Teses / dissertações sobre o tema "Glycogénose de type III"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Glycogénose de type III".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.
Vidal, Patrice. "Développement d'un traitement de thérapie génique pour la glycogénose de type III". Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS571.
Texto completo da fonteGlycogen storage disease type III (GSDIII) is a recessive genetic disorder caused by mutations affecting the activity of the glycogen debranching enzyme (GDE). Symptoms are hepatomegaly and hypoglycemia during childhood and degenerative muscle weakness during adulthood. At present, no curative treatment exists for GSDIII. First, we developed and characterized a mouse model that faithfully recapitulates the human disease. Gene therapy allows the treatment of previously untreatable metabolic and neuromuscular diseases. Adeno-associated virus (AAV) vectors are vectors of choice for in vivo gene therapy, with an excellent safety and efficacy profile demonstrated in human. A major limitation for GSDIII is the size of the transgene that exceeds the genome packaging capacity of AAV vectors. We explored an alternative approach using the lysosomal pathway and the acid alpha-glucosidase (GAA) able to degrade the glycogen, overloading the lysosomes with this protein. In muscles, the increase of GAA activity is not able to treat the phenotype of GSDIII whereas the overexpression of GAA in the liver induces a normalization of the concentration of glycogen. The second step of this thesis was to have GDE de novo expressed in cells. We developed strategy based on the injection of two vectors that can use the mechanisms of homologous recombination. This allowed the correction of the GSDIII phenotype in a murine model of the disease. The results show that it is possible to correct the muscle phenotype of GSDIII. Nevertheless, the effectiveness of this strategy remains only partial in the liver, again highlighting a different glycogen degradation pathway in both tissues
Rossiaud, Lucille. "Modélisation et compréhension de la glycogénose de type III grâce à l'utilisation de cellules souches pluripotentes induites humaines". Electronic Thesis or Diss., université Paris-Saclay, 2024. https://www.biblio.univ-evry.fr/theses/2024/interne/2024UPASL091.pdf.
Texto completo da fonteGlycogen storage disease type III (GSDIII) is a rare genetic disorder caused by glycogen debranching enzyme (GDE) deficiency, leading to an accumulation of glycogen accumulation in the liver, heart and skeletal muscles. While liver damages predominate in childhood, muscle impairments progress and become predominant in adulthood. The lack of human models hinders our understanding of the disease and the development of treatments.In this context, my first objective was to create in vitro human pathological models from induced pluripotent stem cells (hiPSCs). I generated five pathological hiPSC lines: four lines derived from patients by reprogramming and one line genetically modified by CRISPR/Cas9. These cells were then differentiated into myocytes and hepatocytes, the two relevant cell types for the study of GSDIII. I confirmed that these cells express muscle and liver specific markers respectively, and recapitulate the glycogen accumulation phenotype under glucose starvation conditions compared to healthy cells.The second objective was to better understand the pathophysiological mechanisms of GSDIII and to identify new biomarkers of the disease. I first focused on muscle, for which I identified genes differentially expressed between healthy and pathological cells by RNA sequencing of hiPSC-derived myocytes. Comparative analysis with RNA sequencing data from triceps biopsies of healthy and GSDIII mice revealed overexpression of a common gene encoding galectin-3, a marker of damaged vesicles. This overexpression was validated in mutated myocytes derived from hiPSCs, as well as in the triceps of GSDIII mice and in patient biopsies. In parallel, a similar approach on hiPSC-derived hepatocytes identified potential liver biomarkers, paving the way for a better understanding of the mechanisms of liver damage.The final objective was to use these in vitro human pathological models to test new therapies. I demonstrated that treatment of mutated myocytes with AAV vectors expressing complete or truncated human GDE, previously validated on in vivo GSDIII mouse and rat models, reduced glycogen accumulation to levels comparable to those of healthy cells. These experiments confirmed the value of developing these new in vitro models.Taken together, this work has led to the identification of new biomarkers for GSDIII, providing a better understanding of the molecular mechanisms in muscle and liver. The creation of these new in vitro models also opens up new therapeutic prospects for GSDIII, particularly by facilitating drug screening
Douillard-Guilloux, Gaëlle. "Nouvelles approches thérapeutiques dans la glycogénose de type 2". Paris 7, 2008. http://www.theses.fr/2008PA077119.
Texto completo da fonteGlycogen storage disease type II is caused by defects in the lysosomal acid alpha-glucosidase (GAA) gene. This pathology is characterized by glycogen accumulation, especially in muscles. Enzyme Replacement Therapy efficiency is restricted. Therefore, our aim is to develop a novel therapeutical approach for this pathology. Small interfering RNAs (siRNAs) targeted to the two major genes for glycogen synthesis (glycogenin and glycogen synthase) were designed to explore the possibility of silencing these two genes. A viral vector AAV with the shARN-GYS2 was injected in the muscle of GAA-/- mice and reduced the glycogen accumulation. In the same time, an approach by knock-out was developped. Mice GAA-/- were crossed with mice KO for the muscular form of GYS. These double KO mice do not present accumulation of glycogen and their muscular activity is clearly improved compared to GAA-/- mice. We also tested the possibility to induce a immunotolerance against the recombinante enzyme by using bone marrow transplantation. The development of tolerance to the recombinante enzyme induce no more production of anti-GAA antibody in the mice having received the CSH-GAA. In parallel, to decrease the massive destruction of the recombinante enzyme by the anti-GAA antibody, An over-expression of the GAA was obtained on the muscular cells of patients transduites by a vector lentiviral containing gene of the GAA under the control of a strong muscle-specific promotor
Hordeaux, Juliette. "Thérapie génique des manifestations neurologiques de la maladie de Pompe (glycogénose de type II)". Nantes, 2014. http://www.theses.fr/2014NANT2098.
Texto completo da fontePompe disease (glycogen storage disease type II) is a lysosomal storage disorder caused by acid-oe-glucosidase (GAA) deficiency leading to progressive accumulation of glycogen in the heart, muscles, and central nervous system (CNS). The disease manifests as a fatal cardiomyopathy in infantile form. Cardiac correction by enzyme replacement therapy (ERT) has recently prolonged the lifespan of these patients, revealing a new natural history. The emergent neurologie phenotype and the persistence of muscular weakness in survivors are currently partly attributed to CNS glycogen storage, uncorrected by ERT. We hypothesized that CNS correction by gene therapy using recombinant Adena-associated viruses (rAA V) encoding the GAA transgene would alleviate the neurologie manifestations of the disease and would lead to an improvement of the neuromuscular function. To address this question, we first demonstrated using a reporter gene that the injection of rAA V in the cerebrospinal fluid (intrathecal injection) enables efficient and diffuse transduction of the CNS. GAA-KO 6neo mice were next treated with intrathecal AA V-gaa at one month and their neuromuscular function was assessed for one year. We demonstrate a significant functional neurologie correction in treated animals and a partial restoration of the muscular strength. The entire CNS shows enzymatic, biochemical and histological correction. Muscle glycogen storage is not cleared by the treatment, thus suggesting that the partial restoration of strength is directly related to the CNS correction. This widespread CNS cure and its impact on the global neuromuscular function offer new perspectives for the management of patients
Clar, Julie. "Nouvelles stratégies d’étude et de prévention des complications hépatorénales de la glycogénose de type Ia". Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10163.
Texto completo da fonteGlycogen storage disease type Ia (GSDIa) is a rare metabolic disease caused by glucose-6-phosphatase (G6Pase) deficiency, leading to the absence of endogenous glucose production. This pathology is characterized by severe hypoglycemia, hepatomegaly, hepatic steatosis and nephromegaly. In the absence of a curative therapy, the current treatments available consist in strict dietary management. However, various complications occur with aging, such as hepatic tumor development and progressive chronic renal disease leading to renal failure. In order to study the long term pathology development, we used original mouse models, presenting an invalidation of the gene encoding the G6Pase catalytic subunit, specifically in the liver or in the kidneys. In this work, we demonstrated that renal G6Pase deficiency alone is sufficient to induce the development of the GSDIa nephropathy. Mice with liver-specific G6Pase deficiency allowed us to highlight the deleterious effects of high-fat diet, such as « fast-food » diet, as well as moderate consumption of fructose or galactose on the hepatic GSDIa pathology, particularly on tumor development. Furthermore, we demonstrated the efficiency and innocuity of gene therapies targeting the liver in these mice. Gene transfer with a lentiviral vector, allowing transgene integration into the genome, seems to be more efficient than an AAV vector in preventing the development of hepatic GSDIa pathology and tumor formation
Nicolino, Marc. "Glycogénose Type II (Maladie de Pompe) : approche d'une thérapie génique et caractérisation des anomalies moléculaires". Paris 5, 1999. http://www.theses.fr/1999PA05CD17.
Texto completo da fonteMutel, Élodie. "Caractérisation d'un nouveau modèle murin de glycogénose de type 1a : du métabolisme glucidique à la thérapie génique". Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00858006.
Texto completo da fonteMutel, Élodie. "Caractérisation d’un nouveau modèle murin de glycogénose de type 1a : du métabolisme glucidique à la thérapie génique". Thesis, Lyon 1, 2011. http://www.theses.fr/2011LYO10005/document.
Texto completo da fonteGlycogen storage disease type 1a (GSD1a) is a rare metabolic disorder due to an absence of glucose‐6 phosphatase (G6Pase) activity. G6Pase is the key enzyme of endogenous glucose production (EGP) and catalyzes the last step before the glucose release into the bloodstream. This function to produce glucose is restricted to the liver, the kidneys and the intestine. GSD1a is characterized by chronic hypoglycemia, hepatomegaly associated with hepatic steatosis and nephromegaly. The longterm complications of G6Pase deficiency include hepatocellular adenomas. The available animal model of GSD1a rarely survive over three months of age and the study of mechanisms of hepatocellular adenomas development cannot be investigated. So, we generated an original mouse model of GSD1a with a liver‐specific invalidation of catalytic subunit of G6Pase gene by an inducible CRE‐LOX strategy (L‐G6pc‐/‐ mice). In this work, we demonstrated that L‐G6pc‐/‐ were viable and totally reproduced the liver pathology of GSD1a, including the late development of hepatocellular adenomas. Then, we have begun liver gene therapy treatment using lentiviral and AAV vectors to correct the hepatic pathology. Finally, concerning glucose homeostasis, we have demonstrated that L‐G6pc‐/‐ were able to regulate blood glucose, during prolonged fast, even in the absence of hepatic glucose production. Rapidly, L‐G6pc‐/‐ mice were able to induce renal and intestinal gluconeogenesis thanks to a key role of glucagon and the development of a metabolic acidosis. These results provide evidence that the major role of the liver for EGP during fasting requires re‐examination
Monteillet, Laure. "La maladie chronique rénale de la glycogénose de type I, des mécanismes moléculaires aux nouvelles stratégies thérapeutiques". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1140.
Texto completo da fonteGlycogen storage disease type Ia (GSDIa) is a rare metabolic disease caused by glucose-6-phosphatase (G6Pase) deficiency, due to mutations on the gene encoding G6Pase catalytic subunit (G6PC). This enzyme confers to the liver, kidneys and intestine the ability to produce glucose. Thus, patients with GSDIa are unable to ensure endogenous glucose production and suffer from severe hypoglycemia during fasting in the absence of nutritional control. In addition, G6Pase deficiency causes intracellular accumulation of glucose-6 phosphate in the liver and kidneys, leading to metabolic defects and the accumulation of glycogen and lipids. Over time, most adult patients suffer from chronic kidney disease (CKD), which can progress to kidney failure, requiring dialysis or kidney transplantation. This nephropathy is characterized in particular by tubulo-interstitial fibrosis and glomerulosclerosis, as well as by the development of cysts in the late stages. Moreover, patients develop hepatomegaly and hepatic steatosis that may progress to the development of hepatocellular adenomas or carcinomas. The aim of my thesis was to identify the molecular mechanisms involved in the establishment of renal pathology and cyst formation in GSDIa, by using mouse models where G6pc gene is specifically deleted in the kidneys (K.G6pc-/- mice). While GSDIa is a disease characterized by glycogen accumulation in the liver and kidneys, we first showed that the development of fibrosis, which causes progressive loss of kidney function, was induced by intracellular accumulation of lipids, regardless of glycogen content. The molecular mechanism probably involved is the activation of the renin angiotensin system by lipid derivatives such as diacylglycerol, which induced the expression of the profibrotic factor TGFβ1 and an epithelial-mesenchymal transition. In addition, the use of a PPARα agonist, i.e. fenofibrate, by decreasing renal lipid content, reduced the development of fibrosis and CKD evolution. Similarly, fenofibrate treatment prevented the accumulation of lipids in the liver and the development of liver damages that cause tumor development. Thus, the activation of lipid catabolism by PPARα agonists such as fenofibrate seems to be an interesting therapeutic strategy to reduce the progression of renal and hepatic diseases of GSDIa. The second part of my results suggest that the development of renal cysts in GSDI patients may be caused by an alteration of the primary cilia, a non-motile organelle that plays a key role in maintaining normal kidney structure and function. Indeed, defects in the primary cilia are involved in many polycystic kidney diseases. In summary, an increase in the length of the primary cilia was observed in the kidneys of K.G6pc-/- mice, which could be explained by a deregulation of the expression of different proteins involved in cilia structure and function, compared to control mice. We also demonstrated a metabolic reprogramming leading to a Warburg metabolism, characterized by the increased activation of aerobic glycolysis and the inhibition of mitochondrial pyruvate oxidation and lipid production in K.G6pc-/- mice. Thus, all these disorders would promote cell proliferation and cyst development, and could lead to the development of renal tumor, as recently observed in one K.G6pc-/- mouse (out of 36 studied mice). In conclusion, we have shown that, in GSDI, the accumulation of lipids in the kidneys and liver that occurs secondary to G6Pase deficiency plays a key role in the development of hepatic and renal long-term complications. In addition, the Warburg like metabolic reprogramming taking place in the GSDIa kidneys, associated with a defect in the primary cilia, could be at the origin of cysts formation and renal tumors. These new studies, by providing a better understanding of the pathophysiology of long-term complications of GSDIa, offer new perspectives on therapeutic strategies to be developed for better management of patients
Shelly, Claire. "Type III subfactors and planar algebras". Thesis, Cardiff University, 2012. http://orca.cf.ac.uk/44565/.
Texto completo da fonteBagaud, Catherine. "Aspect physiopathologique et clinique de la glycogénose 1 bis et intérêt du facteur de croissance dans son traitement à propos d'un cas". Bordeaux 2, 1994. http://www.theses.fr/1994BOR2M206.
Texto completo da fontePichon, Julien. "Impact de la surexpression de FoxO3a sur la physiopathologie musculaire de la maladie de Pompe (Glycogénose de type II)". Thesis, Nantes, 2020. http://archive.bu.univ-nantes.fr/pollux/show.action?id=36cea62a-e454-42c5-a21c-1fd5b915de61.
Texto completo da fontePompe disease is a lysosomal storage disease due to deficit in acid alpha-glucosidase (GAA) that mainly induces severe skeletal muscle impairment. There is currently no treatment able to correct the skeletal muscle impairment at long term. A better understanding of the physiopathological mechanisms implicated is essential for the development of new therapeutic strategies. The aims of the present work are i) to characterize skeletal muscle physiopathology of Pompe disease using the Gaa·1- murine model and ii) to evaluate the impact of Fox03a overexpression on muscle physiopathology by gene transfer of AA VFox03a. Gaa" mice exhibit a strong glycogen overload and a progressive autophagie flux disruption, leading to a vacuolization of muscle fibers. Even it is associated with atrophy and fiber splitting, this vacuolization does not lead to muscle fiber degeneration. Satellite cells, which are responsible of fiber regeneration, remain functional but however display a defect of activation. In Gaa·1- mice receiving AA V-Fox03a, we demonstrated that Fox03a overexpression could improve the skeletal muscle impairments, through the prevention of glycogen overload, autophagie build-up and tissue remodeling. Moreover, neuromuscular function is improved by overexpression of Fox03a. Altogether, our findings provide new insight into the skeletal muscle pathophysiology. We positioned Fox03a as ªprotective key element against the development or' skeletal muscle impairment in Pompe disease
Louw, Cassandra Alexandrovna. "Characterisation of Trypanosomal Type III and Type IV Hsp40 proteins". Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1003985.
Texto completo da fonteLiljeholm, Maria. "Congenital Dyserythropoietic Anemia type III (CDA III) : diagnostics, genetics and morbidity". Doctoral thesis, Umeå universitet, Institutionen för strålningsvetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-117454.
Texto completo da fonteBode, M. (Michaela). "Characterization of type I and type III collagens in human tissues". Doctoral thesis, Oulun yliopisto, 2000. http://urn.fi/urn:isbn:9514255534.
Texto completo da fontePeplinski, Adam. "Numerical simulations of type III planetary migration". Doctoral thesis, Stockholm University, Department of Astronomy, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7461.
Texto completo da fontePlanets are believed to form in primordial gas-dust discs surrounding newborn stars. An important breakthrough in our understanding of planetary formation was the discovery of extra-solar planets around sun-like stars, especially the frequent occurrence of giant planets on close orbits (hot Jupiters). The mechanisms involved in the formation of these objects remain uncertain, however the difficulties associated with their formation at their observed orbital radius has awoken an interest in theories for the migration of protoplanetary cores due to gravitational interaction with the disc. There are three fundamental regimes of planet migration. The type I and II migration regimes, driven by the differential Lindblad torques, result mostly in inward migration and concern low- and high-mass planets respectively. Type III migration, driven by the co-orbital gas flow, concerns an intermediate range of planetary masses and does not have a predefined direction.
In this thesis the orbital evolution of a high-mass, rapidly (type III) migrating planet is investigated using numerical hydrodynamical simulations. For these simulations we used the state-of-the-art hydrodynamics code FLASH. We focus on the physical aspects of type III migration. However, the problem of rapid migration of such massive planets is numerically challenging, and the disc model has to be chosen carefully, using numerical convergence as a discriminator between models (Paper I). We simulate both inward and outward directed migration (Papers II and III) and provide an extensive description of the co-orbital flow responsible for driving the migration, as well as its time evolution. The migration rate due to type III migration is found to be related to the mass of the planet's co-orbital region, making inward and outward directed migration self-decelerating and self-accelerating processes respectively (for a standard disc model). Rapid migration depends strongly on the flow structure in the planet's vicinity, which makes it sensitive to the amount of mass accumulated by the planet as it moves through the disc. This quantity in turn depends on the structure of the accretion region around the planet. The results of the numerical simulations show a good agreement with the analytical formulation of type III migration (Paper IV).
Singh, Mona P. "Type III secretion in enteropathogenic Escherichia coli". Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486563.
Texto completo da fonteBaker, M. G. "Investigations on the type-III rearrangement problem". Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372877.
Texto completo da fonteMartin-Touaux, Elsa. "Caractérisation physiopathologique de la glycogénose de type II et développement de différentes approches thérapeutiques sur un modèle murin de la maladie". Paris 7, 2003. http://www.theses.fr/2003PA077235.
Texto completo da fonteUlander, Anna Karin. "KIF23 expression in congenital dyserythropoietic anemia type III". Thesis, Umeå universitet, Biomedicinsk laboratorievetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-57964.
Texto completo da fonteBillings, K. S. "Studies on core-swapped fibronectin type III domains". Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596637.
Texto completo da fonteLi, Zhiya. "New Bismuth(III)-catalyzed Sakurai type Allylation Reactions". Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/27512/27512.pdf.
Texto completo da fontePallett, Mitchell. "Characterisation of the type III secretion effector NleF". Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/28244.
Texto completo da fonteBenrabah, Sabria. "Passivation des matériaux III-N de type GaN". Thesis, Lyon, 2021. http://www.theses.fr/2021LYSE1310.
Texto completo da fonteTo meet demands for the development of new products in the fields of power electronic convertors for electric cars, solar panels, wind turbines, and new LED-based lightening technologies or RF components, research has focused on direct wide bandgap materials, including Gallium Nitride (GaN). GaN has attracted significant interest due to its exceptional properties for next-generation power electronic devices. With a high saturation velocity and a high operating voltage, GaN-based devices can operate at high frequency and with excellent efficiency, making GaN a material of choice in power applications. However, the development of III-N materials is still immature, especially in terms of quality control of the various interfaces within the devices. The presence of high density of interfaces states can be the cause of device malfunctions. Therefore, understanding and controlling the surface of GaN is a challenge for possible future industrial integration. Today, there is no suitable and effective standard surface preparation of GaN. In order to investigate this problem, this PhD project was carried out in a collaboration between CEA-LETI (Grenoble), LTM (Grenoble) and CP2M laboratories (Catalysis, Polymerisation, Process and Materials, Lyon). The main objectives of this project are, first, to understand the surface chemistry following various surface preparations, and second, to set up the configuration of surface bonds. Therefore, this PhD project focused on the preparation and characterisation of the extreme surface of GaN after various chemical and physical treatments
SPOSITO, BENEDETTA. "Type III Interferons: Running Interference with Mucosal Repair". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402377.
Texto completo da fonteInterferons (IFNs) are fundamental mediators and regulators of the host immune response to viruses and other microbial agents. Type I and type III IFNs (also known as IFN-λ) are some of the first cytokines to be induced upon detection of viral infections. Signaling through their specific receptors leads to the activation of a similar signaling cascade that triggers the expression of a common set of IFN-stimulated genes (ISGs) with antiviral effector functions. The main feature that makes each of these families of IFNs unique and nonredundant is the existence of distinct receptors that differentiate them in their ability to act on virtually every cell type (type I IFNs) or exclusively on epithelial cells and a subset of immune cells (type III IFNs). Despite inducing a widely overlapping set of genes, IFN-I can mount a stronger proinflammatory response compared to IFN-III. This, coupled with the earlier induction of IFN-III upon infection, has led to the classification of IFN-III as front-line defenders of mucosal surfaces with the ability to initiate an early antiviral response with minimal tissue-damaging effects. If their response is insufficient the system shifts to the more potent and broader-acting antiviral and inflammatory IFN-I response that can cause immunopathology. In the course of my thesis, I have tested the hypothesis that also IFN-III contribute to immunopathology at barrier sites such as the respiratory and gastrointestinal epithelia during viral infections and inflammatory bowel disease/radiation-induced injury respectively. First, my colleagues and I found that in a mouse model where we mimicked the induction of antiviral responses in the respiratory tract, IFN-III produced by lung dendritic cells inhibited the proliferation of lung epithelial cells leading to an impairment in barrier restoration and an increase in susceptibility to bacterial infections. Then we measured IFN responses along the respiratory tract of COVID-19 patients. We uncovered that in the upper airways expression of IFN-I/III correlated with viral load and elderly patients, that have a higher risk of developing severe COVID-19, had a dysregulation in the IFN response. A strong expression of IFN-λ1, IFN-λ3 and ISGs characterized the upper airways of mild patients. IFN-I and IFN-λ2 together with antiproliferative and proapoptotic genes were upregulated along all the respiratory tract of severe COVID-19 patients, suggesting that they might contribute to the impairment of epithelium restitution. Finally, we demonstrated that IFN-III delayed colon and small intestine repair after dextran sulfate sodium-induced colitis and radiation-induced injury by triggering cell death of epithelial cells via the formation of a novel protein complex that includes Z-DNA binding protein (ZBP1) and gasdermin C (GSDMC). Our findings challenge the role of IFN-III as protectors of mucosal barriers as they indicate that a dysregulated IFN-III response holds the potential to contribute to immunopathology. Therefore, the clinical use of type III IFNs should be designed in such a way that their tissue-damaging functions are avoided and their beneficial effects are maximized.
Gjorgjieva, Monika. "Identification des mécanismes moléculaires impliqués dans le développement des pathologies hépatiques et rénales dans des modèles murins de glycogénose de type 1a". Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1007/document.
Texto completo da fonteGlycogen storage disease type I (GSDI) is a rare genetic disease, due to a deficiency in glucose-6 phosphatase (G6Pase), a key enzyme in the endogenous glucose production. Besides severe hypoglycemia, the loss of G6Pase leads to the accumulation of glycogen and lipids in the liver and kidneys. On the long term, most patients develop hepatic tumors and chronic kidney disease (CKD).The goal of this thesis was to characterize the molecular mechanisms involved in hepatic carcinogenesis and CKD, thanks to viable and unique mouse models with specific deletion of G6Pase in the liver or kidneys, which exhibit all hallmarks of hepatic and renal pathologies, respectively.On a hepatic level, our study allowed us to highlight a « Warburg-like » metabolic reprogramming, very similar to what is observed in cancer cells, associated with a loss of cellular defenses and tumor suppressors. Furthermore, we showed that formation of hepatocellular adenoma, which transform later in carcinoma, occurs in the absence of liver fibrosis, due to the fact that pro-fibrotic pathways are not activated. In the kidneys, the study of CKD highlighted the development of renal cysts in mice with GSDI, as well as in the patients presenting an advanced stage of CKD. Finally, the last study on the activation of the oxidation of lipids, by treating the mice with fenofibrate, allowed us to suggest a deleterious role of lipid accumulation in the development of the hepatic and renal pathologies
Gjorgjieva, Monika. "Identification des mécanismes moléculaires impliqués dans le développement des pathologies hépatiques et rénales dans des modèles murins de glycogénose de type 1a". Electronic Thesis or Diss., Lyon, 2018. http://www.theses.fr/2018LYSE1007.
Texto completo da fonteGlycogen storage disease type I (GSDI) is a rare genetic disease, due to a deficiency in glucose-6 phosphatase (G6Pase), a key enzyme in the endogenous glucose production. Besides severe hypoglycemia, the loss of G6Pase leads to the accumulation of glycogen and lipids in the liver and kidneys. On the long term, most patients develop hepatic tumors and chronic kidney disease (CKD).The goal of this thesis was to characterize the molecular mechanisms involved in hepatic carcinogenesis and CKD, thanks to viable and unique mouse models with specific deletion of G6Pase in the liver or kidneys, which exhibit all hallmarks of hepatic and renal pathologies, respectively.On a hepatic level, our study allowed us to highlight a « Warburg-like » metabolic reprogramming, very similar to what is observed in cancer cells, associated with a loss of cellular defenses and tumor suppressors. Furthermore, we showed that formation of hepatocellular adenoma, which transform later in carcinoma, occurs in the absence of liver fibrosis, due to the fact that pro-fibrotic pathways are not activated. In the kidneys, the study of CKD highlighted the development of renal cysts in mice with GSDI, as well as in the patients presenting an advanced stage of CKD. Finally, the last study on the activation of the oxidation of lipids, by treating the mice with fenofibrate, allowed us to suggest a deleterious role of lipid accumulation in the development of the hepatic and renal pathologies
Costa, Tiago R. D. "YopD translocator function in Yersinia pseudotuberculosis type III secretion". Doctoral thesis, Umeå universitet, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-61544.
Texto completo da fonteXiao, Yanmei. "Regulation of type III secretion system in Pseudomonas syringae". Diss., Manhattan, Kan. : Kansas State University, 2005. http://hdl.handle.net/2097/130.
Texto completo da fonteMain, Alison. "Structural and functional studies of fibronectin type III molecules". Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359449.
Texto completo da fonteXu, Xuefang. "Regulation of type III secretion in enterohaemorrhagic Escherichia coli". Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/5941.
Texto completo da fonteRöhrich-Dönitz, Anelia Dorothea. "Regulation of type III secretion hierarchy in Shigella flexneri". Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633196.
Texto completo da fonteGunasena, Deepthi Kaushalya. "Type III secretion systems in bacterial pathogens of fish". Thesis, University of Reading, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413881.
Texto completo da fonteThomas, Joanne. "Functional analysis of flagellum-specific type III export chaperones". Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615655.
Texto completo da fonteAhmed, Essa Ismaeil. "Type III Deep Eutectic Solvents (DESS) as base lubricants". Thesis, University of Leicester, 2015. http://hdl.handle.net/2381/33465.
Texto completo da fonteWang, Zhibo. "Functional Characterization of Four Xanthomonas euvesicatoria Type III Effectors". Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/104984.
Texto completo da fonteDoctor of Philosophy
Peppers and tomatoes are two of the most important vegetables grown worldwide, providing humans with high quality of flavor and aroma, vitamins, and antioxidants. The pepper and tomato production is frequently threatened by various pathogens, including nematodes, fungi, and bacteria. Among those phytopathogens, Xanthomonas euvesicatoria (Xe) causes a severe bacterial spot (BS) disease on peppers and tomatoes. The BS disease can be easily identified due to the appearance of the dark, irregular, water-soaked areas on the leaf, which can cause approximately 10% loss of the total yield of peppers and tomatoes. Breeding tomato and pepper cultivars with improved BS disease resistance is one of the most critical breeding goals. A better understanding of the virulence mechanism of Xe could help breeders to design new strategies for resistance breeding. In my seminar, I will discuss the virulence and avirulence functions of Xe type three secretion (T3S) effectors: Xe XopN, Xe XopQ, and Xe XopX. In my study, I identified Xe XopN is a key factor that regulates the development of the water-soaking symptom on pepper plants infected with Xe. In addition, we revealed Xe XopN interacts with a transcription factor NbVOZ to regulate the expression of NbNPR1 and PR1 genes expression, which may also contribute to the development of water-soaking phenotype. In addition, I identified that Xe XopN could interact with a transcription factor, NbVOZ, and represses the expression of NbNPR1, a key component of the basal defense, and the pathogenesis-related gene PR1. Therefore, Xe XopN has a role in regulating a water-affluent environment to promote bacterial proliferation in the infected plant tissue. Xe XopQ is a Xe T3S effector that functions as a determinant of host specificity. In my study, I identified another T3S effector Xe XopX that could interact with Xe XopQ to trigger the defense response in Nicotiana benthamiana. I also confirmed Xe XopQ physically interacts with Xe XopX inside of plant cells by using bimolecular fluorescence complementation, co-immunoprecipitation and split luciferase assay. Intriguingly, Xe XopX could also interact with multiple Xe T3Es including AvrBS2 in a co-IP assay. The virulence and avirulent functions of Xe XopQ and AvrBS2 are compromised in the absence of Xe XopX.
Bronstein, Philip Alan. "Identification and characterization of a type III chaperone, InvB /". Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/11524.
Texto completo da fonteSteed, Robert John. "Saturation of Intersubband Transitions in p-type and N-type III-V Qua'ntum Wells". Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487524.
Texto completo da fonteLin, Herbert Y. (Herbert Yih-Fuu). "Expression cloning and characterization of the type II and type III TGF-β receptors". Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12507.
Texto completo da fonteMandaliev, Peter Nikolov. "Mechanisms of Nd(III) and Eu(III) uptake by cementitious materials /". [S.l.] : [s.n.], 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=18095.
Texto completo da fontePodrebarac, James. "Development of Recombinant Human Collagen Type I and Type III Injectable Hydrogels for Cardiac Therapy". Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36038.
Texto completo da fonteDendy, Shauneen Marguerite. "Cholesterol synthesis in type III hyperlipoproteinemic and non-hyperlipidemic individuals". Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/28979.
Texto completo da fonteLand and Food Systems, Faculty of
Graduate
Rodgers, Loren E. "Recognition of effectors by the bacterial type III secretion system". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3307124.
Texto completo da fonteTitle from first page of PDF file (viewed July 2, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Robin, Ekman. "The GHP formalism, with applications to Petrov type III spacetimes". Thesis, Umeå universitet, Institutionen för fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-88352.
Texto completo da fonteMitsopoulos, Konstantinos. "The assembly of type III membrane proteins in Escherichia coli". Thesis, University of Sussex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310262.
Texto completo da fonteElliott, Jayne Louise. "Properties and interactions of type III intermediate filaments with CRYAB". Thesis, Durham University, 2013. http://etheses.dur.ac.uk/7017/.
Texto completo da fonteZhang, Weiqiang. "Synthesis of novel chiral pyrrolidine-type (salen)Mn(III) complexes". Thesis, Swansea University, 2006. https://cronfa.swan.ac.uk/Record/cronfa42403.
Texto completo da fonteWu, Shuchi. "Structural and functional characterization of a Xanthomonas Type III effector". Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/73219.
Texto completo da fontePh. D.
Legrand, Isabelle. "Glycogenose de type iii : a propos de deux nouveaux cas". Université Louis Pasteur (Strasbourg) (1971-2008), 1986. http://www.theses.fr/1986STR1M169.
Texto completo da fonteShan, Libo. "Characterization of type III effectors of Pseudomonas syringae pv. tomato /". Search for this dissertation online, 2003. http://wwwlib.umi.com/cr/ksu/main.
Texto completo da fonte