Artigos de revistas sobre o tema "Graph-based input representation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Graph-based input representation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Lu, Fangbo, Zhihao Zhang e Changsheng Shui. "Online trajectory anomaly detection model based on graph neural networks and variational autoencoder". Journal of Physics: Conference Series 2816, n.º 1 (1 de agosto de 2024): 012006. http://dx.doi.org/10.1088/1742-6596/2816/1/012006.
Texto completo da fonteYu, Xingtong, Zemin Liu, Yuan Fang e Xinming Zhang. "Learning to Count Isomorphisms with Graph Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 4 (26 de junho de 2023): 4845–53. http://dx.doi.org/10.1609/aaai.v37i4.25610.
Texto completo da fonteBauer, Daniel. "Understanding Descriptions of Visual Scenes Using Graph Grammars". Proceedings of the AAAI Conference on Artificial Intelligence 27, n.º 1 (29 de junho de 2013): 1656–57. http://dx.doi.org/10.1609/aaai.v27i1.8498.
Texto completo da fonteWu, Xinyue, e Huilin Chen. "Augmented Feature Diffusion on Sparsely Sampled Subgraph". Electronics 13, n.º 16 (15 de agosto de 2024): 3249. http://dx.doi.org/10.3390/electronics13163249.
Texto completo da fonteCooray, Thilini, e Ngai-Man Cheung. "Graph-Wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 6 (28 de junho de 2022): 6420–28. http://dx.doi.org/10.1609/aaai.v36i6.20593.
Texto completo da fonteGildea, Daniel, Giorgio Satta e Xiaochang Peng. "Ordered Tree Decomposition for HRG Rule Extraction". Computational Linguistics 45, n.º 2 (junho de 2019): 339–79. http://dx.doi.org/10.1162/coli_a_00350.
Texto completo da fonteMiao, Fengyu, Xiuzhuang Zhou, Shungen Xiao e Shiliang Zhang. "A Graph Similarity Algorithm Based on Graph Partitioning and Attention Mechanism". Electronics 13, n.º 19 (25 de setembro de 2024): 3794. http://dx.doi.org/10.3390/electronics13193794.
Texto completo da fonteCoşkun, Kemal Çağlar, Muhammad Hassan e Rolf Drechsler. "Equivalence Checking of System-Level and SPICE-Level Models of Linear Circuits". Chips 1, n.º 1 (13 de junho de 2022): 54–71. http://dx.doi.org/10.3390/chips1010006.
Texto completo da fonteZhang, Dong, Suzhong Wei, Shoushan Li, Hanqian Wu, Qiaoming Zhu e Guodong Zhou. "Multi-modal Graph Fusion for Named Entity Recognition with Targeted Visual Guidance". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 16 (18 de maio de 2021): 14347–55. http://dx.doi.org/10.1609/aaai.v35i16.17687.
Texto completo da fonteRen, Min, Yunlong Wang, Zhenan Sun e Tieniu Tan. "Dynamic Graph Representation for Occlusion Handling in Biometrics". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 07 (3 de abril de 2020): 11940–47. http://dx.doi.org/10.1609/aaai.v34i07.6869.
Texto completo da fonteYin, Yongjing, Shaopeng Lai, Linfeng Song, Chulun Zhou, Xianpei Han, Junfeng Yao e Jinsong Su. "An External Knowledge Enhanced Graph-based Neural Network for Sentence Ordering". Journal of Artificial Intelligence Research 70 (28 de janeiro de 2021): 545–66. http://dx.doi.org/10.1613/jair.1.12078.
Texto completo da fonteMalhi, Umar Subhan, Junfeng Zhou, Abdur Rasool e Shahbaz Siddeeq. "Efficient Visual-Aware Fashion Recommendation Using Compressed Node Features and Graph-Based Learning". Machine Learning and Knowledge Extraction 6, n.º 3 (15 de setembro de 2024): 2111–29. http://dx.doi.org/10.3390/make6030104.
Texto completo da fonteChristensen, Andrew J., Ananya Sen Gupta e Ivars Kirsteins. "Graph representation learning on braid manifolds". Journal of the Acoustical Society of America 152, n.º 4 (outubro de 2022): A39. http://dx.doi.org/10.1121/10.0015466.
Texto completo da fonteRamezani, Majid, Mohammad-Reza Feizi-Derakhshi e Mohammad-Ali Balafar. "Knowledge Graph-Enabled Text-Based Automatic Personality Prediction". Computational Intelligence and Neuroscience 2022 (20 de junho de 2022): 1–18. http://dx.doi.org/10.1155/2022/3732351.
Texto completo da fonteXu, Jiarong, Yang Yang, Junru Chen, Xin Jiang, Chunping Wang, Jiangang Lu e Yizhou Sun. "Unsupervised Adversarially Robust Representation Learning on Graphs". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 4 (28 de junho de 2022): 4290–98. http://dx.doi.org/10.1609/aaai.v36i4.20349.
Texto completo da fonteLin, Mugang, Kunhui Wen, Xuanying Zhu, Huihuang Zhao e Xianfang Sun. "Graph Autoencoder with Preserving Node Attribute Similarity". Entropy 25, n.º 4 (26 de março de 2023): 567. http://dx.doi.org/10.3390/e25040567.
Texto completo da fonteKuropiatnyk, O. S., e B. M. Yakovenko. "Identification of the Program Text and Algorithm Correspondence Based on the Control Graph Constructive-Synthesizing Model". Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, n.º 4(94) (17 de agosto de 2021): 12–24. http://dx.doi.org/10.15802/stp2021/245666.
Texto completo da fonteSong, Zhiwei, Brittany Baur e Sushmita Roy. "Benchmarking graph representation learning algorithms for detecting modules in molecular networks". F1000Research 12 (7 de agosto de 2023): 941. http://dx.doi.org/10.12688/f1000research.134526.1.
Texto completo da fonteSarfraz, Mubashar, Sheraz Alam, Sajjad A. Ghauri, Asad Mahmood, M. Nadeem Akram, M. Javvad Ur Rehman, M. Farhan Sohail e Teweldebrhan Mezgebo Kebedew. "Random Graph-Based M-QAM Classification for MIMO Systems". Wireless Communications and Mobile Computing 2022 (15 de abril de 2022): 1–10. http://dx.doi.org/10.1155/2022/9419764.
Texto completo da fonteZhang, Dehai, Anquan Ren, Jiashu Liang, Qing Liu, Haoxing Wang e Yu Ma. "Improving Medical X-ray Report Generation by Using Knowledge Graph". Applied Sciences 12, n.º 21 (2 de novembro de 2022): 11111. http://dx.doi.org/10.3390/app122111111.
Texto completo da fonteGao, Peng, e Hao Zhang. "Long-Term Loop Closure Detection through Visual-Spatial Information Preserving Multi-Order Graph Matching". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 06 (3 de abril de 2020): 10369–76. http://dx.doi.org/10.1609/aaai.v34i06.6604.
Texto completo da fonteHao, Yajie, Xing Chen, Ailu Fei, Qifeng Jia, Yu Chen, Jinsong Shao, Sanjeevi Pandiyan e Li Wang. "SG-ATT: A Sequence Graph Cross-Attention Representation Architecture for Molecular Property Prediction". Molecules 29, n.º 2 (19 de janeiro de 2024): 492. http://dx.doi.org/10.3390/molecules29020492.
Texto completo da fonteBunke, H., e B. T. Messmer. "Recent Advances in Graph Matching". International Journal of Pattern Recognition and Artificial Intelligence 11, n.º 01 (fevereiro de 1997): 169–203. http://dx.doi.org/10.1142/s0218001497000081.
Texto completo da fonteTian, Luogeng, Bailong Yang, Xinli Yin, Kai Kang e Jing Wu. "Multipath Cross Graph Convolution for Knowledge Representation Learning". Computational Intelligence and Neuroscience 2021 (28 de dezembro de 2021): 1–13. http://dx.doi.org/10.1155/2021/2547905.
Texto completo da fonteLi, Linqing, e Zhifeng Wang. "Knowledge Graph-Enhanced Intelligent Tutoring System Based on Exercise Representativeness and Informativeness". International Journal of Intelligent Systems 2023 (16 de outubro de 2023): 1–19. http://dx.doi.org/10.1155/2023/2578286.
Texto completo da fonteXu, Jiakun, Bowen Xu, Gui-Song Xia, Liang Dong e Nan Xue. "Patched Line Segment Learning for Vector Road Mapping". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 6 (24 de março de 2024): 6288–96. http://dx.doi.org/10.1609/aaai.v38i6.28447.
Texto completo da fonteYang, Liang, Chuan Wang, Junhua Gu, Xiaochun Cao e Bingxin Niu. "Why Do Attributes Propagate in Graph Convolutional Neural Networks?" Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 5 (18 de maio de 2021): 4590–98. http://dx.doi.org/10.1609/aaai.v35i5.16588.
Texto completo da fonteChuang, S. H. F., e M. R. Henderson. "Using Subgraph Isomorphisms to Recognize and Decompose Boundary Representation Features". Journal of Mechanical Design 116, n.º 3 (1 de setembro de 1994): 793–800. http://dx.doi.org/10.1115/1.2919452.
Texto completo da fonteSun, Guofei, Yongkang Wong, Mohan S. Kankanhalli, Xiangdong Li e Weidong Geng. "Enhanced 3D Shape Reconstruction With Knowledge Graph of Category Concept". ACM Transactions on Multimedia Computing, Communications, and Applications 18, n.º 3 (31 de agosto de 2022): 1–20. http://dx.doi.org/10.1145/3491224.
Texto completo da fonteYou, Peiting, Xiang Li, Fan Zhang e Quanzheng Li. "Connectivity-based Cortical Parcellation via Contrastive Learning on Spatial-Graph Convolution". BME Frontiers 2022 (1 de abril de 2022): 1–11. http://dx.doi.org/10.34133/2022/9814824.
Texto completo da fonteOh, Dongsuk, Jungwoo Lim, Kinam Park e Heuiseok Lim. "Semantic Representation Using Sub-Symbolic Knowledge in Commonsense Reasoning". Applied Sciences 12, n.º 18 (14 de setembro de 2022): 9202. http://dx.doi.org/10.3390/app12189202.
Texto completo da fonteLing, Shi Yong, e Jin Hong Gong. "Research of Composite Ontology Mapping Strategy on the Parsing Graph". Advanced Materials Research 765-767 (setembro de 2013): 1068–72. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.1068.
Texto completo da fonteLi, Dan, e Qian Gao. "Session Recommendation Model Based on Context-Aware and Gated Graph Neural Networks". Computational Intelligence and Neuroscience 2021 (13 de outubro de 2021): 1–10. http://dx.doi.org/10.1155/2021/7266960.
Texto completo da fonteZou, Shuilong, Zhaoyang Liu, Kaiqi Wang, Jun Cao, Shixiong Liu, Wangping Xiong e Shaoyi Li. "A study on pharmaceutical text relationship extraction based on heterogeneous graph neural networks". Mathematical Biosciences and Engineering 21, n.º 1 (2023): 1489–507. http://dx.doi.org/10.3934/mbe.2024064.
Texto completo da fonteFan, Zhiqiang, Fangyue Chen, Xiaokai Xia e Yu Liu. "EEG Emotion Classification Based on Graph Convolutional Network". Applied Sciences 14, n.º 2 (15 de janeiro de 2024): 726. http://dx.doi.org/10.3390/app14020726.
Texto completo da fonteOrlikowski, Cezary, e Rafał Hein. "Port-Based Modeling of Distributed-Lumped Parameter Systems". Solid State Phenomena 164 (junho de 2010): 183–88. http://dx.doi.org/10.4028/www.scientific.net/ssp.164.183.
Texto completo da fonteChen, Zhen, Jia Huang, Shengzheng Liu e Haixia Long. "Multiscale Feature Fusion and Graph Convolutional Network for Detecting Ethereum Phishing Scams". Electronics 13, n.º 6 (7 de março de 2024): 1012. http://dx.doi.org/10.3390/electronics13061012.
Texto completo da fonteRyazanov, Yu D., e S. V. Nazina. "Building parsers based on syntax diagrams with multiport components". Prikladnaya Diskretnaya Matematika, n.º 55 (2022): 102–19. http://dx.doi.org/10.17223/20710410/55/8.
Texto completo da fonteZou, Jun, Jing Wan, Hao Zhang e Yunbing Zhang. "A Multi-hop Path Query Answering Model for Knowledge Graph based on Neighborhood Aggregation and Transformer". Journal of Physics: Conference Series 2560, n.º 1 (1 de agosto de 2023): 012049. http://dx.doi.org/10.1088/1742-6596/2560/1/012049.
Texto completo da fonteYan, Zhaokun, Xiangquan Yang e Yu Jin. "Considerate motion imagination classification method using deep learning". PLOS ONE 17, n.º 10 (20 de outubro de 2022): e0276526. http://dx.doi.org/10.1371/journal.pone.0276526.
Texto completo da fonteWang, Baocheng, e Wentao Cai. "Attention-Enhanced Graph Neural Networks for Session-Based Recommendation". Mathematics 8, n.º 9 (18 de setembro de 2020): 1607. http://dx.doi.org/10.3390/math8091607.
Texto completo da fonteHao, Yiran, Yiqiang Sheng e Jinlin Wang. "A Graph Representation Learning Algorithm for Low-Order Proximity Feature Extraction to Enhance Unsupervised IDS Preprocessing". Applied Sciences 9, n.º 20 (22 de outubro de 2019): 4473. http://dx.doi.org/10.3390/app9204473.
Texto completo da fonteFleischauer, Markus, e Sebastian Böcker. "BCD Beam Search: considering suboptimal partial solutions in Bad Clade Deletion supertrees". PeerJ 6 (8 de junho de 2018): e4987. http://dx.doi.org/10.7717/peerj.4987.
Texto completo da fonteKausar, Samina, e Andre O. Falcao. "Analysis and Comparison of Vector Space and Metric Space Representations in QSAR Modeling". Molecules 24, n.º 9 (30 de abril de 2019): 1698. http://dx.doi.org/10.3390/molecules24091698.
Texto completo da fonteGoldfarb, M., e N. Celanovic. "A Lumped Parameter Electromechanical Model for Describing the Nonlinear Behavior of Piezoelectric Actuators". Journal of Dynamic Systems, Measurement, and Control 119, n.º 3 (1 de setembro de 1997): 478–85. http://dx.doi.org/10.1115/1.2801282.
Texto completo da fonteBahrami, Saeedeh, Alireza Bosaghzadeh e Fadi Dornaika. "Multi Similarity Metric Fusion in Graph-Based Semi-Supervised Learning". Computation 7, n.º 1 (7 de março de 2019): 15. http://dx.doi.org/10.3390/computation7010015.
Texto completo da fonteGoto, Hiroyuki. "Model predictive control-based scheduler for repetitive discrete event systems with capacity constraints". An International Journal of Optimization and Control: Theories & Applications (IJOCTA) 3, n.º 2 (29 de maio de 2013): 73–83. http://dx.doi.org/10.11121/ijocta.01.2013.00140.
Texto completo da fonteRashid, Pshtiwan Qader, e İlker Türker. "Lung Disease Detection Using U-Net Feature Extractor Cascaded by Graph Convolutional Network". Diagnostics 14, n.º 12 (20 de junho de 2024): 1313. http://dx.doi.org/10.3390/diagnostics14121313.
Texto completo da fonteTang, Chang, Xinwang Liu, Xinzhong Zhu, En Zhu, Zhigang Luo, Lizhe Wang e Wen Gao. "CGD: Multi-View Clustering via Cross-View Graph Diffusion". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 5924–31. http://dx.doi.org/10.1609/aaai.v34i04.6052.
Texto completo da fonteLiang, Shuang, Rong-Hua Li e George Baciu. "Cognitive Garment Panel Design Based on BSG Representation and Matching". International Journal of Software Science and Computational Intelligence 4, n.º 1 (janeiro de 2012): 84–99. http://dx.doi.org/10.4018/jssci.2012010104.
Texto completo da fonte