Artigos de revistas sobre o tema "Groundwater flow Computer simulation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Groundwater flow Computer simulation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
VAN HERWAARDEN, ONNO A., e JOHAN GRASMAN. "DISPERSIVE GROUNDWATER FLOW AND POLLUTION". Mathematical Models and Methods in Applied Sciences 01, n.º 01 (março de 1991): 61–81. http://dx.doi.org/10.1142/s0218202591000058.
Texto completo da fonteWang, Yan, Wen Xia Wei, Hui Ling Han e Ying Wang. "Groundwater Migration Modeling and Parameter Sensitivity Analysis on Contaminated Site". Advanced Materials Research 878 (janeiro de 2014): 775–81. http://dx.doi.org/10.4028/www.scientific.net/amr.878.775.
Texto completo da fonteJi, Xiaohui, Tangpei Cheng e Qun Wang. "CUDA-based solver for large-scale groundwater flow simulation". Engineering with Computers 28, n.º 1 (19 de fevereiro de 2011): 13–19. http://dx.doi.org/10.1007/s00366-011-0213-2.
Texto completo da fonteKupfersberger, Hans, Gerhard Rock e Johannes C. Draxler. "Combining Groundwater Flow Modeling and Local Estimates of Extreme Groundwater Levels to Predict the Groundwater Surface with a Return Period of 100 Years". Geosciences 10, n.º 9 (18 de setembro de 2020): 373. http://dx.doi.org/10.3390/geosciences10090373.
Texto completo da fonteLei, Xinbo, Xiuhua Zheng, Chenyang Duan, Jianhong Ye e Kang Liu. "Three-Dimensional Numerical Simulation of Geothermal Field of Buried Pipe Group Coupled with Heat and Permeable Groundwater". Energies 12, n.º 19 (27 de setembro de 2019): 3698. http://dx.doi.org/10.3390/en12193698.
Texto completo da fonteZhao, Ying Wang, Xue Yuan Li, Shi Lei Chen e Kai Bian. "Groundwater Flow Field Analysis and 3D Visualization System". Advanced Materials Research 1073-1076 (dezembro de 2014): 1664–68. http://dx.doi.org/10.4028/www.scientific.net/amr.1073-1076.1664.
Texto completo da fonteRyu, Han-Sun, Jinah Moon, Heejung Kim e Jin-Yong Lee. "Modeling and Parametric Simulation of Microplastic Transport in Groundwater Environments". Applied Sciences 11, n.º 16 (4 de agosto de 2021): 7189. http://dx.doi.org/10.3390/app11167189.
Texto completo da fonteFischer, T., D. Naumov, S. Sattler, O. Kolditz e M. Walther. "GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models". Geoscientific Model Development 8, n.º 11 (12 de novembro de 2015): 3681–94. http://dx.doi.org/10.5194/gmd-8-3681-2015.
Texto completo da fonteWu, Yue, Yan-Zhi Li, Wei-Guo Qiao, Zhen-Wang Fan, Shuai Zhang, Kui Chen e Lei Zhang. "Water Seepage in Rocks at Micro-Scale". Water 14, n.º 18 (11 de setembro de 2022): 2827. http://dx.doi.org/10.3390/w14182827.
Texto completo da fonteXueya, Lin, e Yang Yuesuo. "The Optimization of Ground Water Supply System in Shi Jiazhuang City, China". Water Science and Technology 24, n.º 11 (1 de dezembro de 1991): 71–76. http://dx.doi.org/10.2166/wst.1991.0338.
Texto completo da fontePongritsakda, Thatthep, Kengo Nakamura, Jiajie Wang, Noriaki Watanabe e Takeshi Komai. "Prediction and Remediation of Groundwater Pollution in a Dynamic and Complex Hydrologic Environment of an Illegal Waste Dumping Site". Applied Sciences 11, n.º 19 (4 de outubro de 2021): 9229. http://dx.doi.org/10.3390/app11199229.
Texto completo da fonteBooij, M., A. Leijnse, S. Haldorsen, M. Heim e H. Rueslåtten. "Subpermafrost Groundwater Modelling in Ny-Ålesund, Svalbard". Hydrology Research 29, n.º 4-5 (1 de agosto de 1998): 385–96. http://dx.doi.org/10.2166/nh.1998.0030.
Texto completo da fonteTriatmojo, Pramudita, e Mas Agus Mardyanto. "Forward Problems Solving of Groundwater Flow using Stochastic Groundwater Vistas Method". Jurnal Lahan Suboptimal : Journal of Suboptimal Lands 10, n.º 2 (1 de outubro de 2021): 160–69. http://dx.doi.org/10.36706/jlso.10.2.2021.525.
Texto completo da fonteAkram, Sedki. "Improved Flower Pollination Algorithm for Optimal Groundwater Management". International Journal of Computational Intelligence and Applications 19, n.º 03 (5 de agosto de 2020): 2050022. http://dx.doi.org/10.1142/s1469026820500224.
Texto completo da fonteHughes, J. D., C. D. Langevin e J. T. White. "MODFLOW-Based Coupled Surface Water Routing and Groundwater-Flow Simulation". Groundwater 53, n.º 3 (5 de junho de 2014): 452–63. http://dx.doi.org/10.1111/gwat.12216.
Texto completo da fonteBedekar, Vivek, Richard G. Niswonger, Kenneth Kipp, Sorab Panday e Matthew Tonkin. "Approaches to the Simulation of Unconfined Flow and Perched Groundwater Flow in MODFLOW". Ground Water 50, n.º 2 (2 de junho de 2011): 187–98. http://dx.doi.org/10.1111/j.1745-6584.2011.00829.x.
Texto completo da fonteOwen, S. J., N. L. Jones e J. P. Holland. "A comprehensive modeling environment for the simulation of groundwater flow and transport". Engineering with Computers 12, n.º 3-4 (setembro de 1996): 235–42. http://dx.doi.org/10.1007/bf01198737.
Texto completo da fonteCai, Jinbang, Yue Su, Huan Shen e Yong Huang. "Simulation of Groundwater Flow in Fractured-Karst Aquifer with a Coupled Model in Maling Reservoir, China". Applied Sciences 11, n.º 4 (21 de fevereiro de 2021): 1888. http://dx.doi.org/10.3390/app11041888.
Texto completo da fonteTolera, Mesfin Benti, e Il-Moon Chung. "Integrated Hydrological Analysis of Little Akaki Watershed Using SWAT-MODFLOW, Ethiopia". Applied Sciences 11, n.º 13 (28 de junho de 2021): 6011. http://dx.doi.org/10.3390/app11136011.
Texto completo da fonteSerageldin, Ahmed A., Ali Radwan, Yoshitaka Sakata, Takao Katsura e Katsunori Nagano. "The Effect of Groundwater Flow on the Thermal Performance of a Novel Borehole Heat Exchanger for Ground Source Heat Pump Systems: Small Scale Experiments and Numerical Simulation". Energies 13, n.º 6 (18 de março de 2020): 1418. http://dx.doi.org/10.3390/en13061418.
Texto completo da fonteKaneko, Shohei, Akira Tomigashi, Takeshi Ishihara, Gaurav Shrestha, Mayumi Yoshioka e Youhei Uchida. "Proposal for a Method Predicting Suitable Areas for Installation of Ground-Source Heat Pump Systems Based on Response Surface Methodology". Energies 13, n.º 8 (11 de abril de 2020): 1872. http://dx.doi.org/10.3390/en13081872.
Texto completo da fonteAn, Nguyen Ngoc, Huynh Song Nhut, Tran Anh Phuong, Vu Quang Huy, Nguyen Cao Hanh, Giang Thi Phuong Thao, Pham The Trinh, Pham Viet Hoa e Nguyễn An Bình. "Groundwater simulation in Dak Lak province based on MODFLOW model and climate change scenarios". Frontiers in Engineering and Built Environment 2, n.º 1 (25 de janeiro de 2022): 55–67. http://dx.doi.org/10.1108/febe-11-2021-0055.
Texto completo da fonteCheng, Tangpei, Zeyao Mo e Jingli Shao. "Accelerating Groundwater Flow Simulation in MODFLOW Using JASMIN-Based Parallel Computing". Groundwater 52, n.º 2 (18 de abril de 2013): 194–205. http://dx.doi.org/10.1111/gwat.12047.
Texto completo da fonteKobayashi, Kenichiro, Reinhard Hinkelmann e Rainer Helmig. "Development of a simulation–optimization model for multiphase systems in the subsurface: a challenge to real-world simulation–optimization". Journal of Hydroinformatics 10, n.º 2 (1 de março de 2008): 139–52. http://dx.doi.org/10.2166/hydro.2008.013.
Texto completo da fonteGłogowski, Arkadiusz, e Mieczysław Chalfen. "Analysis of the effectiveness of the systems protecting against the impact of water damming in the river on the increase of groundwater level on the example of the Malczyce dam". ITM Web of Conferences 23 (2018): 00011. http://dx.doi.org/10.1051/itmconf/20182300011.
Texto completo da fonteRudolph, D. L., e E. A. Sudicky. "Simulation of groundwater flow in complex multiaquifer systems: Performance of a quasi three-dimensional technique in the steady-state case". Canadian Geotechnical Journal 27, n.º 5 (1 de outubro de 1990): 590–600. http://dx.doi.org/10.1139/t90-074.
Texto completo da fonteHanasaki, Naota, Sayaka Yoshikawa, Yadu Pokhrel e Shinjiro Kanae. "A global hydrological simulation to specify the sources of water used by humans". Hydrology and Earth System Sciences 22, n.º 1 (29 de janeiro de 2018): 789–817. http://dx.doi.org/10.5194/hess-22-789-2018.
Texto completo da fonteBudinski, Ljubomir, Julius Fabian e Matija Stipic. "Modeling groundwater flow by lattice Boltzmann method in curvilinear coordinates". International Journal of Modern Physics C 26, n.º 02 (fevereiro de 2015): 1550013. http://dx.doi.org/10.1142/s0129183115500138.
Texto completo da fonteBultreys, T., S. Van Offenwert, W. Goethals, M. N. Boone, J. Aelterman e V. Cnudde. "X-ray tomographic micro-particle velocimetry in porous media". Physics of Fluids 34, n.º 4 (abril de 2022): 042008. http://dx.doi.org/10.1063/5.0088000.
Texto completo da fonteSzymkiewicz, Adam, Anna Gumuła-Kawęcka, Dawid Potrykus, Beata Jaworska-Szulc, Małgorzata Pruszkowska-Caceres e Wioletta Gorczewska-Langner. "Estimation of Conservative Contaminant Travel Time through Vadose Zone Based on Transient and Steady Flow Approaches". Water 10, n.º 10 (10 de outubro de 2018): 1417. http://dx.doi.org/10.3390/w10101417.
Texto completo da fonteMaier, Robert S., D. M. Kroll, H. Ted Davis e Robert S. Bernard. "Pore-Scale Flow and Dispersion". International Journal of Modern Physics C 09, n.º 08 (dezembro de 1998): 1523–33. http://dx.doi.org/10.1142/s0129183198001370.
Texto completo da fonteYang, Zhiquan, Dan Zhang, Chaoyue Li, Zhiwei Zhang, Yingyan Zhu, Yi Yang, Na He et al. "Column Penetration and Diffusion Mechanism of Bingham Fluid Considering Displacement Effect". Applied Sciences 12, n.º 11 (25 de maio de 2022): 5362. http://dx.doi.org/10.3390/app12115362.
Texto completo da fonteAshby, S. F., W. J. Bosl, R. D. Falgout, S. G. Smith, A. F. B. Tompson e T. J. Williams. "A Numerical Simulation of Groundwater Flow and Contaminant Transport on the CRAY T3D and C90 Supercomputers". International Journal of High Performance Computing Applications 13, n.º 1 (março de 1999): 80–93. http://dx.doi.org/10.1177/109434209901300105.
Texto completo da fontePhoban, Harutus, Uma Seeboonruang e Prateep Lueprasert. "Numerical Modeling of Single Pile Behaviors Due to Groundwater Level Rising". Applied Sciences 11, n.º 13 (22 de junho de 2021): 5782. http://dx.doi.org/10.3390/app11135782.
Texto completo da fonteLiu, Sida, Yangxiao Zhou, Mingzhao Xie, Michael E. McCalin e Xu-Sheng Wang. "Comparative Assessment of Methods for Coupling Regional and Local Groundwater Flow Models: A Case Study in the Beijing Plain, China". Water 13, n.º 16 (16 de agosto de 2021): 2229. http://dx.doi.org/10.3390/w13162229.
Texto completo da fonteWang, Xiaopu, Lianjie Hou, Tianhao He, Zhenhan Diao, Chuanjin Yao, Tao Long e Ling Fan. "Numerical Simulation of the Enrichment of Chemotactic Bacteria in Oil-Water Two-Phase Transfer Fields of Heterogeneous Porous Media". Applied Sciences 12, n.º 10 (21 de maio de 2022): 5215. http://dx.doi.org/10.3390/app12105215.
Texto completo da fonteRefsgaard, Anders, Steen Christensen e Jan Reffstrup. "Finite Element Analysis of Controlled Saltwater Intrusion in Heterogeneous Reservoirs". Hydrology Research 20, n.º 1 (1 de fevereiro de 1989): 25–42. http://dx.doi.org/10.2166/nh.1989.0003.
Texto completo da fonteRabemaharitra, Tahirinandraina Prudence, Yanhong Zou, Zhuowei Yi, Yong He e Umair Khan. "Optimized Pilot Point Emplacement Based Groundwater Flow Calibration Method for Heterogeneous Small-Scale Area". Applied Sciences 12, n.º 9 (6 de maio de 2022): 4648. http://dx.doi.org/10.3390/app12094648.
Texto completo da fontePasetto, Damiano, Alberto Guadagnini e Mario Putti. "A reduced-order model for Monte Carlo simulations of stochastic groundwater flow". Computational Geosciences 18, n.º 2 (19 de dezembro de 2013): 157–69. http://dx.doi.org/10.1007/s10596-013-9389-4.
Texto completo da fonteTimaniya, Aman, e Nayankumar Soni. "“Modeling of Saline Water Intrusion using MODFLOW in Una Coastal Aquifer of Gujarat, India.”". International Journal for Research in Applied Science and Engineering Technology 10, n.º 5 (31 de maio de 2022): 634–40. http://dx.doi.org/10.22214/ijraset.2022.42309.
Texto completo da fonteAl-Barwani, H. H., M. Al-Lawatia, E. Balakrishnan e A. Purnama. "Modeling Flow and Transport in Unsaturated Porous Media: A Review". Sultan Qaboos University Journal for Science [SQUJS] 5 (1 de dezembro de 2000): 265. http://dx.doi.org/10.24200/squjs.vol5iss0pp265-280.
Texto completo da fonteWu, Yue, Wei-Guo Qiao, Yan-Zhi Li, Zhen-Wang Fan, Shuai Zhang, Lei Zhang e Xiao-Li Zhang. "Seepage of Groundwater in an Underground Fractured Rock Mass and Its Sustainable Engineering Application". Applied Sciences 12, n.º 16 (17 de agosto de 2022): 8221. http://dx.doi.org/10.3390/app12168221.
Texto completo da fonteŠoltész, Andrej, Dana Baroková, Zinaw Dingetu Shenga e Michaela Červeňanská. "Hydraulic Assessment of the Impacts of Gate Realization on Groundwater Regime". Pollack Periodica 15, n.º 3 (7 de novembro de 2020): 162–71. http://dx.doi.org/10.1556/606.2020.15.3.16.
Texto completo da fonteNyende, Jacob, Isaac Enyogoi, John Mango e Henry Kasumba. "Numerical Simulation of a Two-Dimensional Groundwater Pollute Transport Problem Using Incompressible Steady-State Navier-Stokes Equations and Diffusion-Convection Equations". Modelling and Simulation in Engineering 2022 (12 de abril de 2022): 1–20. http://dx.doi.org/10.1155/2022/7419502.
Texto completo da fonteTracy, Fred Thomas, Thomas C. Oppe e Maureen K. Corcoran. "A comparison of MPI and co-array FORTRAN for large finite element variably saturated flow simulations". Scalable Computing: Practice and Experience 19, n.º 4 (29 de dezembro de 2018): 423–32. http://dx.doi.org/10.12694/scpe.v19i4.1468.
Texto completo da fonteLyons, Richard T., Richard C. Peralta e Partha Majumder. "Comparing Single-Objective Optimization Protocols for Calibrating the Birds Nest Aquifer Model—A Problem Having Multiple Local Optima". International Journal of Environmental Research and Public Health 17, n.º 3 (30 de janeiro de 2020): 853. http://dx.doi.org/10.3390/ijerph17030853.
Texto completo da fonteAbd-Elaty, Ismail, Martina Zeleňáková, Katarína Krajníková e Hany Abd-Elhamid. "Analytical Solution of Saltwater Intrusion in Costal Aquifers Considering Climate Changes and Different Boundary Conditions". Water 13, n.º 7 (4 de abril de 2021): 995. http://dx.doi.org/10.3390/w13070995.
Texto completo da fonteChen, Wenfang, Yaobin Zhang, Weiwei Shi, Yali Cui, Qiulan Zhang, Yakun Shi e Zexin Liang. "Analysis of Hydrogeochemical Characteristics and Origins of Chromium Contamination in Groundwater at a Site in Xinxiang City, Henan Province". Applied Sciences 11, n.º 24 (9 de dezembro de 2021): 11683. http://dx.doi.org/10.3390/app112411683.
Texto completo da fonteWang, Weishu, Chuang Li, Yun-Ze Li, Man Yuan e Tong Li. "Numerical Analysis of Heat Transfer Performance of In Situ Thermal Remediation of Large Polluted Soil Areas". Energies 12, n.º 24 (5 de dezembro de 2019): 4622. http://dx.doi.org/10.3390/en12244622.
Texto completo da fonteAndrássy, Tomáš, e Dana Baroková. "Numerical modeling of groundwater flow close to drinking water resources during flood events". Pollack Periodica 11, n.º 1 (abril de 2016): 43–54. http://dx.doi.org/10.1556/606.2016.11.1.5.
Texto completo da fonte