Artigos de revistas sobre o tema "Grapevine cell culture"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Grapevine cell culture".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Sák, Martin, Ivana Dokupilová, Daniel Mihálik, Jana Lakatošová, Marcela Gubišová e Ján Kraic. "Elicitation Phenolic Compounds in Cell Culture of Vitis vinifera L. by Phaeomoniella chlamydospora". Nova Biotechnologica et Chimica 13, n.º 2 (1 de dezembro de 2014): 162–71. http://dx.doi.org/10.1515/nbec-2015-0006.
Texto completo da fonteČarná, Mária, Vladimír Repka e Ernest Šturdí. "Proteomic Insight Into the Molecular Principles of Grapevine Habituation". Agriculture (Polnohospodárstvo) 57, n.º 4 (1 de dezembro de 2011): 129–36. http://dx.doi.org/10.2478/v10207-011-0013-0.
Texto completo da fonteCarvalho, Ana, Christina Crisóstomo, Fernanda Leal e José Lima-Brito. "Morphological and Cytogenetic Responses of In Vitro-Grown Grapevine (Vitis vinifera L.) Plants from “Touriga Franca”, “Touriga Nacional” and “Viosinho” Varieties Under Water Stress". Stresses 4, n.º 4 (24 de outubro de 2024): 685–98. http://dx.doi.org/10.3390/stresses4040044.
Texto completo da fonteAleynova, Olga A., Andrey R. Suprun, Nikolay N. Nityagovsky, Alexandra S. Dubrovina e Konstantin V. Kiselev. "The Influence of the Grapevine Bacterial and Fungal Endophytes on Biomass Accumulation and Stilbene Production by the In Vitro Cultivated Cells of Vitis amurensis Rupr." Plants 10, n.º 7 (23 de junho de 2021): 1276. http://dx.doi.org/10.3390/plants10071276.
Texto completo da fonteHurtado-Gaitán, Elías, Susana Sellés-Marchart, James Hartwell, Maria José Martínez-Esteso e Roque Bru-Martínez. "Down-Regulation of Phosphoenolpyruvate Carboxylase Kinase in Grapevine Cell Cultures and Leaves Is Linked to Enhanced Resveratrol Biosynthesis". Biomolecules 11, n.º 11 (5 de novembro de 2021): 1641. http://dx.doi.org/10.3390/biom11111641.
Texto completo da fonteZhao, Liang, Shuangmei You, Hui Zou e Xin Guan. "Transcriptome Analysis and Cell Morphology of Vitis rupestris Cells to Botryosphaeria Dieback Pathogen Diplodia seriata". Genes 12, n.º 2 (27 de janeiro de 2021): 179. http://dx.doi.org/10.3390/genes12020179.
Texto completo da fonteSák, Martin, Ivana Dokupilová, Šarlota Kaňuková, Michaela Mrkvová, Daniel Mihálik, Pavol Hauptvogel e Ján Kraic. "Biotic and Abiotic Elicitors of Stilbenes Production in Vitis vinifera L. Cell Culture". Plants 10, n.º 3 (5 de março de 2021): 490. http://dx.doi.org/10.3390/plants10030490.
Texto completo da fonteBrehm, Ilka, Regina Preisig-Müller e Helmut Kindl. "Grapevine Protoplasts as a Transient Expression System for Comparison of Stilbene Synthase Genes Containing cGMP-Responsive Promoter Elements". Zeitschrift für Naturforschung C 54, n.º 3-4 (1 de abril de 1999): 220–29. http://dx.doi.org/10.1515/znc-1999-3-412.
Texto completo da fonteFujita, Keiko, Yoshinao Aoki e Shunji Suzuki. "Antidiabetic effects of novel cell culture established from grapevine, Vitis vinifera cv. Koshu". Cytotechnology 70, n.º 3 (15 de março de 2018): 993–99. http://dx.doi.org/10.1007/s10616-018-0203-y.
Texto completo da fonteUnknown, Unknown. "Elicitor applications to cell suspension culture for production of phenolic compounds in grapevine". Tarım Bilimleri Dergisi 22, n.º 1 (2016): 42–53. http://dx.doi.org/10.1501/tarimbil_0000001366.
Texto completo da fonteBusato, Isabella, Oriana Bertaiola, Silvio Tundo, Chiara Guarnerio, Marco Lucchetta, Luca Sella, Giovanna Pressi e Francesco Favaron. "A Phytocomplex Obtained from Salvia officinalis by Cell Culture Technology Effectively Controls the Grapevine Downy Mildew Pathogen Plasmopara viticola". Plants 11, n.º 20 (11 de outubro de 2022): 2675. http://dx.doi.org/10.3390/plants11202675.
Texto completo da fonteVera-Urbina, Juan Carlos, Susana Sellés-Marchart, Ascensión Martínez-Márquez, María José Martínez-Esteso, María Angeles Pedreño, Jaime Morante-Carriel e Roque Bru-Martínez. "Factors Affecting the Bioproduction of Resveratrol by Grapevine Cell Cultures under Elicitation". Biomolecules 13, n.º 10 (16 de outubro de 2023): 1529. http://dx.doi.org/10.3390/biom13101529.
Texto completo da fonteDonnez, David, Kyung-Hee Kim, Sandrine Antoine, Alexandra Conreux, Vincenzo De Luca, Philippe Jeandet, Christophe Clément e Eric Courot. "Bioproduction of resveratrol and viniferins by an elicited grapevine cell culture in a 2L stirred bioreactor". Process Biochemistry 46, n.º 5 (maio de 2011): 1056–62. http://dx.doi.org/10.1016/j.procbio.2011.01.019.
Texto completo da fonteGray, D. J., Z. T. Li, D. L. Hopkins, M. Dutt, S. A. Dhekney, M. M. Van Aman, J. Tattersall e K. T. Kelley. "Transgenic Grapevines Resistant to Pierce's Disease". HortScience 40, n.º 4 (julho de 2005): 1104D—1105. http://dx.doi.org/10.21273/hortsci.40.4.1104d.
Texto completo da fontePathirana, Ranjith, e Francesco Carimi. "Studies on Improving the Efficiency of Somatic Embryogenesis in Grapevine (Vitis vinifera L.) and Optimising Ethyl Methanesulfonate Treatment for Mutation Induction". Plants 12, n.º 24 (11 de dezembro de 2023): 4126. http://dx.doi.org/10.3390/plants12244126.
Texto completo da fontePark, Su Hyun, Yu Jeong Jeong, Sung-Chul Park, Soyoung Kim, Yong-Goo Kim, Gilok Shin, Hyung Jae Jeong et al. "Highly Efficient Bioconversion of trans-Resveratrol to δ-Viniferin Using Conditioned Medium of Grapevine Callus Suspension Cultures". International Journal of Molecular Sciences 23, n.º 8 (15 de abril de 2022): 4403. http://dx.doi.org/10.3390/ijms23084403.
Texto completo da fonteKatsirdakis, K. C., e K. A. Roubelakis-Angelakis. "Modified culture conditions for increased viability and cell wall synthesis in grapevine (Vitis vinifera L. cv. Sultanina) leaf protoplasts". Plant Cell, Tissue and Organ Culture 28, n.º 3 (março de 1992): 255–60. http://dx.doi.org/10.1007/bf00036121.
Texto completo da fonteSalvatore, Maria Michela, Carina Félix, Fernanda Lima, Vanessa Ferreira, Ana Sofia Duarte, Francesco Salvatore, Artur Alves, Ana Cristina Esteves e Anna Andolfi. "Effect of γ-Aminobutyric Acid (GABA) on the Metabolome of Two Strains of Lasiodiplodia theobromae Isolated from Grapevine". Molecules 25, n.º 17 (23 de agosto de 2020): 3833. http://dx.doi.org/10.3390/molecules25173833.
Texto completo da fonteSCAGLIUSI, SANDRA M. M., JORGE VEGA e HUGO KUNIYUKI. "Cytopathology of callus cells infected with grapevine leafroll-associated virus 3". Fitopatologia Brasileira 27, n.º 4 (julho de 2002): 384–88. http://dx.doi.org/10.1590/s0100-41582002000400008.
Texto completo da fonteCalder�n, A. A., J. M. Zapata e A. Ros Barcel�. "Differential expression of a cell wall-localized peroxidase isoenzyme capable of oxidizing 4-hydroxystilbenes during the cell culture of grapevine (Vitis vinifera cv. Airen and Monastrell)". Plant Cell, Tissue and Organ Culture 37, n.º 2 (maio de 1994): 121–27. http://dx.doi.org/10.1007/bf00043605.
Texto completo da fonteAndreolli, Marco, Giacomo Zapparoli, Silvia Lampis, Chiara Santi, Elisa Angelini e Nadia Bertazzon. "In Vivo Endophytic, Rhizospheric and Epiphytic Colonization of Vitis vinifera by the Plant-Growth Promoting and Antifungal Strain Pseudomonas protegens MP12". Microorganisms 9, n.º 2 (23 de janeiro de 2021): 234. http://dx.doi.org/10.3390/microorganisms9020234.
Texto completo da fonteGan, Han Ming, Lucas Dailey, Peter Wengert, Nigel Halliday, Paul Williams, Andre Hudson e Michael A. Savka. "Quorum sensing signals of the grapevine crown gall bacterium, Novosphingobium sp. Rr2-17: use of inducible expression and polymeric resin to sequester acyl-homoserine lactones". PeerJ 12 (20 de dezembro de 2024): e18657. https://doi.org/10.7717/peerj.18657.
Texto completo da fonteGonzález-Ramos, Daniel, A. Muñoz, Anne Ortiz-Julien, Antonio Tomás Palacios, José María Heras e Ramon González. "A Saccharomyces cerevisiae wine yeast strain overproducing mannoproteins selected through classical genetic methods". OENO One 44, n.º 4 (31 de dezembro de 2010): 243. http://dx.doi.org/10.20870/oeno-one.2010.44.4.1475.
Texto completo da fonteKiselev, Konstantin V., Zlata V. Ogneva, Olga A. Aleynova, Andrey R. Suprun, Alexey A. Ananev, Nikolay N. Nityagovsky e Alexandra S. Dubrovina. "Influence of the 135 bp Intron on Stilbene Synthase VaSTS11 Transgene Expression in Cell Cultures of Grapevine and Different Plant Generations of Arabidopsis thaliana". Horticulturae 9, n.º 4 (20 de abril de 2023): 513. http://dx.doi.org/10.3390/horticulturae9040513.
Texto completo da fonteFerri, Maura, Laura Righetti e Annalisa Tassoni. "Increasing sucrose concentrations promote phenylpropanoid biosynthesis in grapevine cell cultures". Journal of Plant Physiology 168, n.º 3 (fevereiro de 2011): 189–95. http://dx.doi.org/10.1016/j.jplph.2010.06.027.
Texto completo da fonteKiselev, Konstantin V., Olga A. Aleynova, Zlata V. Ogneva, Andrey R. Suprun, Alexey A. Ananev, Nikolay N. Nityagovsky, Alina A. Dneprovskaya, Alina A. Beresh e Alexandra S. Dubrovina. "The Effect of Stress Hormones, Ultraviolet C, and Stilbene Precursors on Expression of Calcineurin B-like Protein (CBL) and CBL-Interacting Protein Kinase (CIPK) Genes in Cell Cultures and Leaves of Vitis amurensis Rupr". Plants 12, n.º 7 (5 de abril de 2023): 1562. http://dx.doi.org/10.3390/plants12071562.
Texto completo da fonteDubceac, Marcela, Evghenii Haustov e Victor Bondarciuc. "Implementarea metodei PCR pentru identificarea tulpinilor patogene Allorhizobium Vitis ce provoacă cancerul bacterian al viței-de-vie". Agricultural Science, n.º 1 (5 de julho de 2024): 47–54. http://dx.doi.org/10.55505/sa.2024.1.05.
Texto completo da fonteAleynova, Olga A., Konstantin V. Kiselev, Zlata V. Ogneva e Alexandra S. Dubrovina. "The Grapevine Calmodulin-Like Protein Gene CML21 Is Regulated by Alternative Splicing and Involved in Abiotic Stress Response". International Journal of Molecular Sciences 21, n.º 21 (26 de outubro de 2020): 7939. http://dx.doi.org/10.3390/ijms21217939.
Texto completo da fonteAleynova, Olga A., Andrey R. Suprun, Alexey A. Ananev, Nikolay N. Nityagovsky, Zlata V. Ogneva, Alexandra S. Dubrovina e Konstantin V. Kiselev. "Effect of Calmodulin-like Gene (CML) Overexpression on Stilbene Biosynthesis in Cell Cultures of Vitis amurensis Rupr." Plants 11, n.º 2 (10 de janeiro de 2022): 171. http://dx.doi.org/10.3390/plants11020171.
Texto completo da fonteJeandet, Philippe, Christophe Clément, Léo-Paul Tisserant, Jérôme Crouzet e Éric Courot. "Use of grapevine cell cultures for the production of phytostilbenes of cosmetic interest". Comptes Rendus Chimie 19, n.º 9 (setembro de 2016): 1062–70. http://dx.doi.org/10.1016/j.crci.2016.02.013.
Texto completo da fonteAleynova, Olga A., Konstantin V. Kiselev, Andrey R. Suprun, Alexey A. Ananev e Alexandra S. Dubrovina. "Involvement of the Calmodulin-like Protein Gene VaCML92 in Grapevine Abiotic Stress Response and Stilbene Production". International Journal of Molecular Sciences 24, n.º 21 (31 de outubro de 2023): 15827. http://dx.doi.org/10.3390/ijms242115827.
Texto completo da fonteRepka, V., e I. Baumgartnerová. "Grapevine habituation: Understanding of factors that contribute to neoplastic transformation and somaclonal variation". Acta Agronomica Hungarica 56, n.º 4 (1 de dezembro de 2008): 399–408. http://dx.doi.org/10.1556/aagr.56.2008.4.4.
Texto completo da fonteThomas, Pious, e Christopher M. M. Franco. "Intracellular Bacteria in Plants: Elucidation of Abundant and Diverse Cytoplasmic Bacteria in Healthy Plant Cells Using In Vitro Cell and Callus Cultures". Microorganisms 9, n.º 2 (28 de janeiro de 2021): 269. http://dx.doi.org/10.3390/microorganisms9020269.
Texto completo da fonteBru, Roque, Susana Sellés, Juan Casado-Vela, Sarai Belchí-Navarro e Maria Angeles Pedreño. "Modified Cyclodextrins Are Chemically Defined Glucan Inducers of Defense Responses in Grapevine Cell Cultures". Journal of Agricultural and Food Chemistry 54, n.º 1 (janeiro de 2006): 65–71. http://dx.doi.org/10.1021/jf051485j.
Texto completo da fonteRANGEL-MONTOYA, Edelweiss A., Philippe E. ROLSHAUSEN e Rufina HERNANDEZ-MARTINEZ. "Unravelling the colonization mechanism of Lasiodiplodia brasiliensis in grapevine plants". Phytopathologia Mediterranea 60, n.º 2 (12 de maio de 2023): 135–49. http://dx.doi.org/10.36253/phyto-14198.
Texto completo da fonteAnanev, Alexey A., Andrey R. Suprun, Olga A. Aleynova, Nikolay N. Nityagovsky, Zlata V. Ogneva, Alexandra S. Dubrovina e Konstantin V. Kiselev. "Effect of VaMyb40 and VaMyb60 Overexpression on Stilbene Biosynthesis in Cell Cultures of Grapevine Vitis amurensis Rupr." Plants 11, n.º 15 (24 de julho de 2022): 1916. http://dx.doi.org/10.3390/plants11151916.
Texto completo da fonteFilippi, Antonio, Marco Zancani, Elisa Petrussa e Enrico Braidot. "Caspase-3-like activity and proteasome degradation in grapevine suspension cell cultures undergoing silver-induced programmed cell death". Journal of Plant Physiology 233 (fevereiro de 2019): 42–51. http://dx.doi.org/10.1016/j.jplph.2018.12.003.
Texto completo da fonteMartínez-Márquez, Ascensión, Jaime A. Morante-Carriel, Karla Ramírez-Estrada, Rosa M. Cusidó, Javier Palazon e Roque Bru-Martínez. "Production of highly bioactive resveratrol analogues pterostilbene and piceatannol in metabolically engineered grapevine cell cultures". Plant Biotechnology Journal 14, n.º 9 (7 de março de 2016): 1813–25. http://dx.doi.org/10.1111/pbi.12539.
Texto completo da fonteRepka, V. "Elicitor-Stimulated Induction of Defense Mechanisms and Defense Gene Activation in Grapevine Cell Suspension Cultures". Biologia plantarum 44, n.º 4 (1 de dezembro de 2001): 555–65. http://dx.doi.org/10.1023/a:1013742703929.
Texto completo da fonteBen-Amar, Anis, Samia Daldoul, Dorsaf Allel, Goetz Reustle e Ahmed Mliki. "Reliable encapsulation-based cryopreservation protocol for safe storage and recovery of grapevine embryogenic cell cultures". Scientia Horticulturae 157 (junho de 2013): 32–38. http://dx.doi.org/10.1016/j.scienta.2013.04.005.
Texto completo da fonteCoutos-Thevenot, Pierre, Isabelle Goebel-Tourand, Marie-Claude Mauro, Jean-Pierre Jouanneau, Michel Boulay, Alain Deloire e Jean Guern. "Somatic embryogenesis from grapevine cells. I-Improvement of embryo development by changes in culture conditions". Plant Cell, Tissue and Organ Culture 29, n.º 2 (maio de 1992): 125–33. http://dx.doi.org/10.1007/bf00033617.
Texto completo da fonteMiklos, E., A. Bérczi e L. Erdei. "Plasmalemma isolation from cultured cells and roots of grapevine by aqueous two phase partition". Plant Science 66, n.º 1 (janeiro de 1990): 73–80. http://dx.doi.org/10.1016/0168-9452(90)90171-j.
Texto completo da fonteMartínez-Márquez, Ascensión, Jaime A. Morante-Carriel, Javier Palazon e Roque Bru-Martínez. "Rosa hybrida orcinol O-methyl transferase-mediated production of pterostilbene in metabolically engineered grapevine cell cultures". New Biotechnology 42 (maio de 2018): 62–70. http://dx.doi.org/10.1016/j.nbt.2018.02.011.
Texto completo da fonteAlmagro, Lorena, Alicia De Gea-Abellán, María Isabel Rodríguez-López, Estrella Núñez-Delicado, José Antonio Gabaldón e María Angeles Pedreño. "A Smart Strategy to Improve t-Resveratrol Production in Grapevine Cells Treated with Cyclodextrin Polymers Coated with Magnetic Nanoparticles". Polymers 12, n.º 4 (24 de abril de 2020): 991. http://dx.doi.org/10.3390/polym12040991.
Texto completo da fonteFilippi, Antonio, Elisa Petrussa, Francesco Boscutti, Marco Vuerich, Urska Vrhovsek, Zohreh Rabiei e Enrico Braidot. "Bioactive Polyphenols Modulate Enzymes Involved in Grapevine Pathogenesis and Chitinase Activity at Increasing Complexity Levels". International Journal of Molecular Sciences 20, n.º 24 (17 de dezembro de 2019): 6357. http://dx.doi.org/10.3390/ijms20246357.
Texto completo da fonteHattori, Tomoki, Yang Chen, Shinichi Enoki, Daisuke Igarashi e Shunji Suzuki. "Exogenous isoleucine and phenylalanine interact with abscisic acid-mediated anthocyanin accumulation in grape". Folia Horticulturae 31, n.º 1 (1 de junho de 2019): 147–57. http://dx.doi.org/10.2478/fhort-2019-0010.
Texto completo da fonteRepka, V., I. Fischerova e K. Silharova. "Methyl Jasmonate is a Potent Elicitor of Multiple Defense Responses in Grapevine Leaves and Cell-Suspension Cultures". Biologia plantarum 48, n.º 2 (1 de junho de 2004): 273–83. http://dx.doi.org/10.1023/b:biop.0000033456.27521.e5.
Texto completo da fonteLajara, María M., Antonio López-Orenes, María A. Ferrer e Antonio A. Calderón. "Long-term exposure treatments revert the initial SA-induced alterations of phenolic metabolism in grapevine cell cultures". Plant Cell, Tissue and Organ Culture (PCTOC) 122, n.º 3 (5 de junho de 2015): 665–73. http://dx.doi.org/10.1007/s11240-015-0800-9.
Texto completo da fonteFila, Gianni, Jaleh Ghashghaie, Jackson Hoarau e Gabriel Cornic. "Photosynthesis, leaf conductance and water relations of in vitro cultured grapevine rootstock in relation to acclimatisation". Physiologia Plantarum 102, n.º 3 (março de 1998): 411–18. http://dx.doi.org/10.1034/j.1399-3054.1998.1020309.x.
Texto completo da fonteTran, Daniel, Tingting Zhao, Delphine Arbelet-Bonnin, Takashi Kadono, Patrice Meimoun, Sylvie Cangémi, Camille Noûs, Tomonori Kawano, Rafik Errakhi e François Bouteau. "Early Cellular Responses Induced by Sedimentary Calcite-Processed Particles in Bright Yellow 2 Tobacco Cultured Cells". International Journal of Molecular Sciences 21, n.º 12 (16 de junho de 2020): 4279. http://dx.doi.org/10.3390/ijms21124279.
Texto completo da fonte