Artigos de revistas sobre o tema "Glycerol signaling"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Glycerol signaling".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Hohmann, Stefan. "Osmotic Stress Signaling and Osmoadaptation in Yeasts". Microbiology and Molecular Biology Reviews 66, n.º 2 (junho de 2002): 300–372. http://dx.doi.org/10.1128/mmbr.66.2.300-372.2002.
Texto completo da fonteIsmail, Alaa, Ahmed Salah, Adel Guirgis, Shaden Muawia e Hany Khalil. "Glycerol-mediated lysosomal associated proteins as a novel anticancer theory in colon cancer cell line". Journal of Internal Medicine: Science & Art 4 (25 de maio de 2023): 2–10. http://dx.doi.org/10.36013/jimsa.v4i.110.
Texto completo da fonteAllmann, Stefan, Marion Wargnies, Nicolas Plazolles, Edern Cahoreau, Marc Biran, Pauline Morand, Erika Pineda et al. "Glycerol suppresses glucose consumption in trypanosomes through metabolic contest". PLOS Biology 19, n.º 8 (13 de agosto de 2021): e3001359. http://dx.doi.org/10.1371/journal.pbio.3001359.
Texto completo da fonteKrantz, Marcus, Bodil Nordlander, Hadi Valadi, Mikael Johansson, Lena Gustafsson e Stefan Hohmann. "Anaerobicity Prepares Saccharomyces cerevisiae Cells for Faster Adaptation to Osmotic Shock". Eukaryotic Cell 3, n.º 6 (dezembro de 2004): 1381–90. http://dx.doi.org/10.1128/ec.3.6.1381-1390.2004.
Texto completo da fonteZhang, Zhao, Diana M. Iglesias, Rachel Corsini, LeeLee Chu e Paul Goodyer. "WNT/β-Catenin Signaling Is Required for Integration of CD24+Renal Progenitor Cells into Glycerol-Damaged Adult Renal Tubules". Stem Cells International 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/391043.
Texto completo da fonteNath, Karl A., John D. Belcher, Meryl C. Nath, Joseph P. Grande, Anthony J. Croatt, Allan W. Ackerman, Zvonimir S. Katusic e Gregory M. Vercellotti. "Role of TLR4 signaling in the nephrotoxicity of heme and heme proteins". American Journal of Physiology-Renal Physiology 314, n.º 5 (1 de maio de 2018): F906—F914. http://dx.doi.org/10.1152/ajprenal.00432.2017.
Texto completo da fonteMugabo, Yves, Shangang Zhao, Julien Lamontagne, Anfal Al-Mass, Marie-Line Peyot, Barbara E. Corkey, Erik Joly, S. R. Murthy Madiraju e Marc Prentki. "Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic β-cells". Journal of Biological Chemistry 292, n.º 18 (9 de março de 2017): 7407–22. http://dx.doi.org/10.1074/jbc.m116.763060.
Texto completo da fonteZeng, Changjun, Keyi Tang, Lian He, Wenpei Peng, Li Ding, Donghui Fang e Yan Zhang. "Effects of glycerol on apoptotic signaling pathways during boar spermatozoa cryopreservation". Cryobiology 68, n.º 3 (junho de 2014): 395–404. http://dx.doi.org/10.1016/j.cryobiol.2014.03.008.
Texto completo da fonteBełtowski, Jerzy, e Krzysztof Wiórkowski. "Role of Hydrogen Sulfide and Polysulfides in the Regulation of Lipolysis in the Adipose Tissue: Possible Implications for the Pathogenesis of Metabolic Syndrome". International Journal of Molecular Sciences 23, n.º 3 (25 de janeiro de 2022): 1346. http://dx.doi.org/10.3390/ijms23031346.
Texto completo da fonteKrycer, James R., Lake-Ee Quek, Deanne Francis, Armella Zadoorian, Fiona C. Weiss, Kristen C. Cooke, Marin E. Nelson et al. "Insulin signaling requires glucose to promote lipid anabolism in adipocytes". Journal of Biological Chemistry 295, n.º 38 (28 de julho de 2020): 13250–66. http://dx.doi.org/10.1074/jbc.ra120.014907.
Texto completo da fonteZager, Richard A., e Ali C. M. Johnson. "Acute kidney injury induces dramatic p21 upregulation via a novel, glucocorticoid-activated, pathway". American Journal of Physiology-Renal Physiology 316, n.º 4 (1 de abril de 2019): F674—F681. http://dx.doi.org/10.1152/ajprenal.00571.2018.
Texto completo da fonteMugabo, Yves, Shangang Zhao, Annegrit Seifried, Sari Gezzar, Anfal Al-Mass, Dongwei Zhang, Julien Lamontagne et al. "Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes". Proceedings of the National Academy of Sciences 113, n.º 4 (11 de janeiro de 2016): E430—E439. http://dx.doi.org/10.1073/pnas.1514375113.
Texto completo da fonteMiermont, Agnès, Jannis Uhlendorf, Megan McClean e Pascal Hersen. "The Dynamical Systems Properties of the HOG Signaling Cascade". Journal of Signal Transduction 2011 (7 de fevereiro de 2011): 1–12. http://dx.doi.org/10.1155/2011/930940.
Texto completo da fonteZhang, Michael S., Aline Sandouk e Jon C. D. Houtman. "Glycerol Monolaurate (GML) inhibits human T cell signaling, metabolism, and function by disrupting lipid dynamics". Journal of Immunology 196, n.º 1_Supplement (1 de maio de 2016): 57.4. http://dx.doi.org/10.4049/jimmunol.196.supp.57.4.
Texto completo da fonteSantos, Ronaldo Silva, Gabriel Martins-Silva, Adrián Adolfo Álvarez Padilla, Mateus Possari, Sérgio Donnantuoni Degello, Otávio J. Bernardes Brustolini, Ana Tereza Ribeiro Vasconcelos, Marcelo Afonso Vallim e Renata C. Pascon. "Transcriptional and Post-Translational Roles of Calcineurin in Cationic Stress and Glycerol Biosynthesis in Cryptococcus neoformans". Journal of Fungi 10, n.º 8 (30 de julho de 2024): 531. http://dx.doi.org/10.3390/jof10080531.
Texto completo da fonteSong, Tengyao, Qiongyu Hao, Yun-Min Zheng, Qing-Hua Liu e Yong-Xiao Wang. "Inositol 1,4,5-trisphosphate activates TRPC3 channels to cause extracellular Ca2+ influx in airway smooth muscle cells". American Journal of Physiology-Lung Cellular and Molecular Physiology 309, n.º 12 (15 de dezembro de 2015): L1455—L1466. http://dx.doi.org/10.1152/ajplung.00148.2015.
Texto completo da fontePan, Sheng-Jun, Mingyan Zhu, Mohan K. Raizada, Colin Sumners e Craig H. Gelband. "ANG II-mediated inhibition of neuronal delayed rectifier K+ current: role of protein kinase C-α". American Journal of Physiology-Cell Physiology 281, n.º 1 (1 de julho de 2001): C17—C23. http://dx.doi.org/10.1152/ajpcell.2001.281.1.c17.
Texto completo da fonteLi, Liande, e Katherine A. Borkovich. "GPR-4 Is a Predicted G-Protein-Coupled Receptor Required for Carbon Source-Dependent Asexual Growth and Development in Neurospora crassa". Eukaryotic Cell 5, n.º 8 (agosto de 2006): 1287–300. http://dx.doi.org/10.1128/ec.00109-06.
Texto completo da fonteKowalczyk-Bołtuć, Jolanta, Krzysztof Wiórkowski e Jerzy Bełtowski. "Effect of Exogenous Hydrogen Sulfide and Polysulfide Donors on Insulin Sensitivity of the Adipose Tissue". Biomolecules 12, n.º 5 (28 de abril de 2022): 646. http://dx.doi.org/10.3390/biom12050646.
Texto completo da fonteFricke, Katrin, Aleksandra Heitland e Erik Maronde. "Cooperative Activation of Lipolysis by Protein Kinase A and Protein Kinase C Pathways in 3T3-L1 Adipocytes". Endocrinology 145, n.º 11 (1 de novembro de 2004): 4940–47. http://dx.doi.org/10.1210/en.2004-0803.
Texto completo da fonteHoy, Andrew J., Amanda E. Brandon, Nigel Turner, Matthew J. Watt, Clinton R. Bruce, Gregory J. Cooney e Edward W. Kraegen. "Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation". American Journal of Physiology-Endocrinology and Metabolism 297, n.º 1 (julho de 2009): E67—E75. http://dx.doi.org/10.1152/ajpendo.90945.2008.
Texto completo da fonteShimizu, Maria Heloisa Massola, Rildo Aparecido Volpini, Ana Carolina de Bragança, Mariana Moura Nascimento, Desiree Rita Denelle Bernardo, Antonio Carlos Seguro e Daniele Canale. "Administration of a single dose of lithium ameliorates rhabdomyolysis-associated acute kidney injury in rats". PLOS ONE 18, n.º 2 (16 de fevereiro de 2023): e0281679. http://dx.doi.org/10.1371/journal.pone.0281679.
Texto completo da fonteSon, Dajeong, e Myoungsook Lee. "DNAJC6 Gene Depressed Adipogenesis and Insulin Signaling in 3T3-L1 Cells". Current Developments in Nutrition 6, Supplement_1 (junho de 2022): 1086. http://dx.doi.org/10.1093/cdn/nzac070.045.
Texto completo da fonteVenugopal, Srivathsa C., Bidisha Chanda, Lisa Vaillancourt, Aardra Kachroo e Pradeep Kachroo. "The common metabolite glycerol-3-phosphate is a novel regulator of plant defense signaling". Plant Signaling & Behavior 4, n.º 8 (agosto de 2009): 746–49. http://dx.doi.org/10.4161/psb.4.8.9111.
Texto completo da fonteUchigashima, Motokazu, Madoka Narushima, Masahiro Fukaya, Istven Katona, Masanobu Kano e Masahiko Watanabe. "Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling in the striatum". Neuroscience Research 58 (janeiro de 2007): S75. http://dx.doi.org/10.1016/j.neures.2007.06.440.
Texto completo da fonteXu, Weitong, Fengyue Zhu, Dengqiang Wang, Daqing Chen, Xinbin Duan, Mingdian Liu e Dapeng Li. "Comparative Analysis of Metabolites between Different Altitude Schizothorax nukiangensis (Cyprinidae, Schizothoracine) on the Qinghai-Tibet Plateau in Nujiang River". Water 15, n.º 2 (9 de janeiro de 2023): 284. http://dx.doi.org/10.3390/w15020284.
Texto completo da fonteGuaragnella, Nicoletta, Gennaro Agrimi, Pasquale Scarcia, Clelia Suriano, Isabella Pisano, Antonella Bobba, Cristina Mazzoni, Luigi Palmieri e Sergio Giannattasio. "RTG Signaling Sustains Mitochondrial Respiratory Capacity in HOG1-Dependent Osmoadaptation". Microorganisms 9, n.º 9 (6 de setembro de 2021): 1894. http://dx.doi.org/10.3390/microorganisms9091894.
Texto completo da fonteTsukahara, Tamotsu. "PPARγNetworks in Cell Signaling: Update and Impact of Cyclic Phosphatidic Acid". Journal of Lipids 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/246597.
Texto completo da fonteTewson, Paul H., Scott Martinka, Nathan C. Shaner, Thomas E. Hughes e Anne Marie Quinn. "New DAG and cAMP Sensors Optimized for Live-Cell Assays in Automated Laboratories". Journal of Biomolecular Screening 21, n.º 3 (11 de dezembro de 2015): 298–305. http://dx.doi.org/10.1177/1087057115618608.
Texto completo da fonteSalari, Hassan, Mervin Low, Sandra Howard, Glenn Edin e Robert Bittman. "l-O-Hexadecyl-2-O-methyl-sn-glycero-3-phosphocholine inhibits diacylglycerol kinase in WEHI-3B cells". Biochemistry and Cell Biology 71, n.º 1-2 (1 de janeiro de 1993): 36–42. http://dx.doi.org/10.1139/o93-006.
Texto completo da fonteZhang, Michael S., Aline Sandouk e Jon C. D. Houtman. "Glycerol Monolaurate (GML) Inhibits Human T Cell Signaling, Metabolism, and Function By Disrupting Lipid Dynamics". Journal of Allergy and Clinical Immunology 139, n.º 2 (fevereiro de 2017): AB269. http://dx.doi.org/10.1016/j.jaci.2016.12.866.
Texto completo da fonteShock, Teresa R., James Thompson, John R. Yates e Hiten D. Madhani. "Hog1 Mitogen-Activated Protein Kinase (MAPK) Interrupts Signal Transduction between the Kss1 MAPK and the Tec1 Transcription Factor To Maintain Pathway Specificity". Eukaryotic Cell 8, n.º 4 (13 de fevereiro de 2009): 606–16. http://dx.doi.org/10.1128/ec.00005-09.
Texto completo da fonteBersching, Katharina, e Stefan Jacob. "The Molecular Mechanism of Fludioxonil Action Is Different to Osmotic Stress Sensing". Journal of Fungi 7, n.º 5 (17 de maio de 2021): 393. http://dx.doi.org/10.3390/jof7050393.
Texto completo da fonteBalsinde, Jesús, e María A. Balboa. "Plasmalogens in Innate Immune Cells: From Arachidonate Signaling to Ferroptosis". Biomolecules 14, n.º 11 (18 de novembro de 2024): 1461. http://dx.doi.org/10.3390/biom14111461.
Texto completo da fonteRoeder, Amy D., Greg J. Hermann, Brian R. Keegan, Stephanie A. Thatcher e Janet M. Shaw. "Mitochondrial Inheritance Is Delayed in Saccharomyces cerevisiae Cells Lacking the Serine/Threonine PhosphatasePTC1". Molecular Biology of the Cell 9, n.º 4 (abril de 1998): 917–30. http://dx.doi.org/10.1091/mbc.9.4.917.
Texto completo da fonteMuratsu, Jun, Fumihiro Sanada, Nobutaka Koibuchi, Kana Shibata, Naruto Katsuragi, Shoji Ikebe, Yasuo Tsunetoshi, Hiromi Rakugi, Ryuichi Morishita e Yoshiaki Taniyama. "Blocking Periostin Prevented Development of Inflammation in Rhabdomyolysis-Induced Acute Kidney Injury Mice Model". Cells 11, n.º 21 (27 de outubro de 2022): 3388. http://dx.doi.org/10.3390/cells11213388.
Texto completo da fonteMuller, Tania, Laurent Demizieux, Stéphanie Troy-Fioramonti, Joseph Gresti, Jean-Paul Pais de Barros, Hélène Berger, Bruno Vergès e Pascal Degrace. "Overactivation of the endocannabinoid system alters the antilipolytic action of insulin in mouse adipose tissue". American Journal of Physiology-Endocrinology and Metabolism 313, n.º 1 (1 de julho de 2017): E26—E36. http://dx.doi.org/10.1152/ajpendo.00374.2016.
Texto completo da fonteBailey, Lakiea J., Vivek Choudhary e Wendy B. Bollag. "Possible Role of Phosphatidylglycerol-Activated Protein Kinase C-βII in Keratinocyte Differentiation". Open Dermatology Journal 11, n.º 1 (24 de outubro de 2017): 59–71. http://dx.doi.org/10.2174/1874372201711010059.
Texto completo da fonteLee, Mi Rim, Ji Eun Kim, Jun Young Choi, Jin Ju Park, Hye Ryeong Kim, Bo Ram Song, Ji Won Park et al. "Morusin Functions as a Lipogenesis Inhibitor as Well as a Lipolysis Stimulator in Differentiated 3T3-L1 and Primary Adipocytes". Molecules 23, n.º 8 (10 de agosto de 2018): 2004. http://dx.doi.org/10.3390/molecules23082004.
Texto completo da fonteRoss, Sarah E., Robin L. Erickson, Isabelle Gerin, Paul M. DeRose, Laszlo Bajnok, Kenneth A. Longo, David E. Misek et al. "Microarray Analyses during Adipogenesis: Understanding the Effects of Wnt Signaling on Adipogenesis and the Roles of Liver X Receptor α in Adipocyte Metabolism". Molecular and Cellular Biology 22, n.º 16 (15 de agosto de 2002): 5989–99. http://dx.doi.org/10.1128/mcb.22.16.5989-5999.2002.
Texto completo da fonteAdhikari, Hema, e Paul J. Cullen. "Role of Phosphatidylinositol Phosphate Signaling in the Regulation of the Filamentous-Growth Mitogen-Activated Protein Kinase Pathway". Eukaryotic Cell 14, n.º 4 (27 de fevereiro de 2015): 427–40. http://dx.doi.org/10.1128/ec.00013-15.
Texto completo da fonteIyer, Prajish, Brian Jiang, Girish Venkataraman, Joo Y. Song, Wing Chung Chan, Tanya Siddiqi, Steven T. Rosen, Alexey Danilov, Antje Gohla e Lili Wang. "Integrating Metabolomics and Molecular Pathways to Uncover Therapeutic Vulnerabilities in Richter's Transformation". Blood 144, Supplement 1 (5 de novembro de 2024): 760. https://doi.org/10.1182/blood-2024-199843.
Texto completo da fonteBaranwal, Shivani, Gajendra Kumar Azad, Vikash Singh e Raghuvir S. Tomar. "Signaling of Chloroquine-Induced Stress in the Yeast Saccharomyces cerevisiae Requires the Hog1 and Slt2 Mitogen-Activated Protein Kinase Pathways". Antimicrobial Agents and Chemotherapy 58, n.º 9 (14 de julho de 2014): 5552–66. http://dx.doi.org/10.1128/aac.02393-13.
Texto completo da fonteReiser, Vladimír, Katharine E. D’Aquino, Ly-Sha Ee e Angelika Amon. "The Stress-activated Mitogen-activated Protein Kinase Signaling Cascade Promotes Exit from Mitosis". Molecular Biology of the Cell 17, n.º 7 (julho de 2006): 3136–46. http://dx.doi.org/10.1091/mbc.e05-12-1102.
Texto completo da fonteJohnson, Ali CM, Kirsten Becker e Richard A. Zager. "Parenteral iron formulations differentially affect MCP-1, HO-1, and NGAL gene expression and renal responses to injury". American Journal of Physiology-Renal Physiology 299, n.º 2 (agosto de 2010): F426—F435. http://dx.doi.org/10.1152/ajprenal.00248.2010.
Texto completo da fonteChen, Jianchun, Jian-Kang Chen, John R. Falck, Jagadeesh Setti Guthi, Siddam Anjaiah, Jorge H. Capdevila e Raymond C. Harris. "Mitogenic Activity and Signaling Mechanism of 2-(14,15-Epoxyeicosatrienoyl)Glycerol, a Novel Cytochrome P450 Arachidonate Metabolite". Molecular and Cellular Biology 27, n.º 14 (15 de julho de 2007): 5260. http://dx.doi.org/10.1128/mcb.00920-07.
Texto completo da fonteChen, Jianchun, Jian-Kang Chen, John R. Falck, Siddam Anjaiah, Jorge H. Capdevila e Raymond C. Harris. "Mitogenic Activity and Signaling Mechanism of 2-(14,15- Epoxyeicosatrienoyl)Glycerol, a Novel Cytochrome P450 Arachidonate Metabolite". Molecular and Cellular Biology 27, n.º 8 (5 de fevereiro de 2007): 3023–34. http://dx.doi.org/10.1128/mcb.01482-06.
Texto completo da fonteRahib, Lola, Nicole K. MacLennan, Steve Horvath, James C. Liao e Katrina M. Dipple. "Glycerol kinase deficiency alters expression of genes involved in lipid metabolism, carbohydrate metabolism, and insulin signaling". European Journal of Human Genetics 15, n.º 6 (4 de abril de 2007): 646–57. http://dx.doi.org/10.1038/sj.ejhg.5201801.
Texto completo da fonteSun, Shanfeng, Jiangzuo Luo, Hang Du, Guirong Liu, Manman Liu, Junjuan Wang, Shiwen Han e Huilian Che. "Widely Targeted Lipidomics and Transcriptomics Analysis Revealed Changes of Lipid Metabolism in Spleen Dendritic Cells in Shrimp Allergy". Foods 11, n.º 13 (25 de junho de 2022): 1882. http://dx.doi.org/10.3390/foods11131882.
Texto completo da fonteRocha, Marina Campos, Camilla Alves Santos e Iran Malavazi. "The Regulatory Function of the Molecular Chaperone Hsp90 in the Cell Wall Integrity of Pathogenic Fungi". Current Proteomics 16, n.º 1 (23 de novembro de 2018): 44–53. http://dx.doi.org/10.2174/1570164615666180820155807.
Texto completo da fonte