Artigos de revistas sobre o tema "Gradient-Enhanced"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Gradient-Enhanced".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
van Zijl, Peter C., e Ralph E. Hurd. "Gradient enhanced spectroscopy". Journal of Magnetic Resonance 213, n.º 2 (dezembro de 2011): 474–76. http://dx.doi.org/10.1016/j.jmr.2011.08.018.
Texto completo da fonteHurd, Ralph E. "Gradient-enhanced spectroscopy". Journal of Magnetic Resonance 213, n.º 2 (dezembro de 2011): 467–73. http://dx.doi.org/10.1016/j.jmr.2011.09.005.
Texto completo da fonteHurd, Ralph E. "Gradient-enhanced spectroscopy". Journal of Magnetic Resonance (1969) 87, n.º 2 (abril de 1990): 422–28. http://dx.doi.org/10.1016/0022-2364(90)90021-z.
Texto completo da fonteAlfaraj, Mohammed, Yuchun Wang e Yi Luo. "Enhanced isotropic gradient operator". Geophysical Prospecting 62, n.º 3 (4 de março de 2014): 507–17. http://dx.doi.org/10.1111/1365-2478.12106.
Texto completo da fonteMoonen, Chrit T. W., Peter Van Gelderen, Geerten W. Vuister e Peter C. M. Van Zijl. "Gradient-enhanced exchange spectroscopy". Journal of Magnetic Resonance (1969) 97, n.º 2 (abril de 1992): 419–25. http://dx.doi.org/10.1016/0022-2364(92)90327-4.
Texto completo da fonteGangl, Markus, e Helmut Ritsch. "Cavity-enhanced polarization gradient cooling". Journal of Physics B: Atomic, Molecular and Optical Physics 35, n.º 22 (4 de novembro de 2002): 4565–82. http://dx.doi.org/10.1088/0953-4075/35/22/301.
Texto completo da fonteMarro, Kenneth I., Donghoon Lee e Outi M. Hyyti. "Gradient-enhanced FAWSETS perfusion measurements". Journal of Magnetic Resonance 175, n.º 2 (agosto de 2005): 185–92. http://dx.doi.org/10.1016/j.jmr.2005.04.002.
Texto completo da fontePoh, L. H., e S. Swaddiwudhipong. "Gradient-enhanced softening material models". International Journal of Plasticity 25, n.º 11 (novembro de 2009): 2094–121. http://dx.doi.org/10.1016/j.ijplas.2009.01.003.
Texto completo da fonteParella, T., F. Sanchezferrando e A. Virgili. "Selective Gradient-Enhanced Inverse Experiments". Journal of Magnetic Resonance, Series A 112, n.º 1 (janeiro de 1995): 106–8. http://dx.doi.org/10.1006/jmra.1995.1016.
Texto completo da fonteRoumestand, Christian, Pierre Mutzenhardt, Corinne Delay e Daniel Canet. "Gradient-Enhanced Band-Filtering Experiments". Magnetic Resonance in Chemistry 34, n.º 10 (outubro de 1996): 807–14. http://dx.doi.org/10.1002/(sici)1097-458x(199610)34:10<807::aid-omr975>3.0.co;2-9.
Texto completo da fonteSUN, Linjun, Weijun LI, Xin NING, Liping ZHANG, Xiaoli DONG e Wei HE. "Gradient-Enhanced Softmax for Face Recognition". IEICE Transactions on Information and Systems E103.D, n.º 5 (1 de maio de 2020): 1185–89. http://dx.doi.org/10.1587/transinf.2019edl8103.
Texto completo da fonteVuister, Geerten W., Rolf Boelens, Robert Kaptein, Maurits Burgering e Peter C. M. van Zijl. "Gradient-enhanced 3D NOESY-HMQC spectroscopy". Journal of Biomolecular NMR 2, n.º 3 (maio de 1992): 301–5. http://dx.doi.org/10.1007/bf01875323.
Texto completo da fonteKövér, Katalin E., Dušan Uhrı́n e Victor J. Hruby. "Gradient- and Sensitivity-Enhanced TOCSY Experiments". Journal of Magnetic Resonance 130, n.º 2 (fevereiro de 1998): 162–68. http://dx.doi.org/10.1006/jmre.1997.1309.
Texto completo da fonteGerig, J. T. "Gradient-enhanced proton-fluorine NOE experiments". Magnetic Resonance in Chemistry 37, n.º 9 (setembro de 1999): 647–52. http://dx.doi.org/10.1002/(sici)1097-458x(199909)37:9<647::aid-mrc520>3.0.co;2-n.
Texto completo da fonteUlaganathan, Selvakumar, Ivo Couckuyt, Tom Dhaene, Joris Degroote e Eric Laermans. "Performance study of gradient-enhanced Kriging". Engineering with Computers 32, n.º 1 (19 de fevereiro de 2015): 15–34. http://dx.doi.org/10.1007/s00366-015-0397-y.
Texto completo da fonteLaurenceau, J., M. Meaux, M. Montagnac e P. Sagaut. "Comparison of Gradient-Based and Gradient-Enhanced Response-Surface-Based Optimizers". AIAA Journal 48, n.º 5 (maio de 2010): 981–94. http://dx.doi.org/10.2514/1.45331.
Texto completo da fonteYan, Ming, Jianxi Yang, Cen Chen, Joey Tianyi Zhou, Yi Pan e Zeng Zeng. "Enhanced gradient learning for deep neural networks". IET Image Processing 16, n.º 2 (9 de novembro de 2021): 365–77. http://dx.doi.org/10.1049/ipr2.12353.
Texto completo da fonteLockwood, Brian A., e Mihai Anitescu. "Gradient-Enhanced Universal Kriging for Uncertainty Propagation". Nuclear Science and Engineering 170, n.º 2 (fevereiro de 2012): 168–95. http://dx.doi.org/10.13182/nse10-86.
Texto completo da fonteSimone, Angelo. "Explicit and implicit gradient-enhanced damage models". Revue Européenne de Génie Civil 11, n.º 7-8 (agosto de 2007): 1023–44. http://dx.doi.org/10.1080/17747120.2007.9692975.
Texto completo da fontede Borst, R., A. Benallal e O. M. Heeres. "A Gradient-Enhanced Damage Approach to Fracture". Le Journal de Physique IV 06, n.º C6 (outubro de 1996): C6–491—C6–502. http://dx.doi.org/10.1051/jp4:1996649.
Texto completo da fonteManzari, Majid T., e Karma Yonten. "C1finite element analysis in gradient enhanced continua". Mathematical and Computer Modelling 57, n.º 9-10 (maio de 2013): 2519–31. http://dx.doi.org/10.1016/j.mcm.2013.01.003.
Texto completo da fonteShane, Erica S., John L. Anderson e Michael M. Domach. "Enhanced protein diffusion in a solvent gradient". Industrial & Engineering Chemistry Research 29, n.º 2 (fevereiro de 1990): 309–12. http://dx.doi.org/10.1021/ie00098a024.
Texto completo da fonteIsaksson, P., e R. Hägglund. "Crack-tip fields in gradient enhanced elasticity". Engineering Fracture Mechanics 97 (janeiro de 2013): 186–92. http://dx.doi.org/10.1016/j.engfracmech.2012.11.011.
Texto completo da fonteMartínez-Pañeda, Emilio, Sandra Fuentes-Alonso e Covadonga Betegón. "Gradient-enhanced statistical analysis of cleavage fracture". European Journal of Mechanics - A/Solids 77 (setembro de 2019): 103785. http://dx.doi.org/10.1016/j.euromechsol.2019.05.002.
Texto completo da fonteFloros, Dimosthenis, Fredrik Larsson e Kenneth Runesson. "On configurational forces for gradient-enhanced inelasticity". Computational Mechanics 61, n.º 4 (19 de agosto de 2017): 409–32. http://dx.doi.org/10.1007/s00466-017-1460-x.
Texto completo da fonteSimone, Angelo. "Explicit and implicit gradient-enhanced damage models". Revue européenne de génie civil 11, n.º 7-8 (1 de outubro de 2007): 1023–44. http://dx.doi.org/10.3166/regc.11.1023-1044.
Texto completo da fonteCho, KyungHyun, Tapani Raiko e Alexander Ilin. "Enhanced Gradient for Training Restricted Boltzmann Machines". Neural Computation 25, n.º 3 (março de 2013): 805–31. http://dx.doi.org/10.1162/neco_a_00397.
Texto completo da fonteChu, Jun, Jia Luo e Lu Leng. "Non-local Dehazing enhanced by color gradient". Multimedia Tools and Applications 78, n.º 5 (11 de fevereiro de 2018): 5701–13. http://dx.doi.org/10.1007/s11042-018-5673-6.
Texto completo da fontePeerlings, R. H. J., R. de Borst, W. A. M. Brekelmans e M. G. D. Geers. "Gradient-enhanced damage modelling of concrete fracture". Mechanics of Cohesive-frictional Materials 3, n.º 4 (outubro de 1998): 323–42. http://dx.doi.org/10.1002/(sici)1099-1484(1998100)3:4<323::aid-cfm51>3.0.co;2-z.
Texto completo da fontePEERLINGS, R. H. J., R. DE BORST, W. A. M. BREKELMANS e J. H. P. DE VREE. "GRADIENT ENHANCED DAMAGE FOR QUASI-BRITTLE MATERIALS". International Journal for Numerical Methods in Engineering 39, n.º 19 (15 de outubro de 1996): 3391–403. http://dx.doi.org/10.1002/(sici)1097-0207(19961015)39:19<3391::aid-nme7>3.0.co;2-d.
Texto completo da fonteWang, Dong, Huan Zhang, Jing Guo, Beichen Cheng, Yuan Cao, Shengjun Lu, Ning Zhao e Jian Xu. "Biomimetic Gradient Polymers with Enhanced Damping Capacities". Macromolecular Rapid Communications 37, n.º 7 (18 de janeiro de 2016): 655–61. http://dx.doi.org/10.1002/marc.201500637.
Texto completo da fonteBouhlel, Mohamed A., e Joaquim R. R. A. Martins. "Gradient-enhanced kriging for high-dimensional problems". Engineering with Computers 35, n.º 1 (26 de fevereiro de 2018): 157–73. http://dx.doi.org/10.1007/s00366-018-0590-x.
Texto completo da fonteBouwer, Johann M., Daniel N. Wilke e Schalk Kok. "Spatio-Temporal Gradient Enhanced Surrogate Modeling Strategies". Mathematical and Computational Applications 28, n.º 2 (8 de abril de 2023): 57. http://dx.doi.org/10.3390/mca28020057.
Texto completo da fonteKang, Shinseong, e Kyunghoon Lee. "Application of Gradient-Enhanced Kriging to Aerodynamic Coefficients Modeling With Physical Gradient Information". Journal of the Korean Society for Aeronautical & Space Sciences 48, n.º 3 (31 de março de 2020): 175–85. http://dx.doi.org/10.5139/jksas.2020.48.3.175.
Texto completo da fonteAn, Xinlai, Weikang Bao, Zuhe Zhang, Zhouwen Jiang, Shengyun Yuan, Zesheng You e Yong Zhang. "Gradient Enhanced Strain Hardening and Tensile Deformability in a Gradient-Nanostructured Ni Alloy". Nanomaterials 11, n.º 9 (18 de setembro de 2021): 2437. http://dx.doi.org/10.3390/nano11092437.
Texto completo da fonteChen, G., e G. Baker. "Enhanced Approach to Consistency in Gradient-Dependent Plasticity". Advances in Structural Engineering 7, n.º 3 (julho de 2004): 279–83. http://dx.doi.org/10.1260/136943304323213229.
Texto completo da fonteTitscher, Thomas, Javier Oliver e Jörg F. Unger. "Implicit–Explicit Integration of Gradient-Enhanced Damage Models". Journal of Engineering Mechanics 145, n.º 7 (julho de 2019): 04019040. http://dx.doi.org/10.1061/(asce)em.1943-7889.0001608.
Texto completo da fonteLaurent, Luc, Rodolphe Le Riche, Bruno Soulier e Pierre-Alain Boucard. "An Overview of Gradient-Enhanced Metamodels with Applications". Archives of Computational Methods in Engineering 26, n.º 1 (17 de julho de 2017): 61–106. http://dx.doi.org/10.1007/s11831-017-9226-3.
Texto completo da fonteLi, Xikui, Junbo Zhang e Xue Zhang. "Micro-macro homogenization of gradient-enhanced Cosserat media". European Journal of Mechanics - A/Solids 30, n.º 3 (maio de 2011): 362–72. http://dx.doi.org/10.1016/j.euromechsol.2010.10.008.
Texto completo da fonteUlaganathan, Selvakumar, Ivo Couckuyt, Francesco Ferranti, Eric Laermans e Tom Dhaene. "Performance study of multi-fidelity gradient enhanced kriging". Structural and Multidisciplinary Optimization 51, n.º 5 (26 de novembro de 2014): 1017–33. http://dx.doi.org/10.1007/s00158-014-1192-x.
Texto completo da fonteJiang, Ting, e XiaoJian Zhou. "Gradient/Hessian-enhanced least square support vector regression". Information Processing Letters 134 (junho de 2018): 1–8. http://dx.doi.org/10.1016/j.ipl.2018.01.014.
Texto completo da fonteTyburn, Jean-Max, Ian M. Brereton e David M. Doddrell. "Coherence selection in gradient-enhanced, heteronuclear correlation spectroscopy". Journal of Magnetic Resonance (1969) 97, n.º 2 (abril de 1992): 305–12. http://dx.doi.org/10.1016/0022-2364(92)90315-x.
Texto completo da fonteLi, Gang, e Fuh-Gwo Yuan. "Gradient enhanced damage sizing for structural health management". Smart Materials and Structures 24, n.º 2 (23 de janeiro de 2015): 025036. http://dx.doi.org/10.1088/0964-1726/24/2/025036.
Texto completo da fonteChen, Tinggui, Junrui Jiao e Dejie Yu. "Enhanced broadband acoustic sensing in gradient coiled metamaterials". Journal of Physics D: Applied Physics 54, n.º 8 (8 de dezembro de 2020): 085501. http://dx.doi.org/10.1088/1361-6463/abc6d7.
Texto completo da fonteZhang, Chun-Lei, Hui-Jing Du, Jian-Zhuo Zhu, Tian-Fu Xu e Xiao-Yong Fang. "Enhanced Photovoltaic Properties of Gradient Doping Solar Cells". Chinese Physics Letters 29, n.º 12 (dezembro de 2012): 127305. http://dx.doi.org/10.1088/0256-307x/29/12/127305.
Texto completo da fonteZuiderweg, Erik R. P., e Aikaterini Rousaki. "Gradient-enhanced TROSY described with Cartesian product operators". Concepts in Magnetic Resonance Part A 38A, n.º 6 (novembro de 2011): 280–88. http://dx.doi.org/10.1002/cmr.a.20228.
Texto completo da fonteXu, Yanjie, e Leong Hien Poh. "Localizing gradient‐enhanced Rousselier model for ductile fracture". International Journal for Numerical Methods in Engineering 119, n.º 9 (15 de abril de 2019): 826–51. http://dx.doi.org/10.1002/nme.6074.
Texto completo da fonteGeers, M. G. D., R. L. J. M. Ubachs e R. A. B. Engelen. "Strongly non-local gradient-enhanced finite strain elastoplasticity". International Journal for Numerical Methods in Engineering 56, n.º 14 (2003): 2039–68. http://dx.doi.org/10.1002/nme.654.
Texto completo da fontePeerlings, R. H. J., W. A. M. Brekelmans, R. de Borst e M. G. D. Geers. "Gradient-enhanced damage modelling of high-cycle fatigue". International Journal for Numerical Methods in Engineering 49, n.º 12 (2000): 1547–69. http://dx.doi.org/10.1002/1097-0207(20001230)49:12<1547::aid-nme16>3.0.co;2-d.
Texto completo da fonteHurd, R. E., A. Deese, M. O'Neil Johnson, S. Sukumar e P. C. M. van Zijl. "Impact of Differential Linearity in Gradient-Enhanced NMR". Journal of Magnetic Resonance, Series A 119, n.º 2 (abril de 1996): 285–88. http://dx.doi.org/10.1006/jmra.1996.0089.
Texto completo da fonte