Literatura científica selecionada sobre o tema "Grid sensitivity"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Grid sensitivity".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Grid sensitivity"

1

Somayajula, Gopichand, e James E. Bernard. "Grid sensitivity analysis". Finite Elements in Analysis and Design 7, n.º 4 (fevereiro de 1991): 307–15. http://dx.doi.org/10.1016/0168-874x(91)90046-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Lian, Shuai, Bintang Li, Jianbo Wang e Rui Jiang. "On-line Update Method for the Sensitivity Consistency Model of Interconnected Power Grid Based on Electric Power Big Data". E3S Web of Conferences 256 (2021): 01014. http://dx.doi.org/10.1051/e3sconf/202125601014.

Texto completo da fonte
Resumo:
Real-time fast calculation of the power flow of the interconnected power grid is an important guarantee for the reliable operation of the interconnected power grid. The topology of the interconnected power grid is complex, and the calculation of the power flow of the whole network is large and timeconsuming. The sensitivity equivalent model can effectively simplify the interconnected power grid and shorten the time of the power flow calculation of the whole network. The operating state of the power grid is constantly changing. In order to ensure the accuracy of the power flow calculation results, it is necessary to update the uniform sensitivity equivalent model in real time. Due to factors such as the vertical management system between the interconnected power grids and the principle of commercial confidentiality, it is difficult to share information between interconnected power grids in real time, and the sensitivity equivalent model cannot be updated in real time, resulting in too much error in the calculation results and no reference value. To solve this problem, this paper proposes an online update method for the sensitivity equivalent model of the interconnected power grid based on power big data to solve the problem of excessive power flow calculation errors caused by the untimely update of the equivalent model parameters, and to ensure the operational reliability of the interconnected power grid.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Guba, O., M. A. Taylor, P. A. Ullrich, J. R. Overfelt e M. N. Levy. "The spectral element method on variable resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity". Geoscientific Model Development Discussions 7, n.º 3 (25 de junho de 2014): 4081–117. http://dx.doi.org/10.5194/gmdd-7-4081-2014.

Texto completo da fonte
Resumo:
Abstract. We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable resolution grids using the shallow water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution dependent coefficient. For the spectral element method with variable resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity is constructed so that for regions of uniform resolution it matches the traditional constant coefficient hyperviscsosity. With the tensor hyperviscosity the large scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications where long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Buzzard, Gregery T., e Dongbin Xiu. "Variance-Based Global Sensitivity Analysis via Sparse-Grid Interpolation and Cubature". Communications in Computational Physics 9, n.º 3 (março de 2011): 542–67. http://dx.doi.org/10.4208/cicp.230909.160310s.

Texto completo da fonte
Resumo:
AbstractThe stochastic collocation method using sparse grids has become a popular choice for performing stochastic computations in high dimensional (random) parameter space. In addition to providing highly accurate stochastic solutions, the sparse grid collocation results naturally contain sensitivity information with respect to the input random parameters. In this paper, we use the sparse grid interpolation and cubature methods of Smolyak together with combinatorial analysis to give a computationally efficient method for computing the global sensitivity values of Sobol’. This method allows for approximation of all main effect and total effect values from evaluation of f on a single set of sparse grids. We discuss convergence of this method, apply it to several test cases and compare to existing methods. As a result which may be of independent interest, we recover an explicit formula for evaluating a Lagrange basis interpolating polynomial associated with the Chebyshev extrema. This allows one to manipulate the sparse grid collocation results in a highly efficient manner.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Guba, O., M. A. Taylor, P. A. Ullrich, J. R. Overfelt e M. N. Levy. "The spectral element method (SEM) on variable-resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity". Geoscientific Model Development 7, n.º 6 (27 de novembro de 2014): 2803–16. http://dx.doi.org/10.5194/gmd-7-2803-2014.

Texto completo da fonte
Resumo:
Abstract. We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable-resolution grids using the shallow-water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance, implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution-dependent coefficient. For the spectral element method with variable-resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity is constructed so that, for regions of uniform resolution, it matches the traditional constant-coefficient hyperviscosity. With the tensor hyperviscosity, the large-scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications in which long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Mo, Yixiang, Jianfeng Tang, Zhongkai Fan, Tao Hu, Fen Lin, Ruomei Xie, Shuai Yuan, Shuaibin Liu, Hongzhi Yuan e Yanliang Tan. "Design of multi-layer grid in a giant electrostatic collection vessel of ultra-high sensitivity radon monitor". Journal of Instrumentation 17, n.º 07 (1 de julho de 2022): T07011. http://dx.doi.org/10.1088/1748-0221/17/07/t07011.

Texto completo da fonte
Resumo:
Abstract Developing an ultra-high sensitivity electrostatic collection radon monitor benefits the scientific experiments of China Jinping Underground Laboratory. Here, a one cubic meter electrostatic collection vessel with a multi-layer hemispherical metal grid was designed to increase the collection efficiency of positively charged Po-218 ions. The 3D model of the giant electrostatic collection vessel was constructed using the COMSOL Multiphysics simulation software, and the potential and electric field distributions in the vessel were simulated. Numerical simulation results were obtained according to the different radii and voltages applied to the grid. The electric field between the vessel wall and grid, between two grids, and between the grid and surface of the PIPS detector must be set uniformly to reduce the collection time of the positively charged Po-218 ions. Simulation results showed that setting a charged metal grid in the vessel can optimize the electric field distribution, and setting a two-layer charged metal grid in the giant vessel can further increase the cost performance. The average collection times of the electrostatic collection vessel with the two-layer grid along the vertical and oblique lines approximately 15% and 13% of that without the grid. The rates of positively charged Po-218 ions that could pass through the one and two-layer metal grids were 86.78% and 50%. Optimizing the electric field can greatly increase the sensitivity of radon monitors and reduce the humidity restrictions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Luhtala, Roni, Henrik Alenius e Tomi Roinila. "Practical Implementation of Adaptive SRF-PLL for Three-Phase Inverters Based on Sensitivity Function and Real-Time Grid-Impedance Measurements". Energies 13, n.º 5 (4 de março de 2020): 1173. http://dx.doi.org/10.3390/en13051173.

Texto completo da fonte
Resumo:
Rapidly increasing demand for renewable energy has created a need for the photovoltaic and wind farms to be placed in various locations that have diverse and possibly time-variant grid conditions. A mismatch between the grid impedance and output admittance of an inverter causes impedance-based stability issues, which appear as power quality problems and poor transient performance. Grid synchronization with phase-locked loop (PLL) introduces a negative-resistance-like behavior to inverter output admittance. High control bandwidth of the PLL makes the system sensitive to impedance-based stability issues when the inverter is connected to a weak grid that has high impedance. However, very conservative tunings lead to overly damped dynamic responses in strong grids, where the control performance and power quality can be improved by applying higher PLL control bandwidths. Continuous evaluation of grid conditions makes it possible to avoid the risk of instability and poor dynamic responses, as the inverter output admittance can be re-shaped online to continuously match the grid conditions. The present work proposes method for adaptive control of the PLL based on the real-time measurements of the grid impedance, applying pseudo-random binary sequence (PRBS) injections. The method limits the PLL bandwidth in weak grids to avoid stability issues and increases the control bandwidth in strong grids to improve voltage-tracking, and thus overall control performance. The method is verified through simulations and experimental laboratory tests in a kW-scale system. The results show that optimizing the PLL bandwidth with respect to the grid conditions is highly beneficial for system performance and stability.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Zhao, Bing, e Anand Asundi. "Microscopic grid methods—resolution and sensitivity". Optics and Lasers in Engineering 36, n.º 5 (novembro de 2001): 437–50. http://dx.doi.org/10.1016/s0143-8166(01)00071-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ec¸a, L., e M. Hoekstra. "On the Grid Sensitivity of the Wall Boundary Condition of the k-ω Turbulence Model". Journal of Fluids Engineering 126, n.º 6 (1 de novembro de 2004): 900–910. http://dx.doi.org/10.1115/1.1845492.

Texto completo da fonte
Resumo:
This paper presents a study on the k-ω turbulence model with regard to the numerical implementation of the ω boundary condition at a solid wall, where ω tends to infinity. Three different implementations are tested in the calculation of a simple two-dimensional turbulent flow over a flat plate. Grid refinement studies in grids with different near-wall grid line spacings are performed to assess the numerical uncertainty of the predicted drag coefficient CD. The results are compared with the predictions of several alternative algebraic, one-equation, and two-equation eddy-viscosity turbulence models. For the same level of grid refinement, the estimated uncertainty of CD obtained with the k-ω model is one order of magnitude larger than for all the other models.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Pagaldipti, N., e A. Chattopadhyay. "A discrete semianalytical procedure for aerodynamic sensitivity analysis including grid sensitivity". Computers & Mathematics with Applications 32, n.º 3 (agosto de 1996): 61–71. http://dx.doi.org/10.1016/0898-1221(96)00113-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Grid sensitivity"

1

Garmroodi, Doiran Mehdi. "Sensitivity Analysis for Future Grid Stability Studies". Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/15978.

Texto completo da fonte
Resumo:
The increasing penetration of converter-interfaced generators (CIGs) has raised concerns about the stability and security of future grids (FGs). These resources affect power systems dynamics in many ways including reducing system inertia, interacting with existing generators, changing power flow paths, etc. In this thesis, we carry out a sensitivity study to explore the structural impacts from CIGs on the damping and frequency stability of power systems. Initially, we study the impact of the intermittent power from wind turbine generators (WTGs) on the damping of the electromechanical oscillations in power systems. It will be shown that the inability of WTGs to provide synchronizing and damping torque to the system jeopardize the small signal stability of power systems. Stable operation regions, in terms of wind penetration and tie-line power, are derived and the impact of load flexibility on these regions are discussed. Next, we have studied the impact of the inertia distribution on the damping of the inter-area modes in power systems. It is shown that tie-line power has a significant role on the damping of the inter-area modes. Moreover, we show that dynamic voltage control and inertia emulation can be utilized to improve the damping of the system. By developing an oscillatory recovery model for power system loads, we have also studied the impact of load oscillations on the damping of the inter-area modes. It is shown that the load dynamics can have a significant influence on the electromechanical oscillations of power systems. Finally, the frequency support capability of WTGs is investigated and the performance of different techniques in utilizing the kinetic energy of the WTGs to assist the frequency stability of power systems is evaluated. A novel time-variable droop characteristic is proposed to enhance the contribution of WTGs in supporting system frequency.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Won, Eric C. "Sensitivity of a general circulation inverse model to sub-grid scale parametrization coefficients". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/58432.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Balsubramanian, Ravishankar. "Error estimation and grid adaptation for functional outputs using discrete-adjoint sensitivity analysis". Master's thesis, Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-10032002-113749.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Chang, Young Min. "Eulerian shape design sensitivity analysis and optimization for plane elasticity with fixed grid". [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0004040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Tran, Vinh X. "A sensitivity study of numerical solutions of the South China Sea ocean model to various grids generated by grid generation technique". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA305841.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Mohebbi, Farzad. "Optimal shape design based on body-fitted grid generation". Thesis, University of Canterbury. Mechanical Engineering, 2014. http://hdl.handle.net/10092/9427.

Texto completo da fonte
Resumo:
Shape optimization is an important step in many design processes. With the growing use of Computer Aided Engineering in the design chain, it has become very important to develop robust and efficient shape optimization algorithms. The field of Computer Aided Optimal Shape Design has grown substantially over the recent past. In the early days of its development, the method based on small shape perturbation to probe the parameter space and identify an optimal shape was routinely used. This method is nothing but an educated trial and error method. A key development in the pursuit of good shape optimization algorithms has been the advent of the adjoint method to compute the shape sensitivities more formally and efficiently. While undoubtedly, very attractive, this method relies on very sophisticated and advanced mathematical tools which are an impediment to its wider use in the engineering community. It that spirit, it is the purpose of this thesis to propose a new shape optimization algorithm based on more intuitive engineering principles and numerical procedures. In this thesis, the new shape optimization procedure which is proposed is based on the generation of a body-fitted mesh. This process maps the physical domain into a regular computational domain. Based on simple arguments relating to the use of the chain rule in the mapped domain, it is shown that an explicit expression for the shape sensitivity can be derived. This enables the computation of the shape sensitivity in one single solve, a performance analogous to the adjoint method, the current state-of-the art. The discretization is based on the Finite Difference method, a method chosen for its simplicity and ease of implementation. This algorithm is applied to the Laplace equation in the context of heat transfer problems and potential flows. The applicability of the proposed algorithm is demonstrated on a number of benchmark problems which clearly confirm the validity of the sensitivity analysis, the most important aspect of any shape optimization problem. This thesis also explores the relative merits of different minimization algorithms and proposes a technique to “fix” meshes when inverted element arises as part of the optimization process. While the problems treated are still elementary when compared to complex multiphysics engineering problems, the new methodology presented in this thesis could apply in principle to arbitrary Partial Differential Equations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Cohan, Daniel Shepherd. "Photochemical Formation and Cost-Efficient Abatement of Ozone: High-Order Sensitivity Analysis". Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-09152004-150617/unrestricted/cohan%5Fdaniel%5Fs%5F200412%5Fphd.pdf.

Texto completo da fonte
Resumo:
Thesis (Ph. D.)--Earth and Atmospheric Sciences, Georgia Institute of Technology, 2005.
Russell, Armistead G., Committee Chair ; Chameides, William L., Committee Member ; Wang, Yuhang, Committee Member ; Noonan, Douglas, Committee Member ; Chang, Michael E., Committee Member. Vita. Includes bibliographical references.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Lakshminarayanan, Anand. "Analysis of the sensitivity of photochemical airshed modeling to grid size and spatial and temporal distributions aof mobile source emissions". Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/20835.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Eriksson, Olle. "Sensitivity and Uncertainty Analysis Methods : with Applications to a Road Traffic Emission Model". Doctoral thesis, Linköping : Linköpings universitet, Deparment of Mathematics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8315.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Conway, Declan. "The development of a grid-based hydrological model of the Blue Nile and the sensitivity of Nile river discharge to climate change". Thesis, University of East Anglia, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358456.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Grid sensitivity"

1

N, Tiwari S., e United States. National Aeronautics and Space Administration., eds. Grid sensitivity for aerodynamic optimization and flow analysis. Norfolk, Va: Old Dominion University Research Foundation, Dept. of Mechanical Engineering and Mechanics, College of Engineering and Technology, Old Dominion University, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

N, Tiwari S., e United States. National Aeronautics and Space Administration., eds. Grid sensitivity for aerodynamic optimization and flow analysis. Norfolk, Va: Old Dominion University Research Foundation, Dept. of Mechanical Engineering and Mechanics, College of Engineering and Technology, Old Dominion University, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

1945-, Burns John A., e Langley Research Center, eds. A PDE sensitivity equation for optimal aerodynamic design. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

T, Patera Anthony, Peraire Jaume e Langley Research Center, eds. A posteriori finite element bounds for sensitivity derivatives of partial-differential-equation outputs. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

N, Tiwari S., e United States. National Aeronautics and Space Administration., eds. An analytical approach to grid sensitivity analysis for NACA four-digit wing sections. Norfolk, Va: Dept. of Mechanical Engineering & Mechanics, College of Engineering & Technology, Old Dominion University, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

C, Hall Kenneth, e United States. National Aeronautics and Space Administration., eds. Sensitivity analysis for aeroacoustic and aeroelastic design of turbomachinery blades: Final technical report. Durham, NC: Dept. of Mechanical Engineering and Materials Science, School of Engineering, Duke University, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Conway, Declan. The development of a grid-based hydrologic model of the Blue Nile and the sensitivity of Nile River discharge to climate change. Norwich: University of East Anglia, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

N, Tiwari S., e United States. National Aeronautics and Space Administration., eds. Sensitivity analysis and optimization of aerodynamic configurations with blend surfaces. Norfolk, Va: Dept. of Mechanical Engineering, College of Engineering & Technology, Old Dominion University, 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

C, Taylor Arthur, Barnwell Richard W e United States. National Aeronautics and Space Administration., eds. Aerodynamic shape sensitivity analysis and design optimization of complex configurations using unstructured grids. [Washington, DC: National Aeronautics and Space Administration, 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Sensitivity Studies on a Limited Area Mesoscale Model: An Examination ofLateral Boundary Placement, Grid Resolution and Nesting Type. Storming Media, 2000.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Grid sensitivity"

1

Khalilpour, Kaveh Rajab, e Anthony Vassallo. "Sensitivity Analysis of Grid-Connected PV-Battery Systems". In Community Energy Networks With Storage, 83–97. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-652-2_5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Chen, Mingjie, Pingjie Li e Yanru Jin. "Deformation sensitivity analysis of large span grid structure". In Building Seismic Monitoring and Detection Technology, 275–80. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003409564-35.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Tatsis, Vasileios A., e Konstantinos E. Parsopoulos. "Experimental Sensitivity Analysis of Grid-Based Parameter Adaptation Method". In Heuristics for Optimization and Learning, 335–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58930-1_22.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Merelli, Ivan, Dario Pescini, Ettore Mosca, Paolo Cazzaniga, Carlo Maj, Giancarlo Mauri e Luciano Milanesi. "Grid Computing for Sensitivity Analysis of Stochastic Biological Models". In Lecture Notes in Computer Science, 62–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23178-0_6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Blain, C. A., J. J. Westerink e R. A. Luettich. "Domain and Grid Sensitivity Studies for Hurricane Storm Surge Predictions". In Computational Methods in Water Resources X, 1275–82. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-010-9204-3_154.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Zhang, Shanshan, Zhongfa Zhou e Xiaotao Sun. "Study of Ecosystem Sensitivity Based on Grid GIS in Leishan County". In Communications in Computer and Information Science, 3–11. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3966-9_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Sharma, Sumit, Yog Raj Sood e Ankur Maheshwari. "Technoeconomic Feasibility and Sensitivity Analysis of Off-Grid Hybrid Energy System". In Lecture Notes in Electrical Engineering, 113–21. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2354-7_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Barella, Richard, Duc Nguyen, Ryan Winter, Kuei-Ti Lu, Scott Wallace, Xinghui Zhao e Eduardo Cotilla-Sanchez. "A Sensitivity Based Approach for Efficient PMU Deployment on Smart Grid". In Communications in Computer and Information Science, 199–215. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27753-0_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Wang, Jie, Guowei Zhu, Jing Li, Chang Liu e Linping Tong. "Baseline Model of High-Sensitivity Data Transfer in Power Grid Business". In Lecture Notes on Data Engineering and Communications Technologies, 673–81. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1157-8_81.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ghorbaniasl, Ghader, e Chris Lacor. "Sensitivity of SGS Models and of Quality of LES to Grid Irregularity". In Quality and Reliability of Large-Eddy Simulations, 155–66. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8578-9_13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Grid sensitivity"

1

Aydonat, Meric, e Farid N. Najm. "Power grid correction using sensitivity analysis". In 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 2010. http://dx.doi.org/10.1109/iccad.2010.5653903.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

SALADINO, ANTHONY, SARAT PRAHARAJ e FRANK COLLINS. "PARCEQ2D heat transfer grid sensitivity analysis". In 29th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-700.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Haileselassie, T. M., e K. Uhlen. "Frequency sensitivity analysis of AC grids connected to MTDC grid". In 9th IET International Conference on AC and DC Power Transmission (ACDC 2010). IET, 2010. http://dx.doi.org/10.1049/cp.2010.0990.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

SADREHAGHIGHI, IDEEN, ROBERT SMITH e SURENDRA TIWARI. "An analytical approach to grid sensitivity analysis". In 30th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-660.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Lockard, David P., Meelan M. Choudhari e Pieter G. Buning. "Grid Sensitivity Study for Slat Noise Simulations". In 20th AIAA/CEAS Aeroacoustics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-2627.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Krause, Olav, Kaining Zhao, Christian Rehtanz, Edmund Handschin, Sebastian Lehnhoff e Horst F. Wedde. "Grid sensitivity analysis for coordinated voltage control". In 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. IEEE, 2008. http://dx.doi.org/10.1109/drpt.2008.4523615.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Santos, Luis, Luiz Tobaldini, Ramon Papa, Guilherme Oliveira, Antônio Jesus e Sutikno Wirogo. "Grid Sensitivity Effects in Collection Efficiency Computation". In 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-566.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Pagaldipti, Narayanan, e Aditi Chattopadhyay. "A discrete semi-analytical procedure for aerodynamic sensitivity analysis including grid sensitivity". In 5th Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-4268.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Rehimi, Sharara, Rahmatollah Mirzaei e Hassan Bevrani. "A Simplified Interconnected Microgrids Frequency Response Model Using Frequency Sensitivity Approach". In 2019 Smart Grid Conference (SGC). IEEE, 2019. http://dx.doi.org/10.1109/sgc49328.2019.9056620.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

SADREHAGHIGHI, IDEEN, ROBERTE SMITH e SURENDRA TIWARI. "Grid and aerodynamic sensitivity analyses of airplane components". In 11th Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3475.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Grid sensitivity"

1

Luke, P. N., M. Amman, J. S. Lee e H. Yaver. Coplanar-grid CdZnTe detector with three-dimensional position sensitivity. Office of Scientific and Technical Information (OSTI), junho de 1998. http://dx.doi.org/10.2172/666049.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Michael Pernice. Considerations for sensitivity analysis, uncertainty quantification, and data assimilation for grid-to-rod fretting. Office of Scientific and Technical Information (OSTI), outubro de 2012. http://dx.doi.org/10.2172/1058089.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Dumas, Melissa, Binita Kc e Colin I. Cunliff. Extreme Weather and Climate Vulnerabilities of the Electric Grid: A Summary of Environmental Sensitivity Quantification Methods. Office of Scientific and Technical Information (OSTI), agosto de 2019. http://dx.doi.org/10.2172/1558514.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia