellin convolution operators mapping on these spaces, next, we derive some new boundedness and continuity properties of Hadamard integral operators mapping on Xcp(J) and Xp(J). Based on this, we investigate a class of boundary value problems for Hadamard fractional differential equations with the integral boundary conditions and the disturbance parameters, and obtain uniqueness results for positive solutions to the boundary value problem under some weaker conditions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

SALISU, SANI, POOM KUMAM e SONGPON SRIWONGSA. "On Fixed Points of Enriched Contractions and Enriched Nonexpansive Mappings". Carpathian Journal of Mathematics 39, n.º 1 (30 de julho de 2022): 237–54. http://dx.doi.org/10.37193/cjm.2023.01.16.

Texto completo da fonte
Resumo:
We apply the concept of quasilinearization to introduce some enriched classes of Banach contraction mappings and analyse the fixed points of such mappings in the setting of Hadamard spaces. We establish existence and uniqueness of the fixed point of such mappings. To approximate the fixed points, we use an appropriate Krasnoselskij-type scheme for which we establish $\Delta$ and strong convergence theorems. Furthermore, we discuss the fixed points of local enriched contractions and Maia-type enriched contractions in Hadamard spaces setting. In addition, we establish demiclosedness-type property of enriched nonexpansive mappings. Finally, we present some special cases and corresponding fixed point theorems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Eftekharinasab, Kaveh. "A Version of the Hadamard–Lévy Theorem for Fréchet Spaces". Proceedings of the Bulgarian Academy of Sciences 75, n.º 8 (31 de agosto de 2022): 1099–104. http://dx.doi.org/10.7546/crabs.2022.08.01.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Borwein, J. M., e M. Fabian. "On Convex Functions Having Points of Gateaux Differentiability Which are Not Points of Fréchet Differentiability". Canadian Journal of Mathematics 45, n.º 6 (1 de dezembro de 1993): 1121–34. http://dx.doi.org/10.4153/cjm-1993-062-8.

Texto completo da fonte
Resumo:
AbstractWe study the relationships between Gateaux, Fréchet and weak Hadamard differentiability of convex functions and of equivalent norms. As a consequence we provide related characterizations of infinite dimensional Banach spaces and of Banach spaces containing ł1. Explicit examples are given. Some renormings of WCG Asplund spaces are made in this vein.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Fagbemigun, B. O., A. A. Mogbademu e J. O. Olaleru. "Double Integral Inequalities of Hermite-Hadamard-Type for ɸh-Convex Functions on Linear Spaces". Journal of Nepal Mathematical Society 2, n.º 2 (2 de dezembro de 2019): 11–18. http://dx.doi.org/10.3126/jnms.v2i2.33006.

Texto completo da fonte
Resumo:
The concept of Φh-convexity is extended for functions defined on closed Φh-convex subsets of linear spaces. Consequently, some double integral inequalities of Hermite-Hadamard type defined on time-scaled linear spaces are established for Φh-convex functions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Abbas, Saïd, Mouffak Benchohra, Naima Hamidi e Johnny Henderson. "Caputo-Hadamard fractional differential equations in banach spaces". Fractional Calculus and Applied Analysis 21, n.º 4 (28 de agosto de 2018): 1027–45. http://dx.doi.org/10.1515/fca-2018-0056.

Texto completo da fonte
Resumo:
Abstract This article deals with some existence results for a class of Caputo–Hadamard fractional differential equations. The results are based on the Mönch’s fixed point theorem associated with the technique of measure of noncompactness. Two illustrative examples are presented.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

UGWUNNADI, G. C., C. C. OKEKE, A. R. KHAN e L. O. JOLAOSO. "Strong Convergence Results for Variational Inequality and Equilibrium Problem in Hadamard Spaces". Kragujevac Journal of Mathematics 47, n.º 6 (dezembro de 2023): 825–45. http://dx.doi.org/10.46793/kgjmat2306.825u.

Texto completo da fonte
Resumo:
The main purpose of this paper is to introduce and study a viscosity type algorithm in a Hadamard space which comprises of a demimetric mapping, a finite family of inverse strongly monotone mappings and an equilibrium problem for a bifunction. Strong convergence of the proposed algorithm to a common solution of variational inequality problem, fixed point problem and equilibrium problem is established in Hadamard spaces. Nontrivial Applications and numerical examples were given. Our results compliment some results in the literature.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Yee, Tat-Leung, e Kwok-Pun Ho. "Hardy’s inequalities and integral operators on Herz-Morrey spaces". Open Mathematics 18, n.º 1 (10 de março de 2020): 106–21. http://dx.doi.org/10.1515/math-2020-0008.

Texto completo da fonte
Resumo:
Abstract We obtain some estimates for the operator norms of the dilation operators on Herz-Morrey spaces. These results give us the Hardy’s inequalities and the mapping properties of the integral operators on Herz-Morrey spaces. As applications of this general result, we have the boundedness of the Hadamard fractional integrals on Herz-Morrey spaces. We also obtain the Hilbert inequality on Herz-Morrey spaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Dehghani, Mahdi. "Characterization of inner product spaces by unitary Carlsson type orthogonalities". Filomat 36, n.º 14 (2022): 4655–63. http://dx.doi.org/10.2298/fil2214655d.

Texto completo da fonte
Resumo:
In this study, we consider the Hermite-Hadamard type of unitary Carlsson?s orthogonality (UHH-C-orthogonality) to characterize real inner product spaces. We give a necessary and sufficient condition weaker than the homogeneity of symmetric HH-C-orthogonalities which characterizes inner product spaces among normed linear spaces of dimension at least three. In conclusion, some more characterizations of real inner product spaces are provided.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Render, Hermann, e Andreas Sauer. "Multipliers on vector spaces of holomorphic functions". Nagoya Mathematical Journal 159 (2000): 167–78. http://dx.doi.org/10.1017/s0027763000007467.

Texto completo da fonte
Resumo:
Let G be a domain in the complex plane containing zero and H(G) be the set of all holomorphic functions on G. In this paper the algebra M(H(G)) of all coefficient multipliers with respect to the Hadamard product is studied. Central for the investigation is the domain introduced by Arakelyan which is by definition the union of all sets with w ∈ Gc. The main result is the description of all isomorphisms between these multipliers algebras. As a consequence one obtains: If two multiplier algebras M(H(G1)) and M(H(G2)) are isomorphic then is equal to Two algebras H(G1) and H(G2) are isomorphic with respect to the Hadamard product if and only if G1 is equal to G2. Further the following uniqueness theorem is proved: If G1 is a domain containing 0 and if M(H(G)) is isomorphic to H(G1) then G1 is equal to .
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Vedel, Ya I., e V. V. Semenov. "Adaptive algorithms for equilibrium problems in Hadamard spaces". Reports of the National Academy of Sciences of Ukraine, n.º 8 (agosto de 2020): 26–34. http://dx.doi.org/10.15407/dopovidi2020.08.026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia