Artigos de revistas sobre o tema "Glycosidic bonds"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Glycosidic bonds".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Wang, Qian, Chao Gao, Nan Yang e Katsuyoshi Nishinari. "Effect of simulated saliva components on the in vitro digestion of peanut oil body emulsion". RSC Advances 11, n.º 49 (2021): 30520–31. http://dx.doi.org/10.1039/d1ra03274g.
Texto completo da fonteJoseleau, Jean-Paul, e Rachid Kesraoui. "Glycosidic Bonds between Lignin and Carbohydrates". Holzforschung 40, n.º 3 (janeiro de 1986): 163–68. http://dx.doi.org/10.1515/hfsg.1986.40.3.163.
Texto completo da fonteJohnson, Glenn P., Luis Petersen, Alfred D. French e Peter J. Reilly. "Twisting of glycosidic bonds by hydrolases". Carbohydrate Research 344, n.º 16 (novembro de 2009): 2157–66. http://dx.doi.org/10.1016/j.carres.2009.08.011.
Texto completo da fonteKhalilova, Gulnoza Abduvakhobovna, Abbaskhan Sabirkhanovich Turaev, Bahtiyor Ikromovich Muhitdinov, Albina Vasilevna Filatova, Saidakhon Bokijonovna Haytmetova e Nodirali Sokhobatalievich Normakhamatov. "Research On The Composition And Structure Of Β -Glucans Isolated From Basidiomycete Raw Materials Inonotus Hispidus". American Journal of Applied sciences 03, n.º 01 (19 de janeiro de 2021): 9–17. http://dx.doi.org/10.37547/tajas/volume03issue01-03.
Texto completo da fonteWeignerová, Lenka, Yukio Suzuki, Zdenka Huňková, Petr Sedmera, Vladimír Havlíček, Radek Marek e Vladimír Křen. "Pyridoxine as a Substrate for Screening Synthetic Potential of Glycosidases". Collection of Czechoslovak Chemical Communications 64, n.º 8 (1999): 1325–34. http://dx.doi.org/10.1135/cccc19991325.
Texto completo da fonteKobayashi, Hirokazu, Yusuke Suzuki, Takuya Sagawa, Kyoichi Kuroki, Jun-ya Hasegawa e Atsushi Fukuoka. "Impact of tensile and compressive forces on the hydrolysis of cellulose and chitin". Physical Chemistry Chemical Physics 23, n.º 30 (2021): 15908–16. http://dx.doi.org/10.1039/d1cp01650d.
Texto completo da fonteFrański, R., P. Bednarek, D. Siatkowska, P. Wojtaszek e M. Stobiecki. "Application of mass spectrometry to structural identification of flavonoid monoglycosides isolated from shoot of lupin (Lupinus luteus L.)." Acta Biochimica Polonica 46, n.º 2 (30 de junho de 1999): 459–73. http://dx.doi.org/10.18388/abp.1999_4177.
Texto completo da fonteHe, Xingxing, Fuyuan Zhang, Jifeng Liu, Guozhen Fang e Shuo Wang. "Homogenous graphene oxide-peptide nanofiber hybrid hydrogel as biomimetic polysaccharide hydrolase". Nanoscale 9, n.º 45 (2017): 18066–74. http://dx.doi.org/10.1039/c7nr06525f.
Texto completo da fonteDavies, Gideon J., Simon J. Charnock e Bernard Henrissat. "The Enzymatic Synthesis of Glycosidic Bonds: "Glycosynthases" and Glycosyltransferases." Trends in Glycoscience and Glycotechnology 13, n.º 70 (2001): 105–20. http://dx.doi.org/10.4052/tigg.13.105.
Texto completo da fonteIbatullin, Farid M., Alexander M. Golubev, Leonid M. Firsov e Kirill N. Neustroev. "A model for cleavage ofO-glycosidic bonds in glycoproteins". Glycoconjugate Journal 10, n.º 3 (junho de 1993): 214–18. http://dx.doi.org/10.1007/bf00702202.
Texto completo da fonteMoriyama, Takanori, e Hisami Ikeda. "Hydrolases acting on glycosidic bonds: chromatographic and electrophoretic separations". Journal of Chromatography B: Biomedical Sciences and Applications 684, n.º 1-2 (setembro de 1996): 201–16. http://dx.doi.org/10.1016/0378-4347(96)00148-x.
Texto completo da fontevan der Kaaij, R. M., X. L. Yuan, A. Franken, A. F. J. Ram, P. J. Punt, M. J. E. C. van der Maarel e L. Dijkhuizen. "Two Novel, Putatively Cell Wall-Associated and Glycosylphosphatidylinositol-Anchored α-Glucanotransferase Enzymes of Aspergillus niger". Eukaryotic Cell 6, n.º 7 (11 de maio de 2007): 1178–88. http://dx.doi.org/10.1128/ec.00354-06.
Texto completo da fonteIpsen, Johan Ø., Magnus Hallas-Møller, Søren Brander, Leila Lo Leggio e Katja S. Johansen. "Lytic polysaccharide monooxygenases and other histidine-brace copper proteins: structure, oxygen activation and biotechnological applications". Biochemical Society Transactions 49, n.º 1 (15 de janeiro de 2021): 531–40. http://dx.doi.org/10.1042/bst20201031.
Texto completo da fonteBissaro, Bastien, Pierre Monsan, Régis Fauré e Michael J. O’Donohue. "Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases". Biochemical Journal 467, n.º 1 (20 de março de 2015): 17–35. http://dx.doi.org/10.1042/bj20141412.
Texto completo da fonteZhang, Lilan, Puya Zhao, Chun-Chi Chen, Chun-Hsiang Huang, Tzu-Ping Ko, Yingying Zheng e Rey-Ting Guo. "Preliminary X-ray diffraction analysis of a thermophilic β-1,3–1,4-glucanase fromClostridium thermocellum". Acta Crystallographica Section F Structural Biology Communications 70, n.º 7 (19 de junho de 2014): 946–48. http://dx.doi.org/10.1107/s2053230x14009376.
Texto completo da fonteMüller, Jens. "Metal-mediated base pairs in parallel-stranded DNA". Beilstein Journal of Organic Chemistry 13 (13 de dezembro de 2017): 2671–81. http://dx.doi.org/10.3762/bjoc.13.265.
Texto completo da fonteRohlenová, Anna, Miroslav Ledvina, David Šaman e Karel Bezouška. "Synthesis of Linear and Branched Regioisomeric Chitooligosaccharides as Potential Mimetics of Natural Oligosaccharide Ligands of Natural Killer Cells NKR-P1 and CD69 Lectin Receptors". Collection of Czechoslovak Chemical Communications 69, n.º 9 (2004): 1781–804. http://dx.doi.org/10.1135/cccc20041781.
Texto completo da fonteChaube, Manishkumar A., e Suvarn S. Kulkarni. "ChemInform Abstract: Stereoselective Construction of 1,1-α,α-Glycosidic Bonds". ChemInform 43, n.º 41 (13 de setembro de 2012): no. http://dx.doi.org/10.1002/chin.201241251.
Texto completo da fonteMihelič, Marko, Kristina Vlahoviček-Kahlina, Miha Renko, Stephane Mesnage, Andreja Doberšek, Ajda Taler-Verčič, Andreja Jakas e Dušan Turk. "The mechanism behind the selection of two different cleavage sites in NAG-NAM polymers". IUCrJ 4, n.º 2 (23 de fevereiro de 2017): 185–98. http://dx.doi.org/10.1107/s2052252517000367.
Texto completo da fonteStriegler, Susanne, Qiu-Hua Fan e Nigam P. Rath. "Binuclear copper(II) complexes discriminating epimeric glycosides and α- and β-glycosidic bonds in aqueous solution". Journal of Catalysis 338 (junho de 2016): 349–64. http://dx.doi.org/10.1016/j.jcat.2015.12.026.
Texto completo da fonteMaliekkal, Vineet, Saurabh Maduskar, Derek J. Saxon, Mohammadreza Nasiri, Theresa M. Reineke, Matthew Neurock e Paul Dauenhauer. "Activation of Cellulose via Cooperative Hydroxyl-Catalyzed Transglycosylation of Glycosidic Bonds". ACS Catalysis 9, n.º 3 (31 de dezembro de 2018): 1943–55. http://dx.doi.org/10.1021/acscatal.8b04289.
Texto completo da fontePanzeter, Phyllis L., Barbara Zweifel e Felix R. Althaus. "The α-glycosidic bonds of poly(ADP-ribose) are acid-labile". Biochemical and Biophysical Research Communications 184, n.º 1 (abril de 1992): 544–48. http://dx.doi.org/10.1016/0006-291x(92)91229-j.
Texto completo da fonteEl Ashry, El Sayed H., e Mohamed R. E. Aly. "Synthesis and biological relevance of N-acetylglucosamine-containing oligosaccharides". Pure and Applied Chemistry 79, n.º 12 (1 de janeiro de 2007): 2229–42. http://dx.doi.org/10.1351/pac200779122229.
Texto completo da fontePote, Aditya R., Sergi Pascual, Antoni Planas e Mark W. Peczuh. "Indolyl Septanoside Synthesis for In Vivo Screening of Bacterial Septanoside Hydrolases". International Journal of Molecular Sciences 22, n.º 9 (26 de abril de 2021): 4497. http://dx.doi.org/10.3390/ijms22094497.
Texto completo da fonteZhang, Xiaochen, Zhe Zhang, Feng Wang, Yehong Wang, Qi Song e Jie Xu. "Lignosulfonate-based heterogeneous sulfonic acid catalyst for hydrolyzing glycosidic bonds of polysaccharides". Journal of Molecular Catalysis A: Chemical 377 (outubro de 2013): 102–7. http://dx.doi.org/10.1016/j.molcata.2013.05.001.
Texto completo da fontePinto, José-Henrique Q., e Serge Kaliaguine. "A Monte Carlo analysis of acid hydrolysis of glycosidic bonds in polysaccharides". AIChE Journal 37, n.º 6 (junho de 1991): 905–14. http://dx.doi.org/10.1002/aic.690370613.
Texto completo da fonteFan, Jingjing, Minghao Zhang, Zhiyi Ai, Jing Huang, Yonghong Wang, Shengyuan Xiao e Yuhua Wang. "Highly regioselective hydrolysis of the glycosidic bonds in ginsenosides catalyzed by snailase". Process Biochemistry 103 (abril de 2021): 114–22. http://dx.doi.org/10.1016/j.procbio.2021.02.013.
Texto completo da fonteSouthwick, Audrey M., Lai-Xi Wang, Sharon R. Long e Yuan C. Lee. "Activity of Sinorhizobium meliloti NodAB and NodH Enzymes on Thiochitooligosaccharides". Journal of Bacteriology 184, n.º 14 (15 de julho de 2002): 4039–43. http://dx.doi.org/10.1128/jb.184.14.4039-4043.2002.
Texto completo da fonteFrandsen, Kristian E. H., Jens-Christian Navarro Poulsen, Morten Tovborg, Katja S. Johansen e Leila Lo Leggio. "Learning from oligosaccharide soaks of crystals of an AA13 lytic polysaccharide monooxygenase: crystal packing, ligand binding and active-site disorder". Acta Crystallographica Section D Structural Biology 73, n.º 1 (1 de janeiro de 2017): 64–76. http://dx.doi.org/10.1107/s2059798316019641.
Texto completo da fonteIakiviak, Michael, Roderick I. Mackie e Isaac K. O. Cann. "Functional Analyses of Multiple Lichenin-Degrading Enzymes from the Rumen Bacterium Ruminococcus albus 8". Applied and Environmental Microbiology 77, n.º 21 (2 de setembro de 2011): 7541–50. http://dx.doi.org/10.1128/aem.06088-11.
Texto completo da fonteOana, Cioanca, Trifan Adriana, Cornelia Mircea, Scripcariu Dragos e Hancianu Monica. "Natural Macromolecules with Protective and Antitumor Activity". Anti-Cancer Agents in Medicinal Chemistry 18, n.º 5 (21 de agosto de 2018): 675–83. http://dx.doi.org/10.2174/1871520618666180425115029.
Texto completo da fonteEngelen, Adrianus J., Fred C. Van Der Heeft e Peter H. G. Randsdorp. "Viscometric Determination of p-Glucanase and Endoxylanase Activity in Feed". Journal of AOAC INTERNATIONAL 79, n.º 5 (1 de setembro de 1996): 1019–25. http://dx.doi.org/10.1093/jaoac/79.5.1019.
Texto completo da fonteGoddat, J. "Synthesis of di- and tri-saccharides with intramolecular NH-glycosidic linkages: molecules with flexible and rigid glycosidic bonds for conformational studies". Carbohydrate Research 252, n.º 1 (15 de janeiro de 1994): 159–70. http://dx.doi.org/10.1016/0008-6215(94)84130-6.
Texto completo da fonteGoddat, Jacqueline, Arthur A. Grey, Milos Hricovíni, Jeremy Grushcow, Jeremy P. Carver e Rajan N. Shah. "Synthesis of di- and tri-saccharides with intramolecular NH-glycosidic linkages: molecules with flexible and rigid glycosidic bonds for conformational studies". Carbohydrate Research 252 (janeiro de 1994): 159–70. http://dx.doi.org/10.1016/0008-6215(94)90013-2.
Texto completo da fonteLi, Kaixin, Limin Deng, Shun Yi, Yabo Wu, Guangjie Xia, Jun Zhao, Dong LU e Yonggang Min. "Boosting the performance by the water solvation shell with hydrogen bonds on protonic ionic liquids: insights into the acid catalysis of the glycosidic bond". Catalysis Science & Technology 11, n.º 10 (2021): 3527–38. http://dx.doi.org/10.1039/d0cy02459g.
Texto completo da fonteIslam, Nazrul, Hui Wang, Faheem Maqbool e Vito Ferro. "In Vitro Enzymatic Digestibility of Glutaraldehyde-Crosslinked Chitosan Nanoparticles in Lysozyme Solution and Their Applicability in Pulmonary Drug Delivery". Molecules 24, n.º 7 (1 de abril de 2019): 1271. http://dx.doi.org/10.3390/molecules24071271.
Texto completo da fontede Ruyck, Jerome, Marc F. Lensink e Julie Bouckaert. "Structures ofC-mannosylated anti-adhesives bound to the type 1 fimbrial FimH adhesin". IUCrJ 3, n.º 3 (26 de fevereiro de 2016): 163–67. http://dx.doi.org/10.1107/s2052252516002487.
Texto completo da fonteDamián-Almazo, Juanita Yazmin, Alina Moreno, Agustin López-Munguía, Xavier Soberón, Fernando González-Muñoz e Gloria Saab-Rincón. "Enhancement of the Alcoholytic Activity of α-Amylase AmyA from Thermotoga maritima MSB8 (DSM 3109) by Site-Directed Mutagenesis". Applied and Environmental Microbiology 74, n.º 16 (13 de junho de 2008): 5168–77. http://dx.doi.org/10.1128/aem.00121-08.
Texto completo da fonteBORASTON, Alisdair B., David N. BOLAM, Harry J. GILBERT e Gideon J. DAVIES. "Carbohydrate-binding modules: fine-tuning polysaccharide recognition". Biochemical Journal 382, n.º 3 (7 de setembro de 2004): 769–81. http://dx.doi.org/10.1042/bj20040892.
Texto completo da fonteFleming, Kelly L., e Jim Pfaendtner. "Characterizing the Catalyzed Hydrolysis of β-1,4 Glycosidic Bonds Using Density Functional Theory". Journal of Physical Chemistry A 117, n.º 51 (10 de dezembro de 2013): 14200–14208. http://dx.doi.org/10.1021/jp4081178.
Texto completo da fonteSørensen, Trine Holst, Nicolaj Cruys-Bagger, Kim Borch e Peter Westh. "Free Energy Diagram for the Heterogeneous Enzymatic Hydrolysis of Glycosidic Bonds in Cellulose". Journal of Biological Chemistry 290, n.º 36 (16 de julho de 2015): 22203–11. http://dx.doi.org/10.1074/jbc.m115.659656.
Texto completo da fonteChen, Yun, Jian-Wen Huang, Chun-Chi Chen, Hui-Lin Lai, Jian Jin e Rey-Ting Guo. "Crystallization and preliminary X-ray diffraction analysis of an endo-1,4-β-D-glucanase fromAspergillus aculeatusF-50". Acta Crystallographica Section F Structural Biology Communications 71, n.º 4 (20 de março de 2015): 397–400. http://dx.doi.org/10.1107/s2053230x15003659.
Texto completo da fonteNemzer, Boris V., Diganta Kalita, Alexander Ya Yashin, Nikolay E. Nifantiev e Yakov I. Yashin. "In vitro Antioxidant Activities of Natural Polysaccharides: An overview". Journal of Food Research 8, n.º 6 (29 de outubro de 2019): 78. http://dx.doi.org/10.5539/jfr.v8n6p78.
Texto completo da fonteNifantiev, N. E., A. A. Sherman, O. N. Yudina, P. E. Cheshev, Y. E. Tsvetkov, E. A. Khatuntseva, A. V. Kornilov e A. S. Shashkov. "New schemes for the synthesis of glycolipid oligosaccharide chains". Pure and Applied Chemistry 76, n.º 9 (30 de setembro de 2004): 1705–14. http://dx.doi.org/10.1351/pac200476091705.
Texto completo da fonteDavies, Gideon J., e Spencer J. Williams. "Carbohydrate-active enzymes: sequences, shapes, contortions and cells". Biochemical Society Transactions 44, n.º 1 (9 de fevereiro de 2016): 79–87. http://dx.doi.org/10.1042/bst20150186.
Texto completo da fonteLiu, Ping, Jiao Xue, Shisheng Tong, Wenxia Dong e Peipei Wu. "Structure Characterization and Hypoglycaemic Activities of Two Polysaccharides from Inonotus obliquus". Molecules 23, n.º 8 (4 de agosto de 2018): 1948. http://dx.doi.org/10.3390/molecules23081948.
Texto completo da fonteTremmel, Martina, Josef Kiermaier e Jörg Heilmann. "In Vitro Metabolism of Six C-Glycosidic Flavonoids from Passiflora incarnata L." International Journal of Molecular Sciences 22, n.º 12 (18 de junho de 2021): 6566. http://dx.doi.org/10.3390/ijms22126566.
Texto completo da fonteGODDAT, J., A. A. GREY, M. HRICOVINI, J. GRUSHCOW, J. P. CARVER e R. N. SHAH. "ChemInform Abstract: Synthesis of Di- and Trisaccharides with Intramolecular NH-Glycosidic Linkages: Molecules with Flexible and Rigid Glycosidic Bonds for Conformational Studies." ChemInform 25, n.º 23 (19 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199423221.
Texto completo da fonteNAKATANI, Hiroshi. "Monte Carlo simulation of hyaluronidase reaction involving hydrolysis, transglycosylation and condensation". Biochemical Journal 365, n.º 3 (1 de agosto de 2002): 701–5. http://dx.doi.org/10.1042/bj20011769.
Texto completo da fonteFranceus, Jorick, e Tom Desmet. "A GH13 glycoside phosphorylase with unknown substrate specificity from Corallococcus coralloides". Amylase 3, n.º 1 (1 de janeiro de 2019): 32–40. http://dx.doi.org/10.1515/amylase-2019-0003.
Texto completo da fonte