Literatura científica selecionada sobre o tema "Green tea"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Green tea".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Green tea"

1

Rahman, M., I. A. Jahan, S. Ahmed, K. S. Ahmed, M. Roy, W. Zzaman e I. Ahmad. "Bioactive compounds and antioxidant activity of black and green tea available in Bangladesh". Food Research 5, n.º 3 (16 de maio de 2021): 107–11. http://dx.doi.org/10.26656/fr.2017.5(3).491.

Texto completo da fonte
Resumo:
People in Bangladesh are traditionally used to consume mainly black tea. However, some tea manufacturing companies are now producing green tea, though in a small scale. To create new knowledge as well as awareness about the consumption of green tea, the present study was carried out to compare the black and green tea available in Bangladesh based on their bioactive compounds and antioxidant activity. A total of eight brands of black tea and two brands of green tea were bought from the supermarkets. Total phenolics, total tannin, total flavonoids, and caffeine content were measured as bioactive compounds, and antioxidant activity was evaluated by using two different methods such as DPPH (1,1- diphenyl-2-picrylhydrazyl) radical-scavenging activity and ABTS+ radical scavenging activity of methanol extracts of black and green tea. Every bioactive compound in black and green tea was found to be significantly different (P < 0.05). The total phenolic content, on average, was measured at 242.46 mg GAE/g dry extract and 763.41 mg GAE/ g dry extract in black and green tea, respectively. Black tea contained 6.47 mg TAE/g dry extract tannin, whereas green tea had much more tannin content, 14.51 mg TAE/g dry extract, which is more than double in amount. On the other hand, the total flavonoid content was almost double in black tea (61.82 mg QE/g dry extract) compared to green tea (31.85 mg QE/g dry extract). Antioxidant activities were determined at different concentrations of tea samples. At every concentration, green tea presented higher ABTS+ and DPPH radical scavenging activity than black tea. The highest percentage of inhibition was observed at 20 ppm both in black and green tea, finding 98.50 % and 99.07 % inhibition, respectively. Overall, significantly (P < 0.05) higher amount of phenolic compounds as well as antioxidant activity were observed in green tea.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

&NA;. "Green tea". Reactions Weekly &NA;, n.º 1163 (agosto de 2007): 14. http://dx.doi.org/10.2165/00128415-200711630-00043.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

&NA;. "Green tea". Reactions Weekly &NA;, n.º 1132 (dezembro de 2006): 10–11. http://dx.doi.org/10.2165/00128415-200611320-00028.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

&NA;. "Green tea". Reactions Weekly &NA;, n.º 1135 (janeiro de 2007): 17. http://dx.doi.org/10.2165/00128415-200711350-00065.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

&NA;. "Green tea". Reactions Weekly &NA;, n.º 1269 (setembro de 2009): 22. http://dx.doi.org/10.2165/00128415-200912690-00061.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

&NA;. "Green tea". Reactions Weekly &NA;, n.º 1249 (abril de 2009): 23. http://dx.doi.org/10.2165/00128415-200912490-00074.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

&NA;. "Green tea". Reactions Weekly &NA;, n.º 1308 (julho de 2010): 20. http://dx.doi.org/10.2165/00128415-201013080-00055.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hutcheon, Deborah A., e Jane Ziegler. "Green Tea". Topics in Clinical Nutrition 29, n.º 3 (2014): 268–77. http://dx.doi.org/10.1097/tin.0000000000000004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Hume, Anne L. "Green tea". Pharmacy Today 25, n.º 9 (setembro de 2019): 16. http://dx.doi.org/10.1016/j.ptdy.2019.08.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Guslandi, Mario. "Green tea". Alimentary Pharmacology & Therapeutics 19, n.º 10 (29 de abril de 2004): 1135. http://dx.doi.org/10.1111/j.1365-2036.2004.01953.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Green tea"

1

Yu, Sze-tak. "Effects of Chinese green tea and tea catechins on lipolysis". Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21106137.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

余詩德 e Sze-tak Yu. "Effects of Chinese green tea and tea catechins on lipolysis". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B31969677.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Cheng, Tak-him Terence. "Neuroprotective effect of green tea extracts". Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/b40203517.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

何禮昌 e Lai-cheong Ho. "Effects of green tea on ovariectomized rats". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31970540.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ho, Lai-cheong. "Effects of green tea on ovariectomized rats". Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Mudau, Fhatuwani N. "Growth, development and chemical composition of bush tea (Athrixia phylicoides L.) as affected by seasonal nitrogen, phosphorus and potassium nutrition". Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-08242006-133149.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

McArdle, Nicholas J. "The antigenotoxic effect of tea". Thesis, University of Surrey, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390574.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Avila, Alejandra. "Experimental study of the effects of green tea on improving the outcomes of BALB/c mice infected with Leishmania Mexicana". To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Charoenchon, Nisamanee. "Can green tea catechin supplement protect against photoageing?" Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/can-green-tea-catechin-supplement-protect-against-photoageing(64eefb5f-ef37-4900-9c03-3477c8a74e50).html.

Texto completo da fonte
Resumo:
Photoaged skin caused by chronic ultraviolet radiation (UVR) is characterised clinically with hyperpigmentation, coarse skin texture and deep wrinkles; the worst outcome is skin cancer. Histological investigation of the alteration within major extracellular matrices (ECM; elastic fibres, fibrillar collagens) is essential study to understand the cellular effect on skin structure from UVR. This thesis used an acute dose of radiation to examine in humans in vivo the effect of UVR on ECM components before assessing whether a dietary intervention could protect skin from UVR damage. Green tea catechins (GTCs) have anti-oxidant properties and may be an interesting option as a systemic photoprotection agent. Hence this thesis assesses: 1) the effect of acute irradiation of skin on dermal ECM damage to see whether it mimics the changes observed in photoageing and; 2) whether dietary supplementation with GTC will provide dermal ECM protection. UV-induced change in elastic fibre network. Initially, the effect of two different UV light sources on elastic fibre protein (elastic fibres, fibrillin-rich microfibrils and fibulin-2 and -5 microfibrils) remodelling was performed. The effect of ultraviolet B vs full-spectrum solar simulated radiation (SSR) were investigated in a small sample of healthy Caucasian volunteers (n = 6 per group). At 24 hour after 3× MED irradiation, Weigert's resorcin–fuchsin stained elastic fibres showed a significant reduction regardless of irradiation protocol (UVB, P<0.01; SSR P<0.05). Specific components were identified by immunohistochemistry; a significant reduction in fibrillin-rich microfibrils (FRM) was observed in UVB-irradiated skin (P<0.05), whilst fibulin-5-positive microfibrils were only affected by SSR (P<0.05). The data revealed, therefore, differential effects on UV wavelength on ECM remodelling. SSR, the more physiologically relevant light source was used in subsequent studies Supplement effect in SSR-induced damage in elastic fibre. Fifty healthy volunteers were recruited to this randomised control trial to investigate whether GTC can protect skin from photodamage. Volunteers were randomized to GTC (1080 mg plus 100 mg vitamin C; n=25) or placebo (maltodextrin; n = 25) daily for 12-weeks with compliance assessed biochemically in urine samples. Of the n = 50 recruited, 44 volunteers completed the study. In baseline, UVR challenge resulted in a significant remodeling of the cutaneous elastic fiber system (P<0.001), particularly fibulin-2 and fibulin-5-positive microfibrils at 24-hr after 3×MED irradiation. In post-supplementation, fibulin-5 positive microfibrils were protected from UVR remodeling (% staining, mean ± SE; no UV, 18.1±0.89; UVR, 17.1±0.61; P=0.30) whilst no protection was seen in the placebo group (no UVR, 19.41±0.79; UVR, 17.69±0.61; P<0.05). Supplement effect in SSR-induced damage in collagenous matrix. In the identical experiment, collagenous matrices including synthesis of procollagen I was also examined as fibrillar collagens are the major ECM components providing strength within dermis. The fibrillar collagen and newly synthesised procollagen I were stained by Picrosirius red and immunohistochemistry respectively. At baseline, acute irradiation significantly reduced papillary dermal fibrillar collagens (P<0.001) and induced deposition of newly synthesised pro-collagen I (P=0.02). In post-supplementation, GTC enhanced the deposition of thin collagen fibres in the dermis. Whilst placebo showed no effect on the altered organisation of fibrillar collagens or deposition of pro-collagen I following the irradiation challenge, GTC protected the organisation of fibrillar collagens in the papillary dermis (P=0.97).This novel in vivo human study may be used to recapitulate elastic fibre and collagen changes associated with photoageing and may be useful for dissecting out the mechanisms underlying extracellular matrix damage in response to chronic sunlight exposure. Furthermore, in a randomized control trial, dietary GTC protected fibulin-5 microfibrils and collagen fibres in the papillary dermis from UV-mediated degradation. The mechanism by which this protection occurs requires further study.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Zheng, Yuanyuan. "PROTECTION AGAINST ENDOTHELIAL INFLAMMATION BY GREEN TEA FLAVONOIDS". UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_diss/64.

Texto completo da fonte
Resumo:
Endothelial inflammation is a pivotal early event in the development of atherosclerosis. Long term exposure to cardiovascular risk factors will ultimately exhaust those protective anti-inflammatory factors such as the heme oxygenase (HO) system. The HO system plays a critical role in cellular and tissue self-defense against oxidative stress and inflammation. Caveolae are membrane domains and are particularly abundant in endothelial cells, where they are believed to play a major role in the regulation of endothelial vesicular trafficking as well as the uptake of lipids and related lipophilic compounds, possibly including bioactive food components such as flavonoids. Research in this dissertation addresses the role of HO-1 and caveolae on dietary flavonoid epigallocatechin gallate (EGCG) mediated protection against pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and linoleic acid-induced activation of endothelial cells. The data support the hypothesis that EGCG protects against TNF-α-induced monocyte recruitment and adhesion partially through the induction of HO-1 and bilirubin. The observed anti-inflammatory effects of EGCG are mimicked by the HO-1 inducer cobalt protoporphyrin (CoPP) and abolished by HO-1 gene silencing. Nrf2 is the major transcription factor of phase II antioxidant enzymes including HO-1. Results clearly show that EGCG-induced HO-1 expression and subsequent bilirubin productions are dependent on functional Nrf2. EGCG also can down-regulate the base-line level of caveolin-1. Furthermore, silencing of the caveolin-1 gene can markedly down-regulate linoleic acid-induced COX-2 and MCP-1, indicating that caveolae may be a critical platform regulating inflammatory signaling pathways. Similar to EGCG treatment, silencing of caveolin-1 can also result in the activation of Nrf2, up-regulation of HO-1 and bilirubin. This may be one of the mechanisms to explain the protection effect of caveolin-1 gene silencing against endothelial inflammation. Moreover, EGCG rapidly accumulates in caveolae, which is associated with caveolin-1 displacement from the plasma membrane towards the cytosol. Caveolin-1 gene silencing can significantly reduce the uptake of EGCG in endothelial cells within 30 min. These data suggest that caveolae may play a role in the uptake and transport of EGCG in endothelial cells. These studies provide a novel target through which EGCG functions to protect against inflammatory diseases such as atherosclerosis.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Green tea"

1

Taylor, Nadine. Green tea. New York: Kensington Books, 1998.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Williams, Marie. Green vanilla tea. Sydney: Finch Publishing, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Toews, Victoria Dolby. All about green tea. Garden City Park, N.Y: Avery, 1998.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Mitscher, Lester A. The Green Tea Book. New York: Penguin Group USA, Inc., 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Rosen, Diana. The book of green tea. Pownal, Vt: Storey Books, 1998.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Stace, Jeanette. Green tea: Haiku & other poetry. Wellington [N.Z.]: Bearfax Publications, 2007.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

D, Sheila. Sampling Green (Tea in Asia). [United States?]: Sheila D., 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Fanu, Joseph Sheridan Le. Green Tea. Independently Published, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Fanu, Joseph Sheridan Le. Green Tea. Independently Published, 2020.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Fanu, Joseph Sheridan Le. Green Tea. Independently Published, 2019.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Green tea"

1

Takeo, T. "Green and semi-fermented teas". In Tea, 413–57. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2326-6_13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Houston, Neil, e Alexa Boer Kimball. "Green Tea Extract". In Cosmeceuticals and Cosmetic Practice, 122–32. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118384824.ch12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Gilinsky, Armand, e Wakako Kusumoto. "Koots Green Tea". In Comparative Entrepreneurship Initiatives, 276–99. London: Palgrave Macmillan UK, 2011. http://dx.doi.org/10.1057/9780230314368_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Rashidinejad, Ali. "Green Tea Catechins". In Tea as a Food Ingredient, 33–69. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003152828-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Koide, Shoji, e Ken-ichi Kimura. "Japanese Green Tea". In Tea as a Food Ingredient, 81–100. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003152828-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fujiki, Hirota. "Green Tea Cancer Prevention". In Encyclopedia of Cancer, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_6592-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kuroda, Yukiaki, e Yukihiko Hara. "Green Tea in Japan". In Health Effects of Tea and Its Catechins, 1–10. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-5390-5_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Lunder, T. L. "Catechins of Green Tea". In ACS Symposium Series, 114–20. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0507.ch009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Anastassakis, Konstantinos. "Green Tea (Camellia sinensis)". In Androgenetic Alopecia From A to Z, 451–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08057-9_52.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Fujiki, Hirota. "Green Tea Cancer Prevention". In Encyclopedia of Cancer, 1960–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-46875-3_6592.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Green tea"

1

Wibisono, W., Yufitri Mayasari, D. Putra e I. Ariesta. "Black Tea and Green Tea in Reducing Children Dental Caries". In International Conference on Environmental Awareness for Sustainable Development in conjunction with International Conference on Challenge and Opportunities Sustainable Environmental Development, ICEASD & ICCOSED 2019, 1-2 April 2019, Kendari, Indonesia. EAI, 2019. http://dx.doi.org/10.4108/eai.1-4-2019.2287267.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Rong-Xiang Zhang, Wen-Li Wang, Guang Li, Xiao-Hui Zhao, Lian-Shui Zhang e Xiao-Wei Li. "The grade recognition of green tea". In 2008 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2008. http://dx.doi.org/10.1109/icmlc.2008.4620639.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Tai, Melvin Jia-Yong, Wei-Wen Liu, Cheng-Seong Khe, N. M. S. Hidayah, Yi-Peng Teoh, C. H. Voon, H. Cheun Lee e P. Y. P. Adelyn. "Green synthesis of reduced graphene oxide using green tea extract". In 4TH ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2018 (EGM 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5080845.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Megawati, Teni Ernawati, Lia Meilawati, Indah D. Dewijanti e Edi Supriadi. "Formulation of herbal tea drinks by adding green tea to improve antioxidant activities". In PROCEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON APPLIED CHEMISTRY 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5134577.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Zulliati, Zulliati, e Nurul Hidayah. "Green Tea and The Preeclampsia in Intra Partum". In Proceedings of the First National Seminar Universitas Sari Mulia, NS-UNISM 2019, 23rd November 2019, Banjarmasin, South Kalimantan, Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.23-11-2019.2298376.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Priyandoko, Didik, Wahyu Widowati, Hanna Sari Widya Kusuma, Ervi Afifah, Cahyaning Riski Wijayanti, Cintani Dewi Wahyuni, Amannah Mutmainnah Idris, Rizka Amelia Putdayani e Rizal Rizal. "Antioxidant Activity of Green Tea Extract and Myricetin". In 2021 IEEE International Conference on Health, Instrumentation & Measurement, and Natural Sciences (InHeNce). IEEE, 2021. http://dx.doi.org/10.1109/inhence52833.2021.9537285.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Rahmawati, Laila, Rudiati Evi Masithoh, Muhammad Fahri Reza Pahlawan, Aryanis Mutia Zahra e Hari Hariadi. "Profiling and classification of black tea, white tea, and green tea (Camellia sinensis L.) by Vis-NIR spectroscopy". In INTERNATIONAL CONFERENCE ON ORGANIC AND APPLIED CHEMISTRY (ICOAC) 2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0183874.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Mystrioti, Christiana, Anthimos Xenidis, Nymphodora Papassiopi, Dimitris Dermatas e Mariza Chrysochoou. "Fate of Green Tea Iron Nanoparticles in Calcareous Soils". In Geo-Congress 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413272.213.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Mali, Suraj N., e Anima Pandey. "Naturally Occurring Green Tea Polyphenols as Anti-Mycobacterial Agents". In ECMS 2021. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/ecms2021-10844.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Srimanothip, Anjaly, e Phakkharawat Sittiprapaporn. "Effect of Drinking Green Tea to Stress Reduction: Electroencephalographic Investigation". In 2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE, 2019. http://dx.doi.org/10.1109/ecti-con47248.2019.8955191.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Green tea"

1

Mukhtar, Hasan. Green Tea in Prevention and Therapy of Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, julho de 2001. http://dx.doi.org/10.21236/ada398205.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Cobrinik, David E. Effect on Green Tea Polyphenols on Breast Cancer Signaling. Fort Belvoir, VA: Defense Technical Information Center, abril de 1999. http://dx.doi.org/10.21236/ada367380.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Gupta, Sanjay. Green Tea in Prevention and Therapy of Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2002. http://dx.doi.org/10.21236/ada410754.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Samavat, Hamed. Green Tea Modulation of Obesity and Breast Cancer Risk. Fort Belvoir, VA: Defense Technical Information Center, abril de 2013. http://dx.doi.org/10.21236/ada581017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Cobrinik, David. Effect of Green Tea Polyphenols on Breast Cancer Signaling. Fort Belvoir, VA: Defense Technical Information Center, abril de 2000. http://dx.doi.org/10.21236/ada392163.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Mukhtar, Hasan. Sustained Release Oral Nanoformulated Green Tea for Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, maio de 2011. http://dx.doi.org/10.21236/ada545577.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Mukhtar, Hasan. Sustained Release Oral Nanoformulated Green Tea for Prostate Cancer Prevention. Fort Belvoir, VA: Defense Technical Information Center, maio de 2013. http://dx.doi.org/10.21236/ada585226.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Mukhtar, Hasan, Nihal Ahmad, Vaqar M. Adhami e Naghma Khan. Sustained Release Oral Nanoformulated Green Tea for Prostate Cancer Prevention. Fort Belvoir, VA: Defense Technical Information Center, maio de 2012. http://dx.doi.org/10.21236/ada589659.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Eneroth, Hanna, Hanna Karlsson Potter e Elin Röös. Environmental impact of coffee, tea and cocoa – data collection for a consumer guide for plant-based foods. Department of Energy and Technology, Swedish University of Agricultural Sciences, 2022. http://dx.doi.org/10.54612/a.2n3m2d2pjl.

Texto completo da fonte
Resumo:
In 2020, WWF launched a consumer guide on plant-based products targeting Swedish consumers. The development of the guide is described in a journal paper (Karlsson Potter & Röös, 2021) and the environmental impact of different plant based foods was published in a report (Karlsson Potter, Lundmark, & Röös, 2020). This report was prepared for WWF Sweden to provide scientific background information for complementing the consumer guide with information on coffee, tea and cocoa. This report includes quantitative estimations for several environmental categories (climate, land use, biodiversity and water use) of coffee (per L), tea (per L) and cocoa powder (per kg), building on the previously established methodology for the consumer guide. In addition, scenarios of consumption of coffee, tea and cocoa drink with milk/plant-based drinks and waste at household level, are presented. Tea, coffee and cacao beans have a lot in common. They are tropical perennial crops traditionally grown in the shade among other species, i.e. in agroforestry systems. Today, the production in intensive monocultures has negative impact on biodiversity. Re-introducing agroforestry practices may be part of the solution to improve biodiversity in these landscapes. Climate change will likely, due to changes in temperature, extreme weather events and increases in pests and disease, alter the areas where these crops can be grown in the future. A relatively high ratio of the global land used for coffee, tea and cocoa is certified according to sustainability standards, compared to other crops. Although research on the implications of voluntary standards on different outcomes is inconclusive, the literature supports that certifications have a role in incentivizing more sustainable farming. Coffee, tea and cocoa all contain caffeine and have a high content of bioactive compounds such as antioxidants, and they have all been associated with positive health outcomes. While there is a strong coffee culture in Sweden and coffee contributes substantially to the environmental impact of our diet, tea is a less consumed beverage. Cocoa powder is consumed as a beverage, but substantial amounts of our cocoa consumption is in the form of chocolate. Roasted ground coffee on the Swedish market had a climate impact of 4.0 kg CO2e per kg powder, while the climate impact of instant coffee powder was 11.5 kg CO2e per kg. Per litre, including the energy use for making the coffee, the total climate impact was estimated to 0.25 kg CO2e per L brewed coffee and 0.16 kg CO2e per L for instant coffee. Less green coffee beans are needed to produce the same amount of ready to drink coffee from instant coffee than from brewed coffee. Tea had a climate impact of approximately 6.3 kg CO2 e per kg dry leaves corresponding to an impact of 0.064 CO2e per L ready to drink tea. In the assessment of climate impact per cup, tea had the lowest impact with 0.013 kg CO2e, followed by black instant coffee (0.024 kg CO2e), black coffee (0.038 kg CO2e), and cocoa drink made with milk (0.33 kg CO2e). The climate impact of 1kg cocoa powder on the Swedish market was estimated to 2.8 kg CO2e. Adding milk to coffee or tea increases the climate impact substantially. The literature describes a high proportion of the total climate impact of coffee from the consumer stage due to the electricity used by the coffee machine. However, with the Nordic low-carbon energy mix, the brewing and heating of water and milk contributes to only a minor part of the climate impact of coffee. As in previous research, coffee also had a higher land use, water use and biodiversity impact than tea per L beverage. Another factor of interest at the consumer stage is the waste of prepared coffee. Waste of prepared coffee contributes to climate impact through the additional production costs and electricity for preparation, even though the latter was small in our calculations. The waste of coffee and tea at Summary household level is extensive and measures to reduce the amount of wasted coffee and tea could reduce the environmental impact of Swedish hot drink consumption. For the final evaluation of coffee and tea for the consumer guide, the boundary for the fruit and vegetable group was used. The functional unit for coffee and tea was 1 L prepared beverage without any added milk or sweetener. In the guide, the final evaluation of conventionally grown coffee is that it is ‘yellow’ (‘Consume sometimes’), and for organic produce, ‘light green’ (‘Please consume). The evaluation of conventionally grown tea is that it is ‘light green’, and for organic produce, ‘dark green’ (‘Preferably consume this’). For cocoa, the functional unit is 1 kg of cocoa powder and the boundary was taken from the protein group. The final evaluation of conventionally grown cocoa is that it is ‘orange’ (‘Be careful’), and for organically produced cocoa, ‘light green’.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

bu, peili. Effect of green tea supplementation on blood pressure:a systematic review and dose-response meta-analysis of randomized controlled trials. INPLASY - International Platform of Registered Systematic Review Protocols, abril de 2020. http://dx.doi.org/10.37766/inplasy2020.4.0021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia