Siga este link para ver outros tipos de publicações sobre o tema: Glutathione.

Artigos de revistas sobre o tema "Glutathione"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Glutathione".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Rubino, Federico Maria. "The Redox Potential of the β-93-Cysteine Thiol Group in Human Hemoglobin Estimated from In Vitro Oxidant Challenge Experiments". Molecules 26, n.º 9 (26 de abril de 2021): 2528. http://dx.doi.org/10.3390/molecules26092528.

Texto completo da fonte
Resumo:
Glutathionyl hemoglobin is a minor form of hemoglobin with intriguing properties. The measurement of the redox potential of its reactive β-93-Cysteine is useful to improve understanding of the response of erythrocytes to transient and chronic conditions of oxidative stress, where the level of glutathionyl hemoglobin is increased. An independent literature experiment describes the recovery of human erythrocytes exposed to an oxidant burst by measuring glutathione, glutathione disulfide and glutathionyl hemoglobin in a two-hour period. This article calculates a value for the redox potential E0 of the β-93-Cysteine, considering the erythrocyte as a closed system at equilibrium described by the Nernst equation and using the measurements of the literature experiment. The obtained value of E0 of −121 mV at pH 7.4 places hemoglobin as the most oxidizing thiol of the erythrocyte. By using as synthetic indicators of the concentrations the electrochemical potentials of the two main redox pairs in the erythrocytes, those of glutathione–glutathione disulfide and of glutathionyl–hemoglobin, the mechanism of the recovery phase can be hypothesized. Hemoglobin acts as the redox buffer that scavenges oxidized glutathione in the oxidative phase and releases it in the recovery phase, by acting as the substrate of the NAD(P)H-cofactored enzymes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Jones, C. M., A. Lawrence, P. Wardman e M. J. Burkitt. "Kinetics of superoxide scavenging by glutathione: an evaluation of its role in the removal of mitochondrial superoxide". Biochemical Society Transactions 31, n.º 6 (1 de dezembro de 2003): 1337–39. http://dx.doi.org/10.1042/bst0311337.

Texto completo da fonte
Resumo:
Superoxide radicals are produced in trace amounts by the mitochondrial respiratory chain. Most are removed rapidly by superoxide dismutase in the matrix. Superoxide is also known to react with glutathione. Reported values of the rate constant for this reaction range from 102 to in excess of 105 M−1·s−1. The magnitude of this rate constant has important physiological implications because, if it is at the upper end of the reported range, a significant proportion of mitochondrial superoxide will evade removal by superoxide dismutase, and will oxidize glutathione to the potentially harmful glutathionyl radical. Using EPR spectroscopy to monitor competition between glutathione and the spin trap 5,5-dimethyl-1-pyrroline N-oxide for reaction with superoxide, we have estimated that the rate constant for the reaction between superoxide and glutathione is only ~200 M−1·s−1. Hence superoxide dismutase will always out-compete glutathione for reaction with the superoxide radical, thereby preventing formation of the glutathionyl radical.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Smith, K., A. Borges, M. R. Ariyanayagam e A. H. Fairlamb. "Glutathionylspermidine metabolism in Escherichia coli". Biochemical Journal 312, n.º 2 (1 de dezembro de 1995): 465–69. http://dx.doi.org/10.1042/bj3120465.

Texto completo da fonte
Resumo:
Intracellular levels of glutathione and glutathionylspermidine conjugates have been measured throughout the growth phases of Escherichia coli. Glutathionylspermidine was present in mid-log-phase cells, and under stationary and anaerobic growth conditions accounted for 80% of the total glutathione content. N1,N8-bis(glutathionyl)spermidine (trypanothione) was undetectable under all growth conditions. The catalytic constant kcat/Km of recombinant E. coli glutathione reductase for glutathionylspermidine disulphide was approx. 11,000-fold lower than that for glutathione disulphide. The much higher catalytic constant for the mixed disulphide of glutathione and glutathionylspermidine (11% that of GSSG), suggests a possible explanation for the low turnover of trypanothione disulphide by E. coli glutathione reductase, given the apparent lack of a specific glutathionylspermidine disulphide reductase in E. coli.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

van Hylckama Vlieg, Johan E. T., Hans Leemhuis, Jeffrey H. Lutje Spelberg e Dick B. Janssen. "Characterization of the Gene Cluster Involved in Isoprene Metabolism in Rhodococcus sp. Strain AD45". Journal of Bacteriology 182, n.º 7 (1 de abril de 2000): 1956–63. http://dx.doi.org/10.1128/jb.182.7.1956-1963.2000.

Texto completo da fonte
Resumo:
ABSTRACT The genes involved in isoprene (2-methyl-1,3-butadiene) utilization in Rhodococcus sp. strain AD45 were cloned and characterized. Sequence analysis of an 8.5-kb DNA fragment showed the presence of 10 genes of which 2 encoded enzymes which were previously found to be involved in isoprene degradation: a glutathioneS-transferase with activity towards 1,2-epoxy-2-methyl-3-butene (isoI) and a 1-hydroxy-2-glutathionyl-2-methyl-3-butene dehydrogenase (isoH). Furthermore, a gene encoding a second glutathioneS-transferase was identified (isoJ). TheisoJ gene was overexpressed in Escherichia coliand was found to have activity with 1-chloro-2,4-dinitrobenzene and 3,4-dichloro-1-nitrobenzene but not with 1,2-epoxy-2-methyl-3-butene. Downstream of isoJ, six genes (isoABCDEF) were found; these genes encoded a putative alkene monooxygenase that showed high similarity to components of the alkene monooxygenase fromXanthobacter sp. strain Py2 and other multicomponent monooxygenases. The deduced amino acid sequence encoded by an additional gene (isoG) showed significant similarity with that of α-methylacyl-coenzyme A racemase. The results are in agreement with a catabolic route for isoprene involving epoxidation by a monooxygenase, conjugation to glutathione, and oxidation of the hydroxyl group to a carboxylate. Metabolism may proceed by fatty acid oxidation after removal of glutathione by a still-unknown mechanism.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Iskusnykh, Igor Y., Anastasia A. Zakharova e Dhruba Pathak. "Glutathione in Brain Disorders and Aging". Molecules 27, n.º 1 (5 de janeiro de 2022): 324. http://dx.doi.org/10.3390/molecules27010324.

Texto completo da fonte
Resumo:
Glutathione is a remarkably functional molecule with diverse features, which include being an antioxidant, a regulator of DNA synthesis and repair, a protector of thiol groups in proteins, a stabilizer of cell membranes, and a detoxifier of xenobiotics. Glutathione exists in two states—oxidized and reduced. Under normal physiological conditions of cellular homeostasis, glutathione remains primarily in its reduced form. However, many metabolic pathways involve oxidization of glutathione, resulting in an imbalance in cellular homeostasis. Impairment of glutathione function in the brain is linked to loss of neurons during the aging process or as the result of neurological diseases such as Huntington’s disease, Parkinson’s disease, stroke, and Alzheimer’s disease. The exact mechanisms through which glutathione regulates brain metabolism are not well understood. In this review, we will highlight the common signaling cascades that regulate glutathione in neurons and glia, its functions as a neuronal regulator in homeostasis and metabolism, and finally a mechanistic recapitulation of glutathione signaling. Together, these will put glutathione’s role in normal aging and neurological disorders development into perspective.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Miteva, L. P.-E., S. V. Ivanov, V. S. Alexieva e E. N. Karanov. "Effect of atrazine on glutathione levels, glutathione s-transferase and glutathione reductase activities in pea and wheat plants". Plant Protection Science 40, No. 1 (7 de março de 2010): 160–20. http://dx.doi.org/10.17221/1352-pps.

Texto completo da fonte
Resumo:
Changes were studied in the endogenous level of glutathione (total and oxidised), and in the amount of free thiol groups as caused by the herbicide atrazine on two species of plants with different sensitivity to it. The activities of two enzymes related to glutathione metabolism (glutathione reductase and glutathione S-transferase) were also determined. The application of the herbicide on leaf increased the levels of total and oxidised glutathione in pea and wheat plants. Increased activity glutathione S-transferase in wheat plants was found.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Gutyj, B. V., D. F. Gufriy, V. Y. Binkevych, R. O. Vasiv, N. V. Demus, K. Y. Leskiv, O. M. Binkevych e O. V. Pavliv. "Influence of cadmium loading on glutathione system of antioxidant protection of the bullocks’bodies". Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies 20, n.º 92 (10 de dezembro de 2018): 34–40. http://dx.doi.org/10.32718/nvlvet9207.

Texto completo da fonte
Resumo:
It was presented the results of studies of the cadmium effect loading on the activity of the glutathione system of antioxidant protection in young cattle, namely on the activity of glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase, the level of reduced glutathion. It was established that feeding of cadmium chloride to bullocks at a dose of 0.03 and 0.05 mg/kg body weight contributed to a decrease in both the enzyme and non-enzyme link of the glutathione antioxidant defense system. The toxic effect of cadmium contributes to a change in stationary concentrations of radical metabolites. О2˙ˉ, ˙ОН, НО2˙, which, in turn, initiate lipid peroxidation processes. The lowest level of glutathione indexes of the antioxidant defense system in the blood of young cattle was established on the sixteenth and twenty fourth day of the experiment, it was associated with enhanced activation of lipoperoxidation and an imbalance between the activity of the antioxidant system and the intensity of lipid peroxidation. The feeding of cadmium chloride to bullocks at a dose of 0.03 and 0.05 mg/kg of animal weight did not affect the activity of the glutathione antioxidant defense system in their blood. It was established that the greater the amount of cadmium chloride in the feed, the lower the activity of the glutathione system of the antioxidant defense of the body of bulls. Thus, cadmium chloride suppresses the antioxidant protection system, in particular, by reducing the activity of the enzyme link: glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase, and non-enzyme link: reduced glutathione.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kulinsky, V. I., e L. S. Kolesnichenko. "The glutathione system. I. Synthesis, transport, glutathione transferases, glutathione peroxidases". Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry 3, n.º 2 (16 de maio de 2009): 129–44. http://dx.doi.org/10.1134/s1990750809020036.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Gaullier, J. M., P. Lafontant, A. Valla, M. Bazin, M. Giraud e R. Santus. "Glutathione Peroxidase and Glutathione Reductase Activities toward Glutathione-Derived Antioxidants". Biochemical and Biophysical Research Communications 203, n.º 3 (setembro de 1994): 1668–74. http://dx.doi.org/10.1006/bbrc.1994.2378.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ullah, Hashmat, e Muhammad Farid Khan. "GLUTATHIONE;". Professional Medical Journal 21, n.º 06 (10 de dezembro de 2014): 1237–41. http://dx.doi.org/10.29309/tpmj/2014.21.06.2735.

Texto completo da fonte
Resumo:
Background: Compounds of lithium are used as drug of choice in many psychiatric disorders including bipolar disorder, depression, schizophrenia etc. Objective: The aim of this study was to analyze the effect of lithium on lymphocyte’s GSH levels for which terasaki technique was used to separate T-cells and B-cells of human volunteer’s venous blood. Study Design: Experimental Study. Setting: Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gomal University, Dera Ismail Khan.Period:1st December 2012 to 26 February 2013.Statistical Analysis: One-way ANOVA followed by Dunnet’s HSD test. Results: Thiol quantification was done by using Ellman’s method and was found statistically significant (p < 0.001) decrease in T-cells/B-cells GSH level which was dose and time dependent. T-cells/B-cells dose dependent drop in GSH level was 2.752μM (9.41%) and 2.554 μM (16.12%) by lowest used concentration (0.003μM) of lithium citrate. Conclusion: We have noted that there is significant drop in T-cells and B-cells GSH due to which immunological alterations happen which are linked with GSH contents of lymphocytes and hence inhibition in lymphocytes activity is co-related with depletion in GSH level of these cells which ultimately with the increase in Li+1 concentration cause further decrease in GSH level leading to cells death.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

&NA;. "Glutathione". Reactions Weekly &NA;, n.º 1309 (julho de 2010): 22. http://dx.doi.org/10.2165/00128415-201013090-00069.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Noctor, Graham, Guillaume Queval, Amna Mhamdi, Sejir Chaouch e Christine H. Foyer. "Glutathione". Arabidopsis Book 9 (janeiro de 2011): 1–32. http://dx.doi.org/10.1199/tab.0142.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Day, Brian J. "Glutathione". Chest 127, n.º 1 (janeiro de 2005): 12–14. http://dx.doi.org/10.1378/chest.83.5.39s.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Day, Brian J. "Glutathione". CHEST Journal 127, n.º 1 (1 de janeiro de 2005): 12. http://dx.doi.org/10.1378/chest.127.1.12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Jefferies, Heather, Jane Coster, Alizan Khalil, Joan Bot, Rosalie D. McCauley e John C. Hall. "Glutathione". ANZ Journal of Surgery 73, n.º 7 (julho de 2003): 517–22. http://dx.doi.org/10.1046/j.1445-1433.2003.02682.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Fraternale, Alessandra, Serena Brundu e Mauro Magnani. "Glutathione and glutathione derivatives in immunotherapy". Biological Chemistry 398, n.º 2 (1 de fevereiro de 2017): 261–75. http://dx.doi.org/10.1515/hsz-2016-0202.

Texto completo da fonte
Resumo:
Abstract Reduced glutathione (GSH) is the most prevalent non-protein thiol in animal cells. Its de novo and salvage synthesis serves to maintain a reduced cellular environment, which is important for several cellular functions. Altered intracellular GSH levels are observed in a wide range of pathologies, including several viral infections, as well as in aging, all of which are also characterized by an unbalanced Th1/Th2 immune response. A central role in influencing the immune response has been ascribed to GSH. Specifically, GSH depletion in antigen-presenting cells (APCs) correlates with altered antigen processing and reduced secretion of Th1 cytokines. Conversely, an increase in intracellular GSH content stimulates IL-12 and/or IL-27, which in turn induces differentiation of naive CD4+ T cells to Th1 cells. In addition, GSH has been shown to inhibit the replication/survival of several pathogens, i.e. viruses and bacteria. Hence, molecules able to increase GSH levels have been proposed as new tools to more effectively hinder different pathogens by acting as both immunomodulators and antimicrobials. Herein, the new role of GSH and its derivatives as immunotherapeutics will be discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Wu, Jian Hui, e Gerald Batist. "Glutathione and glutathione analogues; Therapeutic potentials". Biochimica et Biophysica Acta (BBA) - General Subjects 1830, n.º 5 (maio de 2013): 3350–53. http://dx.doi.org/10.1016/j.bbagen.2012.11.016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Mustacich, Debbie. "Measurement of Glutathione and Glutathione Disulfide". Current Protocols in Toxicology 00, n.º 1 (maio de 1999): 6.2.1–6.2.14. http://dx.doi.org/10.1002/0471140856.tx0602s00.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Saydam, N., A. Kirb, Ö. Demir, E. Hazan, Ö. Oto, O. Saydam e G. Güner. "Determination of glutathione, glutathione reductase, glutathione peroxidase and glutathione S-transferase levels in human lung cancer tissues". Cancer Letters 119, n.º 1 (outubro de 1997): 13–19. http://dx.doi.org/10.1016/s0304-3835(97)00245-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Prasad, C. V. Balasubrahmanya, Mallikarjun V. Kodliwadmath e Girija Basavaraj Kodliwadmath. "Erythrocyte glutathione peroxidase, glutathione reductase activities and blood glutathione content in leprosy". Journal of Infection 56, n.º 6 (junho de 2008): 469–73. http://dx.doi.org/10.1016/j.jinf.2008.03.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Sato, Ikuo, Motoyuki Shimizu, Takayuki Hoshino e Naoki Takaya. "The Glutathione System ofAspergillus nidulansInvolves a Fungus-specific GlutathioneS-Transferase". Journal of Biological Chemistry 284, n.º 12 (26 de janeiro de 2009): 8042–53. http://dx.doi.org/10.1074/jbc.m807771200.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Ketterer, B. "Detoxication reactions of glutathione and glutathione transferases". Xenobiotica 16, n.º 10-11 (janeiro de 1986): 957–73. http://dx.doi.org/10.3109/00498258609038976.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Knapen, Maarten F. C. M., Petra L. M. Zusterzeel, Wilbert H. M. Peters e Eric A. P. Steegers. "Glutathione and glutathione-related enzymes in reproduction". European Journal of Obstetrics & Gynecology and Reproductive Biology 82, n.º 2 (fevereiro de 1999): 171–84. http://dx.doi.org/10.1016/s0301-2115(98)00242-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Huster, Dominik, Ole P. Hjelle, Finn-Mogens Haug, Erlend A. Nagelhus, Winfried Reichelt e O. P. Ottersen. "Subcellular compartmentation of glutathione and glutathione precursors." Anatomy and Embryology 198, n.º 4 (1 de setembro de 1998): 277–87. http://dx.doi.org/10.1007/s004290050184.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Moscow, Jeffrey A., e Katharine H. Dixon. "Glutathione-related enzymes, glutathione and multidrug resistance". Cytotechnology 12, n.º 1-3 (1993): 155–70. http://dx.doi.org/10.1007/bf00744663.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Casalone, Enrico, Carmine Di Ilio, Giorgio Federici e Mario Polsinelli. "Glutathione and glutathione metabolizing enzymes in yeasts". Antonie van Leeuwenhoek 54, n.º 4 (julho de 1988): 367–75. http://dx.doi.org/10.1007/bf00393527.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Chung, Phyllis M., Roseann E. Cappel e Hiram F. Gilbert. "Inhibition of glutathione disulfide reductase by glutathione". Archives of Biochemistry and Biophysics 288, n.º 1 (julho de 1991): 48–53. http://dx.doi.org/10.1016/0003-9861(91)90163-d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Aw, Tak Yee, Grazyna Wierzbicka e Dean P. Jones. "Oral glutathione increases tissue glutathione in vivo". Chemico-Biological Interactions 80, n.º 1 (1991): 89–97. http://dx.doi.org/10.1016/0009-2797(91)90033-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Dourado, Daniel F A. R., Pedro Alexandrino Fernandes, Bengt Mannervik e Maria João Ramos. "Glutathione Transferase: New Model for Glutathione Activation". Chemistry - A European Journal 14, n.º 31 (29 de outubro de 2008): 9591–98. http://dx.doi.org/10.1002/chem.200800946.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

MONTE, Massimo DAL, Ilaria CECCONI, Francesca BUONO, Pier Giuseppe VILARDO, Antonella DEL CORSO e Umberto MURA. "Thioltransferase activity of bovine lens glutathione S-transferase". Biochemical Journal 334, n.º 1 (15 de agosto de 1998): 57–62. http://dx.doi.org/10.1042/bj3340057.

Texto completo da fonte
Resumo:
A Mu-class glutathione S-transferase purified to electrophoretic homogeneity from bovine lens displayed thioltransferase activity, catalysing the transthiolation reaction between GSH and hydroxyethyldisulphide. The thiol-transfer reaction is composed of two steps, the formation of GSSG occurring through the generation of an intermediate mixed disulphide between GSH and the target disulphide. Unlike glutaredoxin, which is only able to catalyse the second step of the transthiolation process, glutathioneS-transferase catalyses both steps of the reaction. Data are presented showing that bovine lens glutathione S-transferase and rat liver glutaredoxin, which was used as a thioltransferase enzyme model, can operate in synergy to catalyse the GSH-dependent reduction of hydroxyethyldisulphide.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

De Vega, L., R. Pérez Fernández, M. C. Martin Mateo, J. Bustamante Bustamante, A. Mendiluce Herrero e E. Bustamante Munguira. "GLUTATHIONE DETERMINATION AND A STUDY OF THE ACTIVITY OF GLUTATHIONE-PEROXIDASE, GLUTATHIONE-TRANSFERASE, AND GLUTATHIONE-REDUCTASE IN RENAL TRANSPLANTS". Renal Failure 24, n.º 4 (janeiro de 2002): 421–32. http://dx.doi.org/10.1081/jdi-120006769.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Fitri, Loeki Enggar, Agustin Iskandar, Teguh Wahju Sardjono, Ummu Ditya Erliana, Widya Rahmawati, Didi Candradikusuma, Utama Budi Saputra, Eko Suhartono, Bambang Setiawan e Erma Sulistyaningsih. "Plasma glutathione and oxidized glutathione level, glutathione/oxidized glutathione ratio, and albumin concentration in complicated and uncomplicated falciparum malaria". Asian Pacific Journal of Tropical Biomedicine 6, n.º 8 (agosto de 2016): 646–50. http://dx.doi.org/10.1016/j.apjtb.2016.06.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Asojo, Oluwatoyin A., e Christopher Ceccarelli. "Structure of glutathioneS-transferase 1 from the major human hookworm parasiteNecator americanus(Na-GST-1) in complex with glutathione". Acta Crystallographica Section F Structural Biology Communications 70, n.º 9 (29 de agosto de 2014): 1162–66. http://dx.doi.org/10.1107/s2053230x1401646x.

Texto completo da fonte
Resumo:
GlutathioneS-transferase 1 fromNecator americanus(Na-GST-1) is a vaccine candidate for hookworm infection that has a high affinity for heme and metal porphyrins. As part of attempts to clarify the mechanism of heme detoxification by hookworm GSTs, co-crystallization and soaking studies ofNa-GST-1 with the heme-like molecules protoporphyrin IX disodium salt, hematin and zinc protoporphyrin were undertaken. While these studies did not yield the structure of the complex ofNa-GST-1 with any of these molecules, co-crystallization experiments resulted in the first structures of the complex ofNa-GST-1 with the substrate glutathione. The structures of the complex ofNa-GST-1 with glutathione were solved from pathological crystalline aggregates comprising more than one crystal form. These first structures of the complex ofNa-GST-1 with the substrate glutathione were solved by molecular replacement from data collected with a sealed-tube home source using the previously reported apo structure as the search model.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Dixon, David P., e Robert Edwards. "Glutathione Transferases". Arabidopsis Book 8 (janeiro de 2010): e0131. http://dx.doi.org/10.1199/tab.0131.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Kulinsky, V. I., e L. S. Kolesnichenko. "Mitochondrial glutathione". Biochemistry (Moscow) 72, n.º 7 (julho de 2007): 698–701. http://dx.doi.org/10.1134/s0006297907070024.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Anderson, M. E. "Glutathione biosynthesis". Pathophysiology 5 (junho de 1998): 59. http://dx.doi.org/10.1016/s0928-4680(98)80507-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Lu, Shelly C. "Glutathione synthesis". Biochimica et Biophysica Acta (BBA) - General Subjects 1830, n.º 5 (maio de 2013): 3143–53. http://dx.doi.org/10.1016/j.bbagen.2012.09.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

García-Giménez, José Luis, Jelena Markovic, Francisco Dasí, Guillaume Queval, Daniel Schnaubelt, Christine H. Foyer e Federico V. Pallardó. "Nuclear glutathione". Biochimica et Biophysica Acta (BBA) - General Subjects 1830, n.º 5 (maio de 2013): 3304–16. http://dx.doi.org/10.1016/j.bbagen.2012.10.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Bachhawat, Anand K., Anil Thakur, Jaspreet Kaur e M. Zulkifli. "Glutathione transporters". Biochimica et Biophysica Acta (BBA) - General Subjects 1830, n.º 5 (maio de 2013): 3154–64. http://dx.doi.org/10.1016/j.bbagen.2012.11.018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Brigelius-Flohé, Regina, e Matilde Maiorino. "Glutathione peroxidases". Biochimica et Biophysica Acta (BBA) - General Subjects 1830, n.º 5 (maio de 2013): 3289–303. http://dx.doi.org/10.1016/j.bbagen.2012.11.020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Bachhawat, Anand Kumar, e Amandeep Kaur. "Glutathione Degradation". Antioxidants & Redox Signaling 27, n.º 15 (20 de novembro de 2017): 1200–1216. http://dx.doi.org/10.1089/ars.2017.7136.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Hayes, John D., Jack U. Flanagan e Ian R. Jowsey. "GLUTATHIONE TRANSFERASES". Annual Review of Pharmacology and Toxicology 45, n.º 1 (22 de setembro de 2005): 51–88. http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095857.

Texto completo da fonte
Resumo:
This review describes the three mammalian glutathione transferase (GST) families, namely cytosolic, mitochondrial, and microsomal GST, the latter now designated MAPEG. Besides detoxifying electrophilic xenobiotics, such as chemical carcinogens, environmental pollutants, and antitumor agents, these transferases inactivate endogenous α,β-unsaturated aldehydes, quinones, epoxides, and hydroperoxides formed as secondary metabolites during oxidative stress. These enzymes are also intimately involved in the biosynthesis of leukotrienes, prostaglandins, testosterone, and progesterone, as well as the degradation of tyrosine. Among their substrates, GSTs conjugate the signaling molecules 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and 4-hydroxynonenal with glutathione, and consequently they antagonize expression of genes trans-activated by the peroxisome proliferator-activated receptor γ (PPARγ) and nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). Through metabolism of 15d-PGJ2, GST may enhance gene expression driven by nuclear factor-κB (NF-κB). Cytosolic human GST exhibit genetic polymorphisms and this variation can increase susceptibility to carcinogenesis and inflammatory disease. Polymorphisms in human MAPEG are associated with alterations in lung function and increased risk of myocardial infarction and stroke. Targeted disruption of murine genes has demonstrated that cytosolic GST isoenzymes are broadly cytoprotective, whereas MAPEG proteins have proinflammatory activities. Furthermore, knockout of mouse GSTA4 and GSTZ1 leads to overexpression of transferases in the Alpha, Mu, and Pi classes, an observation suggesting they are part of an adaptive mechanism that responds to endogenous chemical cues such as 4-hydroxynonenal and tyrosine degradation products. Consistent with this hypothesis, the promoters of cytosolic GST and MAPEG genes contain antioxidant response elements through which they are transcriptionally activated during exposure to Michael reaction acceptors and oxidative stress.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Anderson, Mary E., e Alton Meister. "Glutathione monoesters". Analytical Biochemistry 183, n.º 1 (novembro de 1989): 16–20. http://dx.doi.org/10.1016/0003-2697(89)90164-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Gilliland, Gary L. "Glutathione proteins". Current Opinion in Structural Biology 3, n.º 6 (janeiro de 1993): 875–84. http://dx.doi.org/10.1016/0959-440x(93)90151-a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Compagnone, D., R. Massoud, C. Di Ilio e G. Federici. "Potentiometric Determination of Glutathione and Glutathione Transferase Activity". Analytical Letters 24, n.º 6 (junho de 1991): 993–1004. http://dx.doi.org/10.1080/00032719108054369.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Peters, WH, HMJ Roelofs, MP Hectors, FM Nagengast e JBM Jansen. "Glutathione and glutathione S-transferases in Barrett's epithelium". British Journal of Cancer 67, n.º 6 (junho de 1993): 1413–17. http://dx.doi.org/10.1038/bjc.1993.262.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

van Lieshout, F. M. M., J. B. M. J. Jansen e W. H. M. Peters. "Glutathione and glutathione S-transferases in Barrettʼs epithelium". European Journal of Gastroenterology & Hepatology 10, n.º 12 (dezembro de 1998): A33. http://dx.doi.org/10.1097/00042737-199812000-00119.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Bosch-Morell, Francisco, Leopold Flohé, Nuria Marín e Francisco J. Romero. "4-hydroxynonenal inhibits glutathione peroxidase: protection by glutathione". Free Radical Biology and Medicine 26, n.º 11-12 (junho de 1999): 1383–87. http://dx.doi.org/10.1016/s0891-5849(98)00335-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

van Lieshout, EMM, JBMJ Jansen e WHM Peters. "Glutathione and glutathione S-transferases in Barrett's epithelium". Gastroenterology 114 (abril de 1998): A321. http://dx.doi.org/10.1016/s0016-5085(98)81303-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Gelinsky, M., R. Vogler e H. Vahrenkamp. "Zinc complexation of glutathione and glutathione-derived peptides". Inorganica Chimica Acta 344 (fevereiro de 2003): 230–38. http://dx.doi.org/10.1016/s0020-1693(02)01320-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia