Literatura científica selecionada sobre o tema "Graphite"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Graphite".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Graphite"
Gholamalizadeh, Naghmeh, Saeedeh Mazinani, Majid Abdouss, Ali Mohammad Bazargan e Fataneh Fatemi. "Efficient and Direct Exfoliation of High-Quality Graphene Layers in Water from Different Graphite Sources and Its Electrical Characterization". Nano 16, n.º 07 (24 de junho de 2021): 2150079. http://dx.doi.org/10.1142/s179329202150079x.
Texto completo da fonteKausar, Ayesha. "Avant-Garde Polymer and Nano-Graphite-Derived Nanocomposites—Versatility and Implications". C 9, n.º 1 (19 de janeiro de 2023): 13. http://dx.doi.org/10.3390/c9010013.
Texto completo da fonteLu, Yan. "Size Effect of Expandable Graphite". Advanced Materials Research 499 (abril de 2012): 72–75. http://dx.doi.org/10.4028/www.scientific.net/amr.499.72.
Texto completo da fonteCao, Ning, e Yuan Zhang. "Study of Reduced Graphene Oxide Preparation by Hummers’ Method and Related Characterization". Journal of Nanomaterials 2015 (2015): 1–5. http://dx.doi.org/10.1155/2015/168125.
Texto completo da fonteJeon, In Yup, Seo Yoon Bae e Jong Beom Baek. "Exfoliation of Graphite via Edge-Functionalization with Carboxylic Acid-Terminated Hyperbranched Poly(ether-ketone)s". Advanced Materials Research 123-125 (agosto de 2010): 671–74. http://dx.doi.org/10.4028/www.scientific.net/amr.123-125.671.
Texto completo da fonteJohnsen, Rune E., Poul Norby e Matteo Leoni. "Intercalation of lithium into disordered graphite in a working battery". Journal of Applied Crystallography 51, n.º 4 (28 de junho de 2018): 998–1004. http://dx.doi.org/10.1107/s1600576718007756.
Texto completo da fonteWang, Meng Lu, e Li Ji. "Expansion Mechanism of Expandable Graphite Formed by Natural Graphite with Different Particle Size". Advanced Materials Research 499 (abril de 2012): 16–19. http://dx.doi.org/10.4028/www.scientific.net/amr.499.16.
Texto completo da fonteLi, Jinghao, Qiangu Yan, Xuefeng Zhang, Jilei Zhang e Zhiyong Cai. "Efficient Conversion of Lignin Waste to High Value Bio-Graphene Oxide Nanomaterials". Polymers 11, n.º 4 (4 de abril de 2019): 623. http://dx.doi.org/10.3390/polym11040623.
Texto completo da fontePanteleimonov, R. A., О. V. Boichuk, K. D. Pershina e V. M. Ogenko. "Structural and electrochemical properties of N-doped graphene–graphite composites". Voprosy Khimii i Khimicheskoi Tekhnologii, n.º 6 (dezembro de 2022): 61–67. http://dx.doi.org/10.32434/0321-4095-2022-145-6-61-67.
Texto completo da fonteNi, Chengyuan, Chengdong Xia, Wenping Liu, Wei Xu, Zhiqiang Shan, Xiaoxu Lei, Haiqing Qin e Zhendong Tao. "Effect of Graphene on the Performance of Silicon–Carbon Composite Anode Materials for Lithium-Ion Batteries". Materials 17, n.º 3 (4 de fevereiro de 2024): 754. http://dx.doi.org/10.3390/ma17030754.
Texto completo da fonteTeses / dissertações sobre o assunto "Graphite"
Qiu, Xiaoyu. "Procédé d'exfoliation du graphite en phase liquide dans des laboratoires sur puce". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI056/document.
Texto completo da fonteLiquid phase exfoliation of graphite is a simple and low-cost process, that is likely to produce graphene. The last few years, many researchers have used acoustic or hydrodynamic cavitation as an exfoliating tool. Acoustic cavitation is limited to low volumes and defects are present on the graphenesheets ; hydrodynamic cavitation inside a flowing solution acts briefly. So, people are using big reactors running with high pressure drops, and it is difficult from a fundamental point of view to know the physical role of shear rate versus cavitation, in the exfoliation process. We have tried to develop a new process funded on hydrodynamic cavitation ’on a chip’, with flow rates above 10 L/h and pressure drop below 10 bar. A new generation of ’labs on a chip’ has been designed and performed, processing with aqueous surfactant graphite solutions. The solid concentration and the duration of the process have proved to be key parameters. Cavitating microflows have exhibited a better efficiency (up to ~6%) than laminar liquid microflows, for the production of graphene flakes. Collapsing bubbles and turbulence are also likely to enhance particles interactions. Such a microfluidic process, which requires an hydraulic power of a few Watt, makes possible a further low-cost and green production of graphene sheets
Ballestar, Ana. "Superconductivity at Graphite Interfaces". Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-141196.
Texto completo da fonteYu, Wenlong. "Infrared magneto-spectroscopy of graphite and graphene nanoribbons". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54244.
Texto completo da fonteSolane, Pierre-Yves. "Spectroscopie optique du graphite-graphène sous champs mégagauss". Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1874/.
Texto completo da fonteSince its experimental discovery in 2004, graphene (a single layer of graphite) has attracted a lot of attention. It also leads to a renewed interest in graphite. Subsequently, both these materials have extensively been studied using different experimental techniques. In this thesis we demonstrate that transmission measurements performed in extremely high magnetic field (> 1 million times the earth's magnetic field) are a very useful tool to investigate the electronic structure of graphene and graphite. In particular, we will demonstrate that electron-hole asymmetry in graphite is caused by the often neglected free-electron kinetic energy term. This term is also present in the Hamiltonian describing electronic properties of graphene, hence it will lead to an asymmetry in graphene. Additionally, using near-infrared and visible sources from 200meV to 2eV we observe strong series of interband transitions in graphite between the four interlayer split bands (E3+, E3-, E1 and E2) up to 150 T at room temperature. The K-point electron resonances can be described well using an effective bilayer graphene model and the H-point transitions correspond to monolayer graphene. It is demonstrated that this can be reduced to a single measurement of the dispersion relation which is described by the relativistic formula where E2=m02v4 + p2v2 with v the Fermi velocity and a single particle rest energy m0v² of 385 meV for the K-point electrons and zero as expected for the H-point
Geng, Yan. "Preparation and characterization of graphite nanoplatelet, graphene and graphene-polymer nanocomposites /". View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?MECH%202009%20GENG.
Texto completo da fonteRisley, Mason J. "Surfactant-assisted exfoliation and processing of graphite and graphene". Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/48980.
Texto completo da fonteAbro, Mehwish. "Modelling the exfoliation of graphite for production of graphene". Thesis, Uppsala universitet, Fasta tillståndets elektronik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-272339.
Texto completo da fonteAlofi, Ayman Salman Shadid. "Theory of phonon thermal transport in graphene and graphite". Thesis, University of Exeter, 2014. http://hdl.handle.net/10871/15687.
Texto completo da fonteShokri, Roozbeh [Verfasser], e Günter [Akademischer Betreuer] Reiter. "Self-Assembly of supra-molecular systems on graphene or graphite = Selbstorganisation von Supramolekularen Systemen auf Graphen oder Graphit". Freiburg : Universität, 2013. http://d-nb.info/1123475415/34.
Texto completo da fonteCsapo-Hounkponou, Elisabeth. "Etude du comportement tribologique de couples graphite/cuivre et graphite/graphite dans un contact électrique glissant". Vandoeuvre-les-Nancy, INPL, 1993. http://www.theses.fr/1993INPL152N.
Texto completo da fonteLivros sobre o assunto "Graphite"
1964-, Chan H. E., ed. Graphene and graphite materials. Hauppauge. NY: Nova Science Publishers, 2009.
Encontre o texto completo da fonteTaylor, Harold A. Graphite. Washington, D.C: U.S. Department of the Interior, Bureau of Mines, 1991.
Encontre o texto completo da fonteSpence, Hugh S. Graphite. Ottawa: T. Mulvey, 1997.
Encontre o texto completo da fonteWatanabe, Nobuatsu. Graphite flourides. Amsterdam: Elsevier, 1988.
Encontre o texto completo da fonteUnited States. National Aeronautics and Space Administration., ed. Graphite intercalation compounds prepared from graphite fluoride. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Encontre o texto completo da fonteClaire, Hérolda, e Lagrange Philippe, eds. Superconducting intercalated graphite. Hauppauge, N.Y: Nova Science Publishers, 2008.
Encontre o texto completo da fonteGarcia, L. A. Graphite rod repair. Portland, Or: F. Amato Publications, 1997.
Encontre o texto completo da fontePierre, Delhaes, ed. Graphite and precursors. Amsterdam: Gordon & Breach, 2000.
Encontre o texto completo da fonteElls, R. W. Bulletin on graphite. Ottawa: S.E. Dawson, 1992.
Encontre o texto completo da fonteMuchemwa, E. Graphite in Zimbabwe. Harare: Zimbabwe Geological Survey, 1987.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Graphite"
Shabalin, Igor L. "Carbon (Graphene/Graphite)". In Ultra-High Temperature Materials I, 7–235. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7587-9_2.
Texto completo da fonteCrowson, Phillip. "Graphite". In Minerals Handbook 1994–95, 107–11. London: Palgrave Macmillan UK, 1994. http://dx.doi.org/10.1007/978-1-349-13431-1_17.
Texto completo da fonteCrowson, Phillip. "Graphite". In Minerals Handbook 1996–97, 152–58. London: Palgrave Macmillan UK, 1996. http://dx.doi.org/10.1007/978-1-349-13793-0_18.
Texto completo da fonteAlbarede, Francis. "Graphite". In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_666-2.
Texto completo da fonteAlbarède, Francis. "Graphite". In Encyclopedia of Astrobiology, 1000. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_666.
Texto completo da fonteYang, Yuehai, Wenzhi Li, Elmar Kroner, Eduard Arzt, Bharat Bhushan, Laila Benameur, Liu Wei et al. "Graphite". In Encyclopedia of Nanotechnology, 978. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100275.
Texto completo da fonteAlbarede, Francis. "Graphite". In Encyclopedia of Astrobiology, 685–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_666.
Texto completo da fonteBaker, Ian. "Graphite". In Fifty Materials That Make the World, 81–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78766-4_16.
Texto completo da fonteGooch, Jan W. "Graphite". In Encyclopedic Dictionary of Polymers, 348. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_5617.
Texto completo da fonteThrower, Peter A. "Graphite". In Inorganic Reactions and Methods, 152–57. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch107.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Graphite"
Bimsara, G. S. M. N., W. M. N. C. Wijerathnayake, W. A. N. M. Abeyrathna, P. Thayalan, D. M. D. O. K. Dissanayake e S. U. Adikary. "Synthesis of graphene through electrochemical exfoliation of Sri Lankan graphite". In International Symposium on Earth Resources Management & Environment - ISERME 2023. Department of Earth Resources Engineering, 2023. http://dx.doi.org/10.31705/iserme.2023.19.
Texto completo da fonteSytar, V. I., A. I. Burya, M. V. Burmistr, D. S. Danilin e O. S. Kabat. "Effect of Graphite Content on Wear of Thermostable Graphite-Reinforced Plastics". In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63229.
Texto completo da fonteMiura, K., D. Tsuda e N. Sasaki. "Superlubricity of C60 Intercalated Graphite Films (Keynote)". In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63930.
Texto completo da fonteZhang, Jun-Fu, Jia-Han Li e Tony Wen-Hann Sheu. "Anisotropic Permittivities and Transmittance of Double Layer Graphene". In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.7p_a404_8.
Texto completo da fonteNorris, Pamela M., Justin L. Smoyer, John C. Duda e Patrick E. Hopkins. "Prediction and Measurement of Thermal Transport Across Interfaces Between Isotropic Solids and Graphitic Materials". In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30171.
Texto completo da fonteAlbers, Tracy L., Lionel Batty e David M. Kaschak. "High-Temperature Properties of Nuclear Graphite". In Fourth International Topical Meeting on High Temperature Reactor Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/htr2008-58284.
Texto completo da fonteStrativnov, E., A. Kozhan, Y. Ivachkin e A. Pazeev. "Graphene Synthesis from Natural Flake Graphite". In 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). IEEE, 2018. http://dx.doi.org/10.1109/nap.2018.8915281.
Texto completo da fonteChirayath, V. A., A. J. Fairchild, R. W. Gladen, M. D. Chrysler, A. R. Koymen e A. H. Weiss. "Positronium formation in graphene and graphite". In INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5135845.
Texto completo da fonteNatarajan, Ravikumar, R. Rajendran, T. R. TAMIL ARASAN PhD e RANJITH PANDURANGAN. "Tribological Properties Evaluation of Newly Developed Friction Material for Automotive Disc Brake Pad". In International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-28-0511.
Texto completo da fonteShmavonyan, G. Sh, e A. R. Mailian. "Graphite Pencil Drawn Lines: A Nanomaterial or Few Layer Graphene/Graphite Layered Structure". In 2nd International Conference on Green Materials and Environmental Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/gmee-15.2015.4.
Texto completo da fonteRelatórios de organizações sobre o assunto "Graphite"
Collings, R. K., e P. R. A. Andrews. Graphite. Natural Resources Canada/CMSS/Information Management, 1989. http://dx.doi.org/10.4095/328612.
Texto completo da fonteDavison, R., e A. Van Rythoven. Critical mineral: Graphite. Montana Bureau of Mines and Geology, dezembro de 2023. http://dx.doi.org/10.59691/coiv6731.
Texto completo da fonteHo, F. H. Graphite design handbook. Office of Scientific and Technical Information (OSTI), setembro de 1988. http://dx.doi.org/10.2172/714896.
Texto completo da fonteLarkins Jr, Grover L., e Yuriy A. Vlasov. (HBCU) Doped Graphene and Graphite as a Potential High Temperature Superconductor. Fort Belvoir, VA: Defense Technical Information Center, julho de 2013. http://dx.doi.org/10.21236/ada588862.
Texto completo da fonteSummerfield, Daisy. Australian resources review: graphite. Geoscience Australia, 2019. http://dx.doi.org/10.11636/9781925848267.
Texto completo da fonteUbic, Rick, Darryl Butt e William Windes. Irradiation Creep in Graphite. Office of Scientific and Technical Information (OSTI), março de 2014. http://dx.doi.org/10.2172/1128528.
Texto completo da fonteMark W. Drigert. Graphite Gamma Scan Results. Office of Scientific and Technical Information (OSTI), abril de 2014. http://dx.doi.org/10.2172/1133866.
Texto completo da fonteW. Windes, T. Burchell e M.Carroll. Graphite Technology Development Plan. Office of Scientific and Technical Information (OSTI), outubro de 2010. http://dx.doi.org/10.2172/993160.
Texto completo da fonteKennedy, C. R. (Irradiation creep of graphite). Office of Scientific and Technical Information (OSTI), dezembro de 1990. http://dx.doi.org/10.2172/6410826.
Texto completo da fonteWindes, W., e R. Smith. Oxidation Resistant Graphite Studies. Office of Scientific and Technical Information (OSTI), julho de 2014. http://dx.doi.org/10.2172/1164863.
Texto completo da fonte