Literatura científica selecionada sobre o tema "Gong shang guan li chu"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Gong shang guan li chu".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Gong shang guan li chu"

1

Zhang, Juyan, Lan Zhang, Yunlong Zhao, Jiashen Meng, Bohua Wen, Suojiang Zhang e Qiong Cai. "Development of Iron Fluoride Based Nanocomposite Materials to Enable High Performance Aluminium-Ion Batteries". ECS Meeting Abstracts MA2023-02, n.º 4 (22 de dezembro de 2023): 617. http://dx.doi.org/10.1149/ma2023-024617mtgabs.

Texto completo da fonte
Resumo:
Developing grid-scale energy storage is important for the penetration of intermittent renewable energies such as wind and solar, but remains one of the biggest challenges in the field of electrochemical energy storage [1]. The application of mature lithium-ion batteries (LIBs) to grid energy storage is controversial due to the limited Li resources and geographical distribution, high cost of materials (e.g., Co, Li), limited lifetime, and safety concerns [2]. Rechargeable aluminium ion batteries (AIBs), which normally utilises aluminium (Al) metal as anode, are one of the most promising battery technologies for future large-scale energy storage, due to the high theoretical volumetric capacity (8046 mAh cm−3), high safety, and low cost and high abundance of aluminium (the third most abundant metal in the earth crust) [3]. AIBs have achieved long cycle life (>7500 cycles) when using graphite and graphene as cathode materials [4-5]. Nevertheless, the reported graphite-based cathodes have intrinsically low storage capacities (60–200 mAh g-1) due to the intercalation mechanism of the solvated ions rather than the multivalent Al3+ transformation. Extensive efforts have been made to develop new cathode materials to promote the specific/volumetric capacity of AIBs, including transition metal oxides [6], sulfides [7], selenides [8] and others. These AIBs based on non-graphite cathodes usually demonstrate either low discharge voltage, or high initial capacity but significant capacity decay and poor cycle life. To further improve the performance of AIBs, new cathode materials with high storage capacity and long cycle life needs to be developed. In this paper, we report the development of a nanoscale FeF3@expaned graphite (EG) composite as a novel conversion-type cathode material for AIBs [9]. AIB coin cells were assembled using high-purity Al foil as the anode, the ionic liquid [EMIm]Cl/AlCl3 as the electrolyte, and the FeF3@EG composite as cathode. The conversion reaction between the Al3+ ions and FeF3 through transferring three electrons for per Al3+ ion reacted could boost the storage capacity of AIBs. A single-wall carbon nanotube-modified separator was introduced into the system, to significantly restrict the shuttle effect of the intermediate product of FeF3. The assembled AIBs exhibited a satisfactory reversible specific capacity of 266 mAh g-1 at a current density of 60 mA g-1 after 200 cycles, and a good Coulombic efficiency approaching 100% after 400 cycles at a current density of 100 mA g-1 [9]. Ex-situ X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) have been applied to explore the energy storage mechanism of FeF3 in AIBs for the first time [9]. To further overcome the corrosion issue of ionic liquid, a gel polymer electrolyte (GPE) has been successfully synthesised via an innovative method where no solvent or initiator was utilised in the polymerisation process. The application of GPE significantly reduced the corrosivity and enhances the moisture sensitivity of EMIC ionic liquid, as well as improving the reversible ability of the AIBs. The FeF3@EG-based AIB with 0.8g-EMIC-gel electrolyte exhibits a reversible capacity of 204.5 mAh g-1after 1000 cycles at a current density of 100 mA g-1 and stable rate performance for 600 cycles with a Coulombic efficiency of approximately 95%. This work provides unprecedented insight into novel conversion type cathode materials for AIBs. The findings in this work can serve as guidance for the successful design of low cost and high discharge capacity AIBs for large-scale energy storage and are also meaningful for the fundamental understanding of the metal fluorides cathodes for AIBs. References: [1] S. Chu, A. Majumdar, Nature 2012, 488, 294. [2] B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928. [3] G. A. Elia, K. V. Kravchyk, M. V. Kovalenko, J. Chacón, A. Holland, R.G.A. Wills, Journal of Power Sources 2021, 481, 228870. [4] M. C. Lin, M. Gong, B. Lu, Y. Wu, D. Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B. J. Hwang, H. Dai, Nature 2015, 520, 324. [5] X. Shen, T. Sun, L. Yang, A. Krasnoslobodtsev, R. Sabirianov, M. Sealy, W.-N. Mei, Z. Wu, L. Tan, Nature Communications 2021, 12, 820. [6] X. Huo, X. Wang, Z. Li, J. Liu, J. Li, Nanoscale 2020, 12, 3387. [7] R. Zhuang, G. Miao, Z. Huang, Q. Zhang, J. C. Wu, J. Yang, Journal of Energy Chemistry 2021, 54, 639. [8] Y. Zhang, B. Zhang, J. Li, J. Liu, X. Huo, F. Kang, Chemical Engineering Journal 2021, 403, 126377. [9] J. Zhang, L. Zhang, Y. Zhao, J. Meng, B. Wen, K. M. Muttaqi, Md. R. Islam, Q. Cai, S. Zhang, Advanced Energy Materials 2022, 2200959.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Seredin, Pavel V., Dmitry L. Goloshchapov, Kirill A. Nikitkov, Vladimir M. Kashkarov, Yury A. Ippolitov e Vongsvivut Jitraporn (Pimm). "Применение синхротронной ИК-микроспектроскопии для анализа интеграции биомиметических композитов с нативной твердой тканью зуба человека". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, n.º 2 (14 de junho de 2019): 262–77. http://dx.doi.org/10.17308/kcmf.2019.21/764.

Texto completo da fonte
Resumo:
В данной работе продемонстрирована возможность применения ИК-микроспектроскопии для многомерной визуализации и анализа интеграции с нативными твердыми тканями зуба человека нового поколения биомиметических материалов, воспроизводящих минералорганический комплекс эмали и дентина.На основе ИК-картирования интенсивности конкретной функциональной молекулярной группы с использованием синхротронного излучения найдены и визуализированы характеристические особенности биомиметического переходного слоя в межфазной области эмаль/стоматологический материал и определено расположение функциональных групп, отвечающих процессам интеграции биомиметического композита REFERENCES Rohr N., Fischer J. Tooth surface treatment strategies for adhesive cementation // The Journal of Advanced Prosthodontics, 2017, v. 9(2), pp. 85–92. https://doi.org/10.4047/jap.2017.9.2.85 Pereira C. N. de B., Daleprane B., Miranda G. L. P. de, Magalhães C. S. de, Moreira A. N. Ultramorphology of pre-treated adhesive interfaces between self-adhesive resin cement and tooth structures // Revista de Odontologia da UNESP, 2017, v. 46(5), pp. 249–254. https://doi.org/10.1590/1807-2577.04917 Temel U. B., Van Ende A., Van Meerbeek B., Ermis R. B. Bond strength and cement-tooth interfacial characterization of self-adhesive composite cements //American Journal of Dentistry, 2017, v. 30(4), pp. 205–211. Watson T. F., Atmeh A. R., Sajini S., Cook R. J., Festy F. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease // Dental Materials, 2014, v. 30(1), pp. 50–61. https://doi.org/10.1016/j.dental.2013.08.202 Pontes D. G., Araujo C. T. P., Prieto L. T., de Oliveira D. C. R. S., Coppini E. K., Dias C. T. S., Paulillo L. A. M. S. Nanoleakage of fi ber posts luted with different adhesive strategies and the effect of chlorhexidine on the interface of dentin and self-adhesive cements // General Dentistry, 2015, v. 63(3), pp. 31–37. PMID: 25945761 Teaford M. F., Smith M. M., Ferguson W. J. Development, Function and Evolution of Teeth. Cambridge University Press, 2007, 328 p. Dorozhkin S. V. Hydroxyapatite and Other Calcium Orthophosphates: Bioceramics, Coatings and Dental Applications [Hardcover]. Nova Science Publishers, Inc New York, 2017, 462 p. URL: https://istina.msu.ru/publications/book/58538935/ Uskoković V. Biomineralization and biomimicry of tooth enamel. Non-Metallic Biomaterials for Tooth Repair and Replacement. Elsevier, 2013, pp. 20–44. URL:http://linkinghub.elsevier.com/retrieve/pii/B9780857092441500021 Niu L., Zhang W., Pashley D. H., Breschi L., Mao J., Chen J., Tay F. R. Biomimetic remineralization of dentin // Dental Materials, 2014, v. 30(1), pp. 77–96. https://doi.org/10.1016/j.dental.2013.07.013 Cao C., Mei, Li Q., Lo E., Chu C. Methods for Biomimetic Mineralisation of Human Enamel: A Systematic Review // Materials, 2015, v. 8(6), pp. 2873–2886. https://doi.org/10.3390/ma8062873 Chen L., Yuan H., Tang B., Liang K., Li J. Biomimetic remineralization of human enamel in the presence of polyamidoamine dendrimers in vitro // Caries Research, 2015, v. 49(3), pp. 282–290. https://doi.org/10.1159/000375376 Seredin P. V., Goloshchapov D. L., Gushchin M. S., Ippolitov Y. A., Prutskij T. The importance of the biomimetic composites components for recreating the optical properties and molecular composition of intact dental tissues. // Journal of Physics: Conference Series, 2017, v. 917(4), pp. 042019. https://doi.org/10.1088/1742-6596/917/4/042019 Xia Z. Biomimetic Principles and Design of Advanced Engineering Materials. John Wiley & Sons, 2016, 321 p. Dorozhkin S. V. Self-Setting Calcium Orthophosphate Formulations: Cements, Concretes, Pastes and Putties // International Journal of Materials and Chemistry, 2012, v. 1(1), pp. 1–48. https://doi.org/10.5923/j.ijmc.20110101.01 Li H., Gong M., Yang A., Ma J., Li X., Yan Y. Degradable biocomposite of nano calcium-defi cient hydroxyapatite-multi(amino acid) copolymer // International Journal of Nanomedicine, 2012, v. 7, pp. 1287–1295. https://doi.org/10.2147/IJN.S28978 Ruan Q., Zhang Y., Yang X., Nutt S., Moradian-Oldak J. An amelogenin–chitosan matrix promotes assembly of an enamel-like layer with a dense interface// Acta Biomaterialia, 2013, v. 9(7), pp. 7289–7297. https://doi.org/10.1016/j.actbio.2013.04.004 Yao, Shao H., Zhang Q. Development and Characterization of a Novel Amorphous Calcium Phosphate/Multi (Amino Acid) Copolymer Composite for Bone Repair // Journal of Biomaterials and Tissue Engineering, 2015, v. 5(5), pp. 387–390. https://doi.org/10.1166/jbt.2015.1321 Melo M. A. S., Weir M. D., Rodrigues L. K. A., Xu H. H. K. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model // Dental Materials, 2013, v. 29(2), pp. 231–240. https://doi.org/10.1016/j.dental.2012.10.010 Wu X.-T., Mei M., Li Q.-L., Cao C., Chen-L., Xia R., Zhang Z.-H., Chu C. A Direct Electric Field-Aided Biomimetic Mineralization System for Inducing the Remineralization of Dentin Collagen Matrix // Materials, 2015, v. 8(12), pp. 7889–7899. https://doi.org/10.3390/ ma8115433 Barghamadi H., Atai M., Imani M., Esfandeh M. Effects of nanoparticle size and content on mechanical properties of dental nanocomposites: experimental versus modeling // Iranian Polymer Journal, 2015, v. 24. (10), pp. 837–848. https://doi.org/10.1007/s13726-015-0369-5 Wang H., Xiao Z., Yang J., Lu D., Kishen A., Li Y., Chen Z., Que K., Zhang Q., Deng X., Yang X., Cai Q., Chen N., Cong C., Guan B., Li T., Zhang X. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ ACP Nanoparticles Guided by Glycine // Scientifi c Reports, 2017, v. 7(1), рр. 1-13. https://doi.org/10.1038/srep40701 Wu X., Zhao X., Li Y., Yang T., Yan X., Wang K. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel twostep method // Materials Science & Engineering. C, Materials for Biological Applications, 2015, v. 54, pp. 150–157. httsp://doi.org/10.1016/j.msec.2015.05.006 Aljabo A., Abou Neel E. A., Knowles J. C., Young A. M. Development of dental composites with reactive fi llers that promote precipitation of antibacterial-hydroxyapatite layers // Materials Science and Engineering: C, 2016, v. 60, pp. 285–292. https://doi.org/10.1016/j.msec.2015.11.047 Wang P., Liu P., Peng H., Luo X., Yuan H., Zhang J., Yan Y. Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo // Journal of Biomaterials Science. Polymer Edition, 2016, v. 27(11), pp. 1170–1186. https://doi.org/10.1080/09205063.2016.1184123 Lübke A., Enax J., Wey K., Fabritius H.-O., Raabe D., Epple M. Composites of fl uoroapatite and methylmethacrylate-based polymers (PMMA) for biomimetic tooth replacement // Bioinspiration & Biomimetics, 2016, v. 11(3), pp. 035001. https://doi.org/10.1088/1748-3190/11/3/035001 Sa Y., Gao Y., Wang M., Wang T., Feng X., Wang Z., Wang Y., Jiang T. Bioactive calcium phosphate cement with excellent injectability, mineralization capacity and drug-delivery properties for dental bio- mimetic reconstruction and minimum intervention therapy. RSC Advances, 2016, v. 6(33), pp. 27349–27359. https://doi.org/10.1039/C6RA02488B Adachi T., Pezzotti G., Yamamoto T., Ichioka H., Boffelli M., Zhu W., Kanamura N. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: II, application to decayed human teeth // Analytical and Bioanalytical Chemistry, 2015, v. 407(12), pp. 3343–3356. https://doi.org/10.1007/s00216-015-8539-z Mitić Ž., Stolić A., Stojanović S., Najman S., Ignjatović N., Nikolić G., Trajanović M. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review // Materials Science and Engineering: C, 2017, v. 79, pp. 930–949. https://doi.org/10.1016/j.msec.2017.05.127 Optical spectroscopy and computational methods in biology and medicine / Ed. by Barańska M., Dordrecht: Springer, 2014, 540 p. URL: http://link.springer.com/10.1007/978-94-007-7832-0 Hędzelek W., Marcinkowska A., Domka L., Wachowiak R. Infrared Spectroscopic Identifi cation of Chosen Dental Materials and Natural Teeth // Acta Physica Polonica A, 2008, v. 114(2), pp. 471–484. https://doi.org/10.12693/APhysPolA.114.471 Vongsvivut J., Perez-Guaita D., Wood B. R., Heraud P., Khambatta K., Hartnell D., Hackett M. J., Tobin M. J. Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells // The Analyst, 2019, v. 144(10), pp. 3226–3238. https://doi.org/10.1039/c8an01543k Seredin P., Goloshchapov D., Ippolitov Y., Vongsvivut P. Pathology-specifi c molecular profi les of saliva in patients with multiple dental caries—potential application for predictive, preventive and personalised medical services // EPMA Journal, 2018, v. 9(2), pp. 195–203. https://doi.org/10.1007/s13167-018-0135-9 Dusevich V., Xu C., Wang Y., Walker M. P., Gorski J. P. Identifi cation of a protein-containing enamel matrix layer which bridges with the dentine–enamel junction of adult human teeth // Archives of Oral Biology, 2012, v. 57(12), pp. 1585–1594. https://doi.org/10.1016/j.archoralbio.2012.04.014 Seredin P. V., Kashkarov V. M., Lukin A. N., Goloshchapov D. L., Ippolitov Y. A. Research Hydroxyapatite Crystals and Organic Components of Hard Tooth Tissues Affected by Dental Caries Using Ftir-Microspectroscopy and Xrd-Microdiffraction // Condensed Matter and Interphases, 2013, v. 15(3), с. 224–231. URL: http://www.kcmf.vsu.ru/resources/t_15_3_2013_002.pdf Fattibene P., Carosi A., Coste V. D., Sacchetti A., Nucara A., Postorino P., Dore P. A comparative EPR, infrared and Raman study of natural and deproteinated tooth enamel and dentin // Physics in Medicine and Biology, 2005, v. 50(6), pp. 1095. https://doi.org/10.1088/0031-9155/50/6/004 Seredin P., Goloshchapov D., Kashkarov V., Ippolitov Y., Bambery K. The investigations of changes in mineral–organic and carbon–phosphate ratios in the mixed saliva by synchrotron infrared spectroscopy // Results in Physics, 2016, v. 6, pp. 315–321. https://doi.org/10.1016/j.rinp.2016.06.005 Goloshchapov D. L., Kashkarov V. M., Rumyantseva N. A., Seredin P. V., Lenshin A. S., Agapov B. L., Domashevskaya E. P. Synthesis of nanocrystalline hydroxyapatite by precipitation using hen’s eggshell // Ceramics International, 2013, v. 39(4), pp. 4539–4549. https://doi.org/10.1016/j.ceramint.2012.11.050 Goloshchapov D. L., Lenshin A. S., Savchenko D. V., Seredin P.V. Importance of defect nanocrystalline calcium hydroxyapatite characteristics for developing the dental biomimetic composites // Results in Physics, 2019, v. 13, pp. 102158. https://doi.org/10.1016/j.rinp.2019.102158 Nanci A. Ten Cate’s Oral Histology: Development, Structure, and Function. 8th ed., Elsevier Health Sciences, 2013, 400 p. Ippolitov Ju. A. Vozmozhnost’ povyshenija biologicheskoj tropnosti svetootverzhdaemoj bondingovoj sistemy dlja adgezii tverdyh tkanej zuba k plombirovochnomu material [The possibility of increasing the biological tropism of the lightcuring bonding system for adhesion of hard tooth tissues to the filling material]. Volgogradskij nauchno-medicinskij zhurnal, 2010, v. 4 (28), pp. 31–34. URL: https://www.volgmed.ru/uploads/journals/articles/1293119124-bulletin-2010-4-815.pdf Seredin P., Goloshchapov D., Prutskij T., Ippolitov Y. Phase Transformations in a Human Tooth Tissue at the Initial Stage of Caries. PLoS ONE, 2015, v. 10(4), pp. 1–11. https://doi.org/10.1371/journal.pone.0124008 Seredin P. V., Goloshchapov D. L., Prutskij T., Ippolitov Yu. A. A Simultaneous Analysis of Microregions of Carious Dentin by the Methods of Laser- Induced Fluorescence and Raman Spectromicroscopy. Optics and Spectroscopy, 2018, v. 125(5), pp. 803–809. https://doi.org/10.1134/S0030400X18110267 Seredin P. V., Goloshchapov D. L., Prutskij T., Ippolitov Yu. A. Fabrication and characterisation of composites materials similar optically and in composition to native dental tissues. Results in Physics, 2017, v. 7, pp. 1086–1094. https://doi.org/10.1016/j.rinp.2017.02.025
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Thanh Huyen, Le, Dao Sy Duc, Nguyen Xuan Hoan, Nguyen Huu Tho e Nguyen Xuan Viet. "Synthesis of Fe3O4-Reduced Graphene Oxide Modified Tissue-Paper and Application in the Treatment of Methylene Blue". VNU Journal of Science: Natural Sciences and Technology 35, n.º 3 (20 de setembro de 2019). http://dx.doi.org/10.25073/2588-1140/vnunst.4883.

Texto completo da fonte
Resumo:
Graphene-based composites have received a great deal of attention in recent year because the presence of graphene can enhance the conductivity, strength of bulk materials and help create composites with superior qualities. Moreover, the incorporation of metal oxide nanoparticles such as Fe3O4 can improve the catalytic efficiency of composite material. In this work, we have synthesized a composite material with the combination of reduced graphene oxide (rGO), and Fe3O4 modified tissue-paper (mGO-PP) via a simple hydrothermal method, which improved the removal efficiency of the of methylene blue (MB) in water. MB blue is used as the model of contaminant to evaluate the catalytic efficiency of synthesized material by using a Fenton-like reaction. The obtained materials were characterized by SEM, XRD. The removal of materials with methylene blue is investigated by UV-VIS spectroscopy, and the result shows that mGO-PP composite is the potential composite for the color removed which has the removal efficiency reaching 65% in acetate buffer pH = 3 with the optimal time is 7 h. Keywords Graphene-based composite, methylene blue, Fenton-like reaction. References [1] Ma Joshi, Rue Bansal, Reng Purwar, Colour removal from textile effluents, Indian Journal of Fibre & Textile Research, 29 (2004) 239-259 http://nopr.niscair.res.in/handle/123456789/24631.[2] Kannan Nagar, Sundaram Mariappan, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study, Dyes and pigments, 51 (2001) 25-40 https://doi.org/10.1016/S0143-7208(01)00056-0.[3] K Rastogi, J. N Sahu, B. C Meikap, M. N Biswas, Removal of methylene blue from wastewater using fly ash as an adsorbent by hydrocyclone, Journal of hazardous materials, 158 (2008) 531-540.https://doi.org/10.1016/j.jhazmat.2008.01. 105.[4] Qin Qingdong, Ma Jun, Liu Ke, Adsorption of anionic dyes on ammonium-functionalized MCM-41, Journal of Hazardous Materials, 162 (2009) 133-139 https://doi.org/10.1016/j.jhazmat. 2008.05.016.[5] Mui Muruganandham, Rps Suri, Sh Jafari, Mao Sillanpää, Lee Gang-Juan, Jaj Wu, Muo Swaminathan, Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment, International Journal of Photoenergy, 2014 (2014). http://dx. doi.org/10.1155/2014/821674.[6] Herney Ramirez, Vicente Miguel , Madeira Luis Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review, Applied Catalysis B: Environmental, 98 (2010) 10-26 https://doi.org/ 10.1016/j.apcatb.2010.05.004.[7] Guo Rong, Jiao Tifeng, Li Ruifei, Chen Yan, Guo Wanchun, Zhang Lexin, Zhou Jingxin, Zhang Qingrui, Peng Qiuming, Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal, ACS Sustainable Chemistry & Engineering, 6 (2017) 1279-1288 https://doi.org/10.1021/acssuschemeng.7b03635.[8] Sun Chao, Yang Sheng-Tao, Gao Zhenjie, Yang Shengnan, Yilihamu Ailimire, Ma Qiang, Zhao Ru-Song, Xue Fumin, Fe3O4/TiO2/reduced graphene oxide composites as highly efficient Fenton-like catalyst for the decoloration of methylene blue, Materials Chemistry and Physics, 223 (2019) 751-757 https://doi.org/ 10.1016/j.matchemphys.2018.11.056.[9] Guo Hui, Ma Xinfeng, Wang Chubei, Zhou Jianwei, Huang Jianxin, Wang Zijin, Sulfhydryl-Functionalized Reduced Graphene Oxide and Adsorption of Methylene Blue, Environmental Engineering Science, 36 (2019) 81-89 https://doi. org/10.1089/ees.2018.0157.[10] Zhao Lianqin, Yang Sheng-Tao, Feng Shicheng, Ma Qiang, Peng Xiaoling, Wu Deyi, Preparation and application of carboxylated graphene oxide sponge in dye removal, International journal of environmental research and public health, 14 (2017) 1301 https://doi.org/10.3390/ijerph14111301.[11] Yu Dandan, Wang Hua, Yang Jie, Niu Zhiqiang, Lu Huiting, Yang Yun, Cheng Liwei, Guo Lin, Dye wastewater cleanup by graphene composite paper for tailorable supercapacitors, ACS applied materials & interfaces, 9 (2017) 21298-21306 https://doi.org/10.1021/acsami.7b05318.[12] Wang Hou, Yuan Xingzhong, Wu Yan, Huang Huajun, Peng Xin, Zeng Guangming, Zhong Hua, Liang Jie, Ren MiaoMiao, Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation, Advances in Colloid and Interface Science, 195 (2013) 19-40 https://doi. org/10.1016/j.cis.2013.03.009.[13] Marcano Daniela C, Kosynkin Dmitry V, Berlin Jacob M, Sinitskii Alexander, Sun Zhengzong, Slesarev Alexander, Alemany Lawrence B, Lu Wei, Tour James M, Improved synthesis of graphene oxide, ACS nano, 4 (2010) 4806-4814 https://doi.org/10.1021/nn1006368.[14] Zhang Jiali, Yang Haijun, Shen Guangxia, Cheng Ping, Zhang Jingyan, Guo Shouwu, Reduction of graphene oxide via L-ascorbic acid, Chemical Communications, 46 (2010) 1112-1114 http://doi. org/10.1039/B917705A [15] Gong Ming, Zhou Wu, Tsai Mon-Che, Zhou Jigang, Guan Mingyun, Lin Meng-Chang, Zhang Bo, Hu Yongfeng, Wang Di-Yan, Yang Jiang, Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis, Nature communications, 5 (2014) 4695 https:// doi.org/10.1038/ncomms5695.[16] Wu Zhong-Shuai, Yang Shubin, Sun Yi, Parvez Khaled, Feng Xinliang, Müllen Klaus, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction, Journal of the American Chemical Society, 134 (2012) 9082-9085 https://doi.org/10.1021/ja3030565.[17] Nguyen Son Truong, Nguyen Hoa Tien, Rinaldi Ali, Nguyen Nam Van, Fan Zeng, Duong Hai Minh, Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414 (2012) 352-358 https://doi.org/ 10.1016/j.colsurfa.2012.08.048.[18] Deng Yang, Englehardt James D, Treatment of landfill leachate by the Fenton process, Water research, 40 (2006) 3683-3694 https://doi.org/ 10.1016/j.watres.2006.08.009.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Gong shang guan li chu"

1

Liao, Yupei. "Wo guo da xue tu shu guan xian shang gong yong mu lu shi yong zhe li yong zhi dao fang shi zhi yan jiu". Taibei Shi ; Niuyue : Han Mei tu shu you xian gong si, 1992. http://books.google.com/books?id=OuYVAAAAMAAJ.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

"轉變中的工商所: 1949年後國家基礎權力的演變及其邏輯". Thesis, 2008. http://library.cuhk.edu.hk/record=b6074524.

Texto completo da fonte
Resumo:
According to Mann, the state infrastructure power is "the institutional capacity of a central state, despotic or not, to penetrate its territories and logistically implement decisions." From the perspective of state-building, this paper investigates the change of the state infrastructure power from the Maoist time to the Post-Mao period with the case study of the Industrial and Commercial Administrative Office (ICAO) in Guang Zhou city. The paper illustrates the following three arguments.
First, different from the perspectives which focus on the change of the authoritarian or communist factors in China, the state-building studies give us fresh perspective to outline the change of the state infrastructure power from the Maoist time to the Post-Mao period. In the case study of the ICAO in Guang Zhou city, the state fell short of fiscal revenue to finance the ICAO. The self-supply funding system of the ICAO hindered the formalization of the ICAO and rendered the ICAO to pursue revenue increase, which led to the arbitrary charges of the market management fee and distorted the function of the ICAO. Since 1990s, the state tried to check the ICAO's orientation of pursuing revenue increase by launching reforms to change the funding system of the ICAO and promoting the institution-building of it. Despite the limitation of the reform measures, the state enhanced its agent-monitoring capacity under the circumstance of disappearance of political movement and ideological bindings.
Second, the state-building effort of the rulers, the shortage of the fiscal revenue and the path-dependence are three outstanding factors which influence the change of the state infrastructure power from the Maoist time to the Post-Mao era. In the case of ICAO, the rulers takes efforts to extend their power to penetrate the society and monitor their agents. In order to achieve the objective of market control, the rulers established the ICAO and tried to enhance the agent-monitoring capacity. The shortage of the fiscal revenue baffled the rulers efforts to widely set up ICAO and restricted the formalization of it. Furthermore, the path dependence impacts on the development of the state infrastructure power. When the self-supply funding system of the ICAO was established, new problems and resistance arose from the funding system prevent the rulers to reform it.
Third, the state infrastructure power influences the relationship between the state and society. The state infrastructure power not only shapes how the ICAO deals with different market subjects, it also works on the coping strategies different market subjects take to protect themselves from the investigation and penalty of the ICAO. By taking the social control capacity and agent-monitoring capacity of the state into consideration, we could better understand the interaction between the ICAO and different market subjects.
黃冬婭.
Adviser: Shaoguang Wang.
Source: Dissertation Abstracts International, Volume: 69-08, Section: A, page: 3299.
Submitted: October 2007.
Thesis (doctoral)--Chinese University of Hong Kong, 2008.
Includes bibliographical references (p. 217-229).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstracts in Chinese and English.
School code: 1307.
Huang Dongya.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Gong shang guan li chu"

1

Zhou, Shibao. Shang wu gou tong ji chu: Ying wen ban. 8a ed. Beijing: Bei jing da xue chu ban she, 2011.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Liu, Jing. Gong shang qi ye cai wu guan li ji chu zhi shi. 8a ed. [Peking]: Jing ji ke xue chu ban she, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Zhang, Zenan. Guan li ceng quan li, gao guan xin chou yu shang shi gong si ying yu guan li yan jiu. 8a ed. Beijing Shi: Jing ji ke xue chu ban she, 2016.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Mingyi, Li, ed. Gong shang xing zheng guan li yu ji cha quan shu. 8a ed. Beijing: Zhongguo wu jia chu ban she, 1999.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Zhong ji wei zhu guo jia gong shang xing zheng guan li ju. Ji jian zu. e Jian cha bu zhu guo jia gong shang xing zheng guan li ju jian cha ju., eds. Gong shang xing zheng guan li ji guan zhi fa jian cha zhi yao. 8a ed. Beijing: Gong shang chu ban she, 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

fang, Zhang guo. Qi che fu wu gong cheng. Bei jing: Dian zi gong ye chu ban she, 2004.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

le, Ke luo. Guan jian 20%: Li cai cheng gong yu fu yu ren sheng de 15 xiang sheng chu fa ze. Tai bei shi: Feng xing chu ban, 2006.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Cao, Yibing, e Cangwenxin Shi. Fu yuan bing: Lao po de bing 90% dou shi bei lao gong qi chu lai de. 8a ed. Guangzhou: Guang dong ke ji chu ban she, 2014.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Cheng, Jinfeng. Zhongguo gong gong wei sheng zhi chu de ji xiao guan li yan jiu =: The study on performance management of public health expenditure in China. 8a ed. Beijing Shi: Zhongguo shi chang chu ban she, 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Cheng, Jinfeng. Zhongguo gong gong wei sheng zhi chu de ji xiao guan li yan jiu =: The study on performance management of public health expenditure in China. 8a ed. Beijing Shi: Zhongguo shi chang chu ban she, 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia