Siga este link para ver outros tipos de publicações sobre o tema: H₂ activation.

Artigos de revistas sobre o tema "H₂ activation"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "H₂ activation".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Qiu, Youai, Julia Struwe e Lutz Ackermann. "Metallaelectro-Catalyzed C–H Activation by Weak Coordination". Synlett 30, n.º 10 (21 de maio de 2019): 1164–73. http://dx.doi.org/10.1055/s-0037-1611568.

Texto completo da fonte
Resumo:
The merger of organometallic C–H activation with electrocatalysis has emerged as a powerful strategy for molecular synthesis, avoiding the use of toxic and expensive chemical oxidants in stoichiometric quantities. This review summarizes recent progress in transition-metal-catalyzed electrochemical C–H activation by weak chelation assistance until March 2019.1 Introduction2 Ruthenaelectro-Catalyzed C–H Activation3 Rhodaelectro-Catalyzed C–H Activation4 Iridaelectro-Catalyzed C–H Activation5 Summary and Outlook
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Liu, Yunyun, e Baoli Zhao. "Step-Economical C–H Activation Reactions Directed by In Situ Amidation". Synthesis 52, n.º 21 (18 de maio de 2020): 3211–18. http://dx.doi.org/10.1055/s-0040-1707124.

Texto completo da fonte
Resumo:
Owing to the inherent ability of amides to chelate transition-metal catalysts, amide-directed C–H activation reactions constitute a major tactic in directed C–H activation reactions. While the conventional procedures for these reactions usually involve prior preparation and purification of amide substrates before the C–H activation, the step economy is actually undermined by the operation of installing the directing group (DG) and related substrate purification. In this context, directed C–H activation via in situ amidation of the crude material provides a new protocol that can significantly enhance the step economy of amide-directed C–H activation. In this short review, the advances in C–H bond activation reactions mediated or initiated by in situ amidation are summarized and analyzed.1 Introduction2 In Situ Amidation in Aryl C–H Bond Activation3 In Situ Amidation in Alkyl C–H Bond Activation4 Annulation Reactions via Amidation-Mediated C–H Activation5 Remote C–H Activation Mediated by Amidation6 Conclusion
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Ilies, Laurean. "Iron-Catalyzed C-H Bond Activation". Journal of Synthetic Organic Chemistry, Japan 75, n.º 8 (2017): 802–9. http://dx.doi.org/10.5059/yukigoseikyokaishi.75.802.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

LI, Chao-Jun. "C―H Activation". Acta Physico-Chimica Sinica 35, n.º 9 (2019): 905. http://dx.doi.org/10.3866/pku.whxb201903057.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Bergman, Robert G. "C–H activation". Nature 446, n.º 7134 (21 de março de 2007): 391–93. http://dx.doi.org/10.1038/446391a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

WILSON, ELIZABETH. "H ACTIVATION, REVERSIBLY". Chemical & Engineering News 84, n.º 47 (20 de novembro de 2006): 21. http://dx.doi.org/10.1021/cen-v084n047.p021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Holland, Herbert L. "C–H activation". Current Opinion in Chemical Biology 3, n.º 1 (fevereiro de 1999): 22–27. http://dx.doi.org/10.1016/s1367-5931(99)80005-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Sauermann, Nicolas, Tjark H. Meyer, Youai Qiu e Lutz Ackermann. "Electrocatalytic C–H Activation". ACS Catalysis 8, n.º 8 (18 de junho de 2018): 7086–103. http://dx.doi.org/10.1021/acscatal.8b01682.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Dioumaev, Vladimir K., Patrick J. Carroll e Donald H. Berry. "Tandemβ-CH Activation/SiH Elimination Reactions: Stabilization of CH Activation Products byβ-Agostic SiH Interactions". Angewandte Chemie International Edition 42, n.º 33 (25 de agosto de 2003): 3947–49. http://dx.doi.org/10.1002/anie.200352078.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Dioumaev, Vladimir K., Patrick J. Carroll e Donald H. Berry. "Tandemβ-CH Activation/SiH Elimination Reactions: Stabilization of CH Activation Products byβ-Agostic SiH Interactions". Angewandte Chemie 115, n.º 33 (25 de agosto de 2003): 4077–79. http://dx.doi.org/10.1002/ange.200352078.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Li, Qiang, Yulong Zhang, Jennifer J. Marden, Botond Banfi e John F. Engelhardt. "Endosomal NADPH oxidase regulates c-Src activation following hypoxia/reoxygenation injury". Biochemical Journal 411, n.º 3 (14 de abril de 2008): 531–41. http://dx.doi.org/10.1042/bj20071534.

Texto completo da fonte
Resumo:
c-Src has been shown to activate NF-κB (nuclear factor κB) following H/R (hypoxia/reoxygenation) by acting as a redox-dependent IκBα (inhibitory κB) tyrosine kinase. In the present study, we have investigated the redox-dependent mechanism of c-Src activation following H/R injury and found that ROS (reactive oxygen species) generated by endosomal Noxs (NADPH oxidases) are critical for this process. Endocytosis following H/R was required for the activation of endosomal Noxs, c-Src activation, and the ability of c-Src to tyrosine-phosphorylate IκBα. Quenching intra-endosomal ROS during reoxygenation inhibited c-Src activation without affecting c-Src recruitment from the plasma membrane to endosomes. However, siRNA (small interfering RNA)-mediated knockdown of Rac1 prevented c-Src recruitment into the endosomal compartment following H/R. Given that Rac1 is a known activator of Nox1 and Nox2, we investigated whether these two proteins were required for c-Src activation in Nox-deficient primary fibroblasts. Findings from these studies suggest that both Nox1 and Nox2 participate in the initial redox activation of c-Src following H/R. In summary, our results suggest that Rac1-dependent Noxs play a critical role in activating c-Src following H/R injury. This signalling pathway may be a useful therapeutic target for ischaemia/reperfusion-related diseases.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Choi, Isaac, Julia Struwe e Lutz Ackermann. "C–H activation by immobilized heterogeneous photocatalysts". Photochemical & Photobiological Sciences 20, n.º 12 (16 de novembro de 2021): 1563–72. http://dx.doi.org/10.1007/s43630-021-00132-9.

Texto completo da fonte
Resumo:
AbstractDuring the last decades, the merger of photocatalysis with transition metal chemistry has been surfaced as a sustainable tool in modern molecular syntheses. This Account highlights major advances in synergistic photo-enabled C‒H activations. Inspired by our homogenous ruthenium- and copper-catalyzed C‒H activations in the absence of an exogenous photosensitizer, this Account describes the recent progress on heterogeneous photo-induced C‒H activation enabled by immobilized hybrid catalysts until September 2021, with a topical focus on recyclability as well as robustness of the heterogeneous photocatalyst.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Pan, Subhas Chandra. "Organocatalytic C–H activation reactions". Beilstein Journal of Organic Chemistry 8 (27 de agosto de 2012): 1374–84. http://dx.doi.org/10.3762/bjoc.8.159.

Texto completo da fonte
Resumo:
Organocatalytic C–H activation reactions have recently been developed besides the traditional metal-catalysed C–H activation reactions. The recent non-asymmetric and asymmetric C–H activation reactions mediated by organocatalysts are discussed in this review.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Yeston, Jake. "C–H activation goes macro". Science 371, n.º 6535 (18 de março de 2021): 1217.5–1218. http://dx.doi.org/10.1126/science.371.6535.1217-e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Yeston, Jake. "Cyclopropanes through C–H activation". Science 369, n.º 6511 (24 de setembro de 2020): 1580.7–1581. http://dx.doi.org/10.1126/science.369.6511.1580-g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Moselage, Marc, Jie Li e Lutz Ackermann. "Cobalt-Catalyzed C–H Activation". ACS Catalysis 6, n.º 2 (21 de dezembro de 2015): 498–525. http://dx.doi.org/10.1021/acscatal.5b02344.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Liu, Weiping, e Lutz Ackermann. "Manganese-Catalyzed C–H Activation". ACS Catalysis 6, n.º 6 (11 de maio de 2016): 3743–52. http://dx.doi.org/10.1021/acscatal.6b00993.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Holland, Herbert L. "ChemInform Abstract: C-H Activation". ChemInform 30, n.º 28 (14 de junho de 2010): no. http://dx.doi.org/10.1002/chin.199928306.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Kantam, M. Lakshmi, Chandrakanth Gadipelly, Gunjan Deshmukh, K. Rajender Reddy e Suresh Bhargava. "Copper Catalyzed C−H Activation". Chemical Record 19, n.º 7 (30 de outubro de 2018): 1302–18. http://dx.doi.org/10.1002/tcr.201800107.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Su, Miaoshen, Cheng Li e Jingjun Ma. "Iron-catalyzed C−H Activation". Journal of the Chinese Chemical Society 63, n.º 10 (14 de setembro de 2016): 828–40. http://dx.doi.org/10.1002/jccs.201600184.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Wencel-Delord, Joanna, e Françoise Colobert. "Asymmetric C(sp2)H Activation". Chemistry - A European Journal 19, n.º 42 (17 de setembro de 2013): 14010–17. http://dx.doi.org/10.1002/chem.201302576.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Shi, Renyi, Lijun Lu, Hangyu Xie, Jingwen Yan, Ting Xu, Hua Zhang, Xiaotian Qi, Yu Lan e Aiwen Lei. "C8–H bond activation vs. C2–H bond activation: from naphthyl amines to lactams". Chemical Communications 52, n.º 90 (2016): 13307–10. http://dx.doi.org/10.1039/c6cc06358f.

Texto completo da fonte
Resumo:
Pd-catalyzed selective amine-oriented C8–H bond functionalization/N-dealkylative carbonylation of naphthyl amines has been achieved. The amine group from dealkylation is proposed to be the directing group for promoting this process. It represents a straightforward and easy method to access various biologically important benzo[cd]indol-2(1H)-one derivatives.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Tsoureas, Nikolaos, Jennifer C. Green e F. Geoffrey N. Cloke. "C–H and H–H activation at a di-titanium centre". Chemical Communications 53, n.º 98 (2017): 13117–20. http://dx.doi.org/10.1039/c7cc07726b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Nikonov, Georgii I., Sergei F. Vyboishchikov e Oleg G. Shirobokov. "Facile Activation of H–H and Si–H Bonds by Boranes". Journal of the American Chemical Society 134, n.º 12 (15 de março de 2012): 5488–91. http://dx.doi.org/10.1021/ja300365s.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Jiang, Heming, e Tian-Yu Sun. "The Activating Effect of Strong Acid for Pd-Catalyzed Directed C–H Activation by Concerted Metalation-Deprotonation Mechanism". Molecules 26, n.º 13 (4 de julho de 2021): 4083. http://dx.doi.org/10.3390/molecules26134083.

Texto completo da fonte
Resumo:
A computational study on the origin of the activating effect for Pd-catalyzed directed C–H activation by the concerted metalation-deprotonation (CMD) mechanism is conducted. DFT calculations indicate that strong acids can make Pd catalysts coordinate with directing groups (DGs) of the substrates more strongly and lower the C–H activation energy barrier. For the CMD mechanism, the electrophilicity of the Pd center and the basicity of the corresponding acid ligand for deprotonating the C–H bond are vital to the overall C–H activation energy barrier. Furthermore, this rule might disclose the role of some additives for C–H activation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Zhu, Haoran, Sen Zhao, Yu Zhou, Chunpu Li e Hong Liu. "Ruthenium-Catalyzed C–H Activations for the Synthesis of Indole Derivatives". Catalysts 10, n.º 11 (29 de outubro de 2020): 1253. http://dx.doi.org/10.3390/catal10111253.

Texto completo da fonte
Resumo:
The synthesis of substituted indoles has received great attention in the field of organic synthesis methodology. C–H activation makes it possible to obtain a variety of designed indole derivatives in mild conditions. Ruthenium catalyst, as one of the most significant transition-metal catalysts, has been contributing in the synthesis of indole scaffolds through C–H activation and C–H activation on indoles. Herein, we attempt to present an overview about the construction strategies of indole scaffold and site-specific modifications for indole scaffold via ruthenium-catalyzed C–H activations in recent years.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Maron, Laurent, e Odile Eisenstein. "DFT Study of H−H Activation by Cp2LnH d0Complexes". Journal of the American Chemical Society 123, n.º 6 (fevereiro de 2001): 1036–39. http://dx.doi.org/10.1021/ja0033483.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Pavlov, Maria, Per E. M. Siegbahn, Margareta R. A. Blomberg e Robert H. Crabtree. "Mechanism of H−H Activation by Nickel−Iron Hydrogenase". Journal of the American Chemical Society 120, n.º 3 (janeiro de 1998): 548–55. http://dx.doi.org/10.1021/ja971681+.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Fogg, Christiana N. "Unexpected basophil activation". Science 360, n.º 6392 (31 de maio de 2018): 976.8–977. http://dx.doi.org/10.1126/science.360.6392.976-h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Keyes, Lauren, Tongen Wang, Brian O. Patrick e Jennifer A. Love. "Pt mediated C–H activation: Formation of a six membered platinacycle via Csp3-H activation". Inorganica Chimica Acta 380 (janeiro de 2012): 284–90. http://dx.doi.org/10.1016/j.ica.2011.09.030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Zharikov, Sergey I., Karina Y. Krotova, Leonid Belayev e Edward R. Block. "Pertussis toxin activates l-arginine uptake in pulmonary endothelial cells through downregulation of PKC-α activity". American Journal of Physiology-Lung Cellular and Molecular Physiology 286, n.º 5 (maio de 2004): L974—L983. http://dx.doi.org/10.1152/ajplung.00236.2003.

Texto completo da fonte
Resumo:
Pertussis toxin (PTX) induces activation of l-arginine transport in pulmonary artery endothelial cells (PAEC). The effects of PTX on l-arginine transport appeared after 6 h of treatment and reached maximal values after treatment for 12 h. PTX-induced changes in l-arginine transport were not accompanied by changes in expression of cationic amino acid transporter (CAT)-1 protein, the main l-arginine transporter in PAEC. Unlike holotoxin, the β-oligomer-binding subunit of PTX did not affect l-arginine transport in PAEC, suggesting that Gαi ribosylation is an important step in the activation of l-arginine transport by PTX. An activator of adenylate cyclase, forskolin, and an activator of protein kinase A (PKA), Sp-cAMPS, did not affect l-arginine transport in PAEC. In addition, inhibitors of PKA or adenylate cyclase did not change the activating effect of PTX on l-arginine uptake. Long-term treatment with PTX (18 h) induced a 40% decrease in protein kinase C (PKC)-α but did not affect the activities of PKC-ϵ and PKC-ζ in PAEC. An activator of PKC-α, phorbol 12-myristate 13-acetate, abrogated the activation of l-arginine transport in PAEC treated with PTX. Incubation of PTX-treated PAEC with phorbol 12-myristate 13-acetate in combination with an inhibitor of PKC-α (Go 6976) restored the activating effects of PTX on l-arginine uptake, suggesting PTX-induced activation of l-arginine transport is mediated through downregulation of PKC-α. Measurements of nitric oxide (NO) production by PAEC revealed that long-term treatment with PTX induced twofold increases in the amount of NO in PAEC. PTX also increased l-[3H]citrulline production from extracellular l-[3H]arginine without affecting endothelial NO synthase activity. These results demonstrate that PTX increased NO production through activation of l-arginine transport in PAEC.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Zhang, Yanghui, Bo Zhou e Ailan Lu. "Pd-Catalyzed C–H Silylation Reactions with Disilanes". Synlett 30, n.º 06 (18 de dezembro de 2018): 685–93. http://dx.doi.org/10.1055/s-0037-1610339.

Texto completo da fonte
Resumo:
Pd-catalyzed C–H silylation reactions remain underdeveloped. General strategies usually rely on the use of complex bidentate directing groups. C,C-Palladacycles exhibit extremely high reactivity towards hexamethyldisilane and can be disilylated very efficiently. The C,C-palladacycles are prepared through halide-directed C–H activation. This account introduces Pd-catalyzed C–H silylation reactions with di­silanes as the silyl source, and is focused on studies on the silylation of C,C-palladacycles.1 Introduction and Background2 Allylic C–H Silylation Reaction3 Coordinating-Ligand-Directed C–H Silylation Reaction4 Disilylation of C(sp2),C(sp2)-Palladacycles That are Generated by C(sp2)–H activation5 Disilylation of C(sp2),C(sp3)-Palladacycles That are Generated by C(sp3)–H Activation6 Disilylation of C,C-Palladacycles That are Generated through Domino Processes7 Summary and Outlook
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Mao, Weiqing, Li Xiang, Carlos Alvarez Lamsfus, Laurent Maron, Xuebing Leng e Yaofeng Chen. "Highly Reactive Scandium Phosphinoalkylidene Complex: C–H and H–H Bonds Activation". Journal of the American Chemical Society 139, n.º 3 (12 de janeiro de 2017): 1081–84. http://dx.doi.org/10.1021/jacs.6b13081.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Tsoureas, Nikolaos, Jennifer C. Green e F. Geoffrey N. Cloke. "Correction: C–H and H–H activation at a di-titanium centre". Chemical Communications 54, n.º 14 (2018): 1797. http://dx.doi.org/10.1039/c8cc90051e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Cui, Weihong, e Bradford B. Wayland. "Activation of C−H / H−H Bonds by Rhodium(II) Porphyrin Bimetalloradicals". Journal of the American Chemical Society 126, n.º 26 (julho de 2004): 8266–74. http://dx.doi.org/10.1021/ja049291s.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Tischler, Orsolya, Zsófia Bokányi e Zoltán Novák. "Activation of C–H Activation: The Beneficial Effect of Catalytic Amount of Triaryl Boranes on Palladium-Catalyzed C–H Activation". Organometallics 35, n.º 5 (março de 2016): 741–46. http://dx.doi.org/10.1021/acs.organomet.5b01017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Hazra, Somjit, Biplab Mondal, Rajendra Narayan De e Brindaban Roy. "Pd-catalyzed dehydrogenative C–H activation of iminyl hydrogen with the indole C3–H and C2–H bond: an elegant synthesis of indeno[1,2-b]indoles and indolo[1,2-a]indoles". RSC Advances 5, n.º 29 (2015): 22480–89. http://dx.doi.org/10.1039/c4ra16661b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Andrejko, Kenneth M., Jodi Chen e Clifford S. Deutschman. "Intrahepatic STAT-3 activation and acute phase gene expression predict outcome after CLP sepsis in the rat". American Journal of Physiology-Gastrointestinal and Liver Physiology 275, n.º 6 (1 de dezembro de 1998): G1423—G1429. http://dx.doi.org/10.1152/ajpgi.1998.275.6.g1423.

Texto completo da fonte
Resumo:
Interleukin-6 (IL-6) regulates hepatic acute phase responses by activating the transcription factor signal transducer and activator of transcription (STAT)-3. IL-6 also may modulate septic pathophysiology. We hypothesize that 1) STAT-3 activation and transcription of α2-macroglobulin (A2M) correlate with recovery from sepsis and 2) STAT-3 activation and A2M transcription reflect intrahepatic and not serum IL-6. Nonlethal sepsis was induced in rats by single puncture cecal ligation and puncture (CLP) and lethal sepsis via double-puncture CLP. STAT-3 activation and A2M transcription were detected at 3–72 h and intrahepatic IL-6 at 24–72 h following single-puncture CLP. All were detected only at 3–16 h following double-puncture CLP and at lower levels than following single-puncture CLP. Loss of serum and intrahepatic IL-6 activity after double-puncture CLP correlated with mortality. Neither intrahepatic nor serum IL-6 levels correlated with intrahepatic IL-6 activity. STAT-3 activation following single-puncture CLP inversely correlated with altered transcription of gluconeogenic, ketogenic, and ureagenic genes. IL-6 may have both beneficial and detrimental effects in sepsis. Fulminant sepsis may decrease the ability of hepatocytes to respond to IL-6.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Bowring, Miriam A., Robert G. Bergman e T. Don Tilley. "Pt-Catalyzed C–C Activation Induced by C–H Activation". Journal of the American Chemical Society 135, n.º 35 (20 de agosto de 2013): 13121–28. http://dx.doi.org/10.1021/ja406260j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Ng, L. L., P. Delva e J. E. Davies. "Intracellular pH regulation of SV-40 virus transformed human MRC-5 fibroblasts and cell membrane cholesterol". American Journal of Physiology-Cell Physiology 264, n.º 4 (1 de abril de 1993): C789—C793. http://dx.doi.org/10.1152/ajpcell.1993.264.4.c789.

Texto completo da fonte
Resumo:
Alterations in membrane cholesterol could affect the activity of various membrane transporters, including the Na(+)-H+ antiport. The effect of cellular cholesterol depletion (with phosphatidylcholine liposomes) and enrichment (with cholesterol and phosphatidylcholine liposomes) on cellular pH regulation was studied in SV-40 virus transformed human MRC-5 fibroblasts. Cellular cholesterol depletion led to activation of the Na(+)-H+ antiport by an increased maximal velocity (Vmax) of the transporter, with no changes in the apparent dissociation constant (Kd) or Hill coefficient for intracellular H+. Cholesterol enrichment had no effect on the activation of the Na(+)-H+ antiport by intracellular acidosis. However, activation of the Na(+)-H+ antiport by an osmotic stimulus was enhanced in cholesterol-depleted cells and reduced in cholesterol-enriched cells. Liposomes that had no effect on cellular cholesterol did not alter the activation of Na(+)-H+ antiport activity by intracellular acidosis or an osmotic stimulus. Thus in situ modification of cellular cholesterol altered Na(+)-H+ antiport activity differently depending on the type of activating stimulus.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Kim, Yong-Hoon, Jung Hwan Hwang, Kyung-Shim Kim, Jung-Ran Noh, Gil-Tae Gang, Won Keun Oh, Kyeong-Hoon Jeong et al. "Enhanced activation of NAD(P)H". Journal of Hypertension 32, n.º 2 (fevereiro de 2014): 306–17. http://dx.doi.org/10.1097/hjh.0000000000000018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Shang, Rui, Laurean Ilies e Eiichi Nakamura. "Iron-Catalyzed C–H Bond Activation". Chemical Reviews 117, n.º 13 (5 de abril de 2017): 9086–139. http://dx.doi.org/10.1021/acs.chemrev.6b00772.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

ROUHI, MAUREEN. "Real-world C-H bond activation". Chemical & Engineering News 75, n.º 41 (13 de outubro de 1997): 4–5. http://dx.doi.org/10.1021/cen-v075n041.p004a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Keck, James L., Eric R. Goedken e Susan Marqusee. "Activation/Attenuation Model for RNase H". Journal of Biological Chemistry 273, n.º 51 (18 de dezembro de 1998): 34128–33. http://dx.doi.org/10.1074/jbc.273.51.34128.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Chatani, Naoto. "C−H Activation - Far from Over". Asian Journal of Organic Chemistry 7, n.º 7 (julho de 2018): 1135. http://dx.doi.org/10.1002/ajoc.201800380.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Khan, Farheen Fatima, Soumya Kumar Sinha, Goutam Kumar Lahiri e Debabrata Maiti. "Ruthenium-Mediated Distal C−H Activation". Chemistry - An Asian Journal 13, n.º 17 (26 de junho de 2018): 2243–56. http://dx.doi.org/10.1002/asia.201800545.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Sauermann, Nicolas, Tjark H. Meyer e Lutz Ackermann. "Electrochemical Cobalt-Catalyzed C−H Activation". Chemistry - A European Journal 24, n.º 61 (2 de agosto de 2018): 16209–17. http://dx.doi.org/10.1002/chem.201802706.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Mark Peplow, special to C&EN. "C–H activation achieved in alcohols". C&EN Global Enterprise 101, n.º 30 (11 de setembro de 2023): 4. http://dx.doi.org/10.1021/cen-10130-leadcon.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Brianna Barbu. "Far-out chiral C–H activation". C&EN Global Enterprise 102, n.º 16 (27 de maio de 2024): 6. http://dx.doi.org/10.1021/cen-10216-scicon3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Yin, Jiangliang, e Jingsong You. "Concise Synthesis of Polysubstituted Carbohelicenes by a C−H Activation/Radical Reaction/C−H Activation Sequence". Angewandte Chemie 131, n.º 1 (28 de novembro de 2018): 308–12. http://dx.doi.org/10.1002/ange.201811023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia