Siga este link para ver outros tipos de publicações sobre o tema: Germanium poreux.

Artigos de revistas sobre o tema "Germanium poreux"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Germanium poreux".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Chubenko, E. B., N. L. Grevtsov, V. P. Bondarenko, I. M. Gavrilin, A. V. Pavlikov, A. A. Dronov, L. S. Volkova e S. A. Gavrilov. "RAMAN SPECTRА OF SILICON/GERMANIUM ALLOY THIN FILMS BASED ON POROUS SILICON". Journal of Applied Spectroscopy 89, n.º 5 (21 de setembro de 2022): 614–20. http://dx.doi.org/10.47612/0514-7506-2022-89-5-614-620.

Texto completo da fonte
Resumo:
The regularities of composition changes of silicon/germanium alloy thin films formed on a monocrystalline silicon substrate by electrochemical deposition of germanium into a porous silicon matrix with subsequent rapid thermal annealing (RTA) at a temperature of 750–950°C are studied. An analysis of the samples by Raman spectroscopy showed that an increase of RTA temperature leads to a decrease in the germanium concentration in the formed film. A decrease of the RTA duration at a given temperature makes it possible to obtain films with a higher concentration of germanium and to control the composition of thin silicon/germanium alloy films formed by changing the temperature and duration of RTA. The obtained results on controlling the composition of silicon/germanium alloy films can be used to create functional electronic devices, thermoelectric power converters, and optoelectronic devices.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Garralaga Rojas, Enrique, Jan Hensen, Jürgen Carstensen, Helmut Föll e Rolf Brendel. "Porous germanium multilayers". physica status solidi (c) 8, n.º 6 (7 de abril de 2011): 1731–33. http://dx.doi.org/10.1002/pssc.201000130.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Grevtsov, Nikita, Eugene Chubenko, Vitaly Bondarenko, Ilya Gavrilin, Alexey Dronov e Sergey Gavrilov. "Germanium electrodeposition into porous silicon for silicon-germanium alloying". Materialia 26 (dezembro de 2022): 101558. http://dx.doi.org/10.1016/j.mtla.2022.101558.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Amato, G., A. M. Rossi, L. Boarino e N. Brunetto. "On the role of germanium in porous silicon-germanium luminescence". Philosophical Magazine B 76, n.º 3 (setembro de 1997): 395–403. http://dx.doi.org/10.1080/01418639708241102.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Li, Xiu, Wei Guo, Qian Wan e Jianmin Ma. "Porous amorphous Ge/C composites with excellent electrochemical properties". RSC Advances 5, n.º 36 (2015): 28111–14. http://dx.doi.org/10.1039/c5ra02459e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Xu, Jing, Thanh-Dinh Nguyen, Kai Xie, Wadood Y. Hamad e Mark J. MacLachlan. "Chiral nematic porous germania and germanium/carbon films". Nanoscale 7, n.º 31 (2015): 13215–23. http://dx.doi.org/10.1039/c5nr02520f.

Texto completo da fonte
Resumo:
Co-assembly of cellulose nanocrystals (CNCs) with germanium(iv) alkoxide in a mixed solvent system produces chiral nematic photonic GeO2/CNC composites, which were converted to semiconducting, mesoporous GeO2/C and Ge/C replicas.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Yin, Huayi, Wei Xiao, Xuhui Mao, Hua Zhu e Dihua Wang. "Preparation of a porous nanostructured germanium from GeO2via a “reduction–alloying–dealloying” approach". Journal of Materials Chemistry A 3, n.º 4 (2015): 1427–30. http://dx.doi.org/10.1039/c4ta05244g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Rojas, E. Garralaga, J. Hensen, J. Carstensen, H. Föll e R. Brendel. "Lift-off of Porous Germanium Layers". Journal of The Electrochemical Society 158, n.º 6 (2011): D408. http://dx.doi.org/10.1149/1.3583645.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Isaiev, M., S. Tutashkonko, V. Jean, K. Termentzidis, T. Nychyporuk, D. Andrusenko, O. Marty, R. M. Burbelo, D. Lacroix e V. Lysenko. "Thermal conductivity of meso-porous germanium". Applied Physics Letters 105, n.º 3 (21 de julho de 2014): 031912. http://dx.doi.org/10.1063/1.4891196.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Platonov, Nikolay, Nail Suleimanov e Valery Bazarov. "Study of the electrophysical properties of nanostructured porous germanium as a promising material for electrodes of electrochemical capacitors". E3S Web of Conferences 288 (2021): 01073. http://dx.doi.org/10.1051/e3sconf/202128801073.

Texto completo da fonte
Resumo:
Electrochemical capacitors (ECC) are a fast charging devices, with high power density, capacity and increased life time. Nanostructured semiconductors are now considered as the promising materials for electrodes of such devices due to its conductive properties and effective surface. One of such materials is the porous germanium which can be used as an electrode in electrochemical capacitors. In this article the novel approach based on the method of ion implantation was developed to grow these structures. This method allows to obtain a structures up to 1 μm thick. The object of this work was the investigation of the electrophysical characteristics of samples of nanostructured porous germanium (Ge) depending on the implantation dose and surface morphology. The scientific novelty of this research lies in the search the structures with the highest effective surface area and electronic conductivity, capable of multiplying the energy capacity and specific power of ECC. Methods: The samples of amorphous Ge were grown on dielectric single-crystal substrates of Al2O3. The thickness of samples was 600 and 1000 nm. The magnetron sputtering and ion implantation methods were used to growth these structures. The irradiation with Ge+ ions produced with an energy of 40 keV and the range of implantation doses varied from 2·1016 to 12•1016 ion / cm2. The study of electrical properties was carried out on the Hall installation HL55PC at the NPP KVANT in Moscow. The following parameters were measured: the sheet concentration of carriers in the near-surface layer, electrical resistance, mobility of the charge carriers, Hall coefficient. As a result, the dependences of carriers concentration and their mobility as the function of the implantation dose and thickness of the samples of nanostructured porous germanium were determined, and the results were analyzed. Results: It was found that ion implantation of single-crystal germanium leads to an increase in the carrier concentration in the near-surface layer. To sum up, the most suitable material as an electrode for ECC is the porous germanium with the maximum dose of ion implantation and the largest thickness. The maximum sheet carrier concentration that was obtained in the study for Ge is 1017 cm-2.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Jing, Chengbin, Chuanjian Zhang, Xiaodan Zang, Wenzheng Zhou, Wei Bai, Tie Lin e Junhao Chu. "Fabrication and characteristics of porous germanium films". Science and Technology of Advanced Materials 10, n.º 6 (dezembro de 2009): 065001. http://dx.doi.org/10.1088/1468-6996/10/6/065001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Steinbach, T., e W. Wesch. "Porous structure formation in ion irradiated germanium". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 319 (janeiro de 2014): 112–16. http://dx.doi.org/10.1016/j.nimb.2013.11.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Fässler, Thomas F. "Germanium(cF136): A New Crystalline Modification of Germanium with the Porous Clathrate-II Structure". Angewandte Chemie International Edition 46, n.º 15 (2 de abril de 2007): 2572–75. http://dx.doi.org/10.1002/anie.200604586.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Yang, Chenglong, Yu Jiang, Xiaowu Liu, Xiongwu Zhong e Yan Yu. "Germanium encapsulated in sulfur and nitrogen co-doped 3D porous carbon as an ultra-long-cycle life anode for lithium ion batteries". Journal of Materials Chemistry A 4, n.º 48 (2016): 18711–16. http://dx.doi.org/10.1039/c6ta08681k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Ngo, Duc Tung, Hang T. T. Le, Ramchandra S. Kalubarme, Jae-Young Lee, Choong-Nyeon Park e Chan-Jin Park. "Uniform GeO2 dispersed in nitrogen-doped porous carbon core–shell architecture: an anode material for lithium ion batteries". Journal of Materials Chemistry A 3, n.º 43 (2015): 21722–32. http://dx.doi.org/10.1039/c5ta05145b.

Texto completo da fonte
Resumo:
Germanium oxide (GeO2), which possesses great potential as a high-capacity anode material for lithium ion batteries, has suffered from its poor capacity retention and rate capability due to significant volume changes during lithiation and delithiation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Choi, Hee Cheul, e Jillian M. Buriak. "Preparation and functionalization of hydride terminated porous germanium". Chemical Communications, n.º 17 (2000): 1669–70. http://dx.doi.org/10.1039/b004011h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Akkari, Emna, Oualid Touayar e Brahim Bessais. "Reflectivity, Absorption and Structural Studies of Porous Germanium". Sensor Letters 9, n.º 6 (1 de dezembro de 2011): 2295–98. http://dx.doi.org/10.1166/sl.2011.1752.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Guzmán, David, Miguel Cruz e Chumin Wang. "Electronic and optical properties of ordered porous germanium". Microelectronics Journal 39, n.º 3-4 (março de 2008): 523–25. http://dx.doi.org/10.1016/j.mejo.2007.07.083.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Miyazaki, S., K. Sakamoto, K. Shiba e M. Hirose. "Photoluminescence from anodized and thermally oxidized porous germanium". Thin Solid Films 255, n.º 1-2 (janeiro de 1995): 99–102. http://dx.doi.org/10.1016/0040-6090(94)05630-v.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Shieh, J., H. L. Chen, T. S. Ko, H. C. Cheng e T. C. Chu. "Nanoparticle-Assisted Growth of Porous Germanium Thin Films". Advanced Materials 16, n.º 13 (5 de julho de 2004): 1121–24. http://dx.doi.org/10.1002/adma.200306541.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Karavanskii, V. A., A. A. Lomov, A. G. Sutyrin, V. A. Bushuev, N. N. Loikho, N. N. Melnik, T. N. Zavaritskaya e S. Bayliss. "Observation of nanocrystals in porous stain-etched germanium". physica status solidi (a) 197, n.º 1 (maio de 2003): 144–49. http://dx.doi.org/10.1002/pssa.200306490.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Stepanov, A. L., V. V. Vorob’ev, V. I. Nuzhdin, V. F. Valeev e Yu N. Osin. "Formation of Porous Germanium Layers by Silver-Ion Implantation". Technical Physics Letters 44, n.º 4 (abril de 2018): 354–57. http://dx.doi.org/10.1134/s1063785018040260.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Rogov, R. M., V. I. Nuzhdin, V. F. Valeev, A. I. Gumarov, L. R. Tagirov, I. M. Klimovich e A. L. Stepanov. "Porous germanium with copper nanoparticles formed by ion implantation". Vacuum 166 (agosto de 2019): 84–87. http://dx.doi.org/10.1016/j.vacuum.2019.04.062.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Rogov, A. M., A. I. Gumarov, L. R. Tagirov e A. L. Stepanov. "Swelling and sputtering of porous germanium by silver ions". Composites Communications 16 (dezembro de 2019): 57–60. http://dx.doi.org/10.1016/j.coco.2019.08.013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Rogov, A. M., Y. N. Osin, V. I. Nuzhdin, V. F. Valeev e A. L. Stepanov. "Porous germanium with Ag nanoparticles formed by ion implantation". Journal of Physics: Conference Series 1092 (setembro de 2018): 012125. http://dx.doi.org/10.1088/1742-6596/1092/1/012125.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Akkari, E., Z. Benachour, S. Aouida, O. Touayar, B. Bessais e J. Benbrahim. "Study and characterization of porous germanium for radiometric measurements". physica status solidi (c) 6, n.º 7 (julho de 2009): 1685–88. http://dx.doi.org/10.1002/pssc.200881099.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Gorokhov, E. B., K. N. Astankova, I. A. Azarov, V. A. Volodin e A. V. Latyshev. "New method of porous Ge layer fabrication: structure and optical properties". Физика и техника полупроводников 52, n.º 5 (2018): 517. http://dx.doi.org/10.21883/ftp.2018.05.45861.50.

Texto completo da fonte
Resumo:
AbstractPorous germanium films were produced by selective removal of the GeO_2 matrix from the GeO_2<Ge–NCs> heterolayer in deionized water or HF. On the basis of Raman and infrared spectroscopy data it was supposed that a stable skeletal framework from agglomerated Ge nanoparticles (amorphous or crystalline) was formed after the selective etching of GeO_2<Ge–NCs> heterolayers. The kinetics of air oxidation of amorphous porous Ge layers was investigated by scanning ellipsometry. Spectral ellipsometry allowed estimating the porosity of amorphous and crystalline porous Ge layers, which was ~70 and ~80%, respectively.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Stepanov, A. L., Yu N. Osin, V. I. Nuzhdin, V. F. Valeev e V. V. Vorob’ev. "Synthesis of Porous Germanium with Silver Nanoparticles by Ion Implantation". Nanotechnologies in Russia 12, n.º 9-10 (setembro de 2017): 508–13. http://dx.doi.org/10.1134/s1995078017050123.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Ko, T. S., J. Shieh, M. C. Yang, T. C. Lu, H. C. Kuo e S. C. Wang. "Phase transformation and optical characteristics of porous germanium thin film". Thin Solid Films 516, n.º 10 (março de 2008): 2934–38. http://dx.doi.org/10.1016/j.tsf.2007.06.023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Abdullahi, Yusuf Zuntu, e Fatih Ersan. "Theoretical design of porous dodecagonal germanium carbide (d-GeC) monolayer". RSC Advances 13, n.º 5 (2023): 3290–94. http://dx.doi.org/10.1039/d2ra07841d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Zegadi, Rami, Nathalie Lorrain, Sofiane Meziani, Yannick Dumeige, Loїc Bodiou, Mohammed Guendouz, Abdelouahab Zegadi e Joël Charrier. "Theoretical Demonstration of the Interest of Using Porous Germanium to Fabricate Multilayer Vertical Optical Structures for the Detection of SF6 Gas in the Mid-Infrared". Sensors 22, n.º 3 (22 de janeiro de 2022): 844. http://dx.doi.org/10.3390/s22030844.

Texto completo da fonte
Resumo:
Porous germanium is a promising material for sensing applications in the mid-infrared wavelength range due to its biocompatibility, large internal surface area, open pores network and widely tunable refractive index, as well as its large spectral transparency window ranging from 2 to 15 μm. Multilayers, such as Bragg reflectors and microcavities, based on porous germanium material, are designed and their optical spectra are simulated to enable SF6 gas-sensing applications at a wavelength of 10.55 µm, which corresponds to its major absorption line. The impact of both the number of successive layers and their respective porosity on the multilayer structures reflectance spectrum is investigated while favoring low layer thicknesses and thus the ease of multilayers manufacturing. The suitability of these microcavities for mid-infrared SF6 gas sensing is then numerically assessed. Using an asymmetrical microcavity porous structure, a sensitivity of 0.01%/ppm and a limit of detection (LOD) around 1 ppb for the SF6 gas detection are calculated. Thanks to both the porous nature allowing gases to easily infiltrate the overall structure and Ge mid-infrared optical properties, a theoretical detection limit nearly 1000 times lower than the current state of the art is simulated.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Al-Diabat, Ahmad M., Natheer A. Algadri, Tariq Alzoubi, Naser M. Ahmed, Abdulsalam Abuelsamen, Osama Abu Noqta, Ghaseb N. Makhadmeh, Amal Mohamed Ahmed Ali e Almutery Aml. "Combining Germanium Quantum Dots with Porous Silicon: An Innovative Method for X-ray Detection". WSEAS TRANSACTIONS ON ELECTRONICS 15 (10 de dezembro de 2024): 128–34. https://doi.org/10.37394/232017.2024.15.15.

Texto completo da fonte
Resumo:
This study investigates the controlled electrochemical synthesis of porous silicon and germanium (Ge)-doped porous silicon using a 4:1 ratio of hydrofluoric acid (HF) to ethanol. Structural analysis performed with FESEM-EDX confirmed the presence of Ge in the samples. Analysis of the I-V characteristics demonstrated that increasing the bias voltage at the source led to a corresponding increase in the observed current. Additionally, effective X-ray measurements facilitated the assessment of X-ray irradiation effects on the sample detector. The experimental results indicated that the optimal conditions for the porous silicon (PS) and Ge-doped porous silicon (Ge-PS) samples were (90V, 100mA, 1s) and (100V, 10mA, 0.5s), respectively.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Sheng, Xianhua, Zhizhong Zeng, Changxin Du, Ting Shu e Xiangdong Meng. "Amorphous porous germanium anode with variable dimension for lithium ion batteries". Journal of Materials Science 56, n.º 27 (28 de junho de 2021): 15258–67. http://dx.doi.org/10.1007/s10853-021-06264-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Stepanov, A. L., V. I. Nuzhdin, V. F. Valeev, A. M. Rogov, V. V. Vorobev e Y. N. Osin. "Porous germanium formed by low energy high dose Ag + -ion implantation". Vacuum 152 (junho de 2018): 200–204. http://dx.doi.org/10.1016/j.vacuum.2018.03.030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Chang, S. S., e R. E. Hummel. "Comparison of photoluminescence behavior of porous germanium and spark-processed Ge". Journal of Luminescence 86, n.º 1 (fevereiro de 2000): 33–38. http://dx.doi.org/10.1016/s0022-2313(99)00179-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Lockwood, D. J., N. L. Rowell, I. Berbezier, G. Amiard, L. Favre, A. Ronda, M. Faustini e D. Grosso. "Optical Properties of Germanium Dots Self-Assembled on Porous TiO2 Templates". ECS Transactions 33, n.º 16 (17 de dezembro de 2019): 147–65. http://dx.doi.org/10.1149/1.3553166.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Xiao, Ying, Minhua Cao, Ling Ren e Changwen Hu. "Hierarchically porous germanium-modified carbon materials with enhanced lithium storage performance". Nanoscale 4, n.º 23 (2012): 7469. http://dx.doi.org/10.1039/c2nr31533e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Koto, Makoto, Ann F. Marshall, Irene A. Goldthorpe e Paul C. McIntyre. "Gold-Catalyzed Vapor-Liquid-Solid Germanium-Nanowire Nucleation on Porous Silicon". Small 6, n.º 9 (21 de abril de 2010): 1032–37. http://dx.doi.org/10.1002/smll.200901764.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Mishra, Kuber, Xiao-Chen Liu, Fu-Sheng Ke e Xiao-Dong Zhou. "Porous germanium enabled high areal capacity anode for lithium-ion batteries". Composites Part B: Engineering 163 (abril de 2019): 158–64. http://dx.doi.org/10.1016/j.compositesb.2018.10.076.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Kartopu, G., e Y. Ekinci. "Further evidence on the observation of compositional fluctuation in silicon–germanium alloy nanocrystals prepared in anodized porous silicon–germanium films". Thin Solid Films 473, n.º 2 (fevereiro de 2005): 213–17. http://dx.doi.org/10.1016/j.tsf.2004.04.064.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Xiao, Chengmao, Ning Du, Yifan Chen, Jingxue Yu, Wenjia Zhao e Deren Yang. "Ge@C three-dimensional porous particles as high-performance anode materials of lithium-ion batteries". RSC Advances 5, n.º 77 (2015): 63056–62. http://dx.doi.org/10.1039/c5ra08656f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Akkari, Emna, Oualid Touayar, F. Javier Del Campo e Josep Montserrat. "Improved electrical characteristics of porous germanium photodiode obtained by phosphorus ion implantation". International Journal of Nanotechnology 10, n.º 5/6/7 (2013): 553. http://dx.doi.org/10.1504/ijnt.2013.053524.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Karavanskii, V. A., A. A. Lomov, A. G. Sutyrin, V. A. Bushuev, N. N. Loikho, N. N. Melnik, T. N. Zavaritskaya e S. Bayliss. "Raman and X-ray studies of nanocrystals in porous stain-etched germanium". Thin Solid Films 437, n.º 1-2 (agosto de 2003): 290–96. http://dx.doi.org/10.1016/s0040-6090(03)00158-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Wolter, S. D., T. Tyler e N. M. Jokerst. "Surface characterization of oxide growth on porous germanium films oxidized in air". Thin Solid Films 522 (novembro de 2012): 217–22. http://dx.doi.org/10.1016/j.tsf.2012.09.041.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Yuan, Ye, Jia Liu, Hao Ren, Xiaofei Jing, Wei Wang, Heping Ma, Fuxing Sun e Huijun Zhao. "Synthesis and characterization of germanium-centered three-dimensional crystalline porous aromatic framework". Journal of Materials Research 27, n.º 10 (9 de janeiro de 2012): 1417–20. http://dx.doi.org/10.1557/jmr.2011.433.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Chubenko, E. B., N. L. Grevtsov, V. P. Bondarenko, I. M. Gavrilin, A. V. Pavlikov, A. A. Dronov, L. S. Volkova e S. A. Gavrilov. "Raman Spectra of Silicon/Germanium Alloy Thin Films Based on Porous Silicon". Journal of Applied Spectroscopy 89, n.º 5 (novembro de 2022): 829–34. http://dx.doi.org/10.1007/s10812-022-01432-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Chapotot, Alexandre, Bouraoui Ilahi, Javier Arias-Zapata, Tadeáš Hanuš, Ahmed Ayari, Gwenaëlle Hamon, Jinyoun Cho, Kristof Dessein, Maxime Darnon e Abderraouf Boucherif. "Germanium surface wet-etch-reconditioning for porous lift-off and substrate reuse". Materials Science in Semiconductor Processing 168 (dezembro de 2023): 107851. http://dx.doi.org/10.1016/j.mssp.2023.107851.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Grevtsov, Nikita, Eugene Chubenko, Ilya Gavrilin, Dmitry Goroshko, Olga Goroshko, Ilia Tsiniaikin, Vitaly Bondarenko, Maksim Murtazin, Alexey Dronov e Sergey Gavrilov. "Impact of porous silicon thickness on thermoelectric properties of silicon-germanium alloy films produced by electrochemical deposition of germanium into porous silicon matrices followed by rapid thermal annealing". Materials Science in Semiconductor Processing 187 (março de 2025): 109148. http://dx.doi.org/10.1016/j.mssp.2024.109148.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

ГОРОШКО, Д. Л., И. М. ГАВРИЛИН, А. А. ДРОНОВ, О. А. ГОРОШКО e Л. С. ВОЛКОВА. "STRUCTURE AND THERMAL CONDUCTIVITY OF THIN FILMS OF THE SI1-XGEX ALLOY FORMED BY ELECTROCHEMICAL DEPOSITION OF GERMANIUM INTO POROUS SILICON". Автометрия 59, n.º 6 (29 de dezembro de 2023): 80–88. http://dx.doi.org/10.15372/aut20230609.

Texto completo da fonte
Resumo:
Сплошные и пористые плёнки сплавов Si1-xGex с содержанием германия около 40 % и толщиной 3-4 мкм, сформированные на монокристаллическом кремнии методом электрохимического осаждения германия в матрицу пористого кремния с последующим быстрым термическим отжигом при температуре 950 °C, исследованы методами спектроскопии комбинационного рассеяния света (КРС), оптической спектроскопии и сканирующей электронной микроскопии. На основе спектров, снятых в стоксовой и антистоксовой областях частот с использованием статистики Больцмана и закона теплопроводности Фурье, определены коэффициенты теплопроводности плёнок, которые составляют 7-9 и 3-6 Вт / (м ⋅ К) для сплошной и пористой плёнок соответственно. Низкая теплопроводность пористой плёнки объясняется дополнительнымфононным рассеянием на развитой поверхности пор. Перспективность применения таких плёнок в термоэлектрических преобразователях обеспечивается простотой и масштабируемостью способа изготовления сплава, а также его низкой теплопроводностью. Solid and porous films of the Si 1-xGex alloys with a germanium content of about 40% and a thickness of 3-4 μm, formed on single-crystal silicon by electrochemical deposition of germanium into a porous silicon matrix followed by rapid thermal annealing at a temperature of 950 °C, are studied by Raman spectroscopy, optical spectroscopy, and scanning electron microscopy. Based on the Raman spectra taken in the Stokes and anti-Stokes frequency regions, using Boltzmann statistics and the Fourier thermal conductivity law, the thermal conductivity of the films is determined, which is found to be 7-9 and 3-6 W/(m×K) for a continuous and porous film, respectively. The low thermal conductivity of the porous film is explained by additional phonon scattering from the developed pore surface. The prospect of using such films in thermoelectric converters is ensured by the simplicity and scalability of the method for manufacturing the alloy, as well as its low thermal conductivity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Zegadi, Rami, Nathalie Lorrain, Loїc Bodiou, Mohammed Guendouz, Lahcene Ziet e Joël Charrier. "Enhanced mid-infrared gas absorption spectroscopic detection using chalcogenide or porous germanium waveguides". Journal of Optics 23, n.º 3 (18 de fevereiro de 2021): 035102. http://dx.doi.org/10.1088/2040-8986/abdf69.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia